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Abstract [max 250 / currently 247]

Background

von Hippel-Lindau (VHL) disease is characterized by the development of benign and malignant tumors in many
organ systems, including renal cysts and clear cell renal cell carcinoma. It is not completely understood what
underlies the development of renal pathology, and the use of murine VAl models has been challenging due to
limitations in disease conservation. We previously described a zebrafish model bearing inactivating mutations in the
orthologue of the human VHL gene. Methods: We used histopathological and functional assays to investigate the
pronephric and glumerular developmental defects in vhl mutant zebrafish, supported by human cell culture
modelling. Results: Here, we report that vkl is required to maintain pronephric tubule and glomerulus integrity in
zebrafish embryos. vhl mutant glomeruli are enlarged, cxcr4a+ capillary loops are dilated and the Bowman space is
widened. While we did not observe pronephric cysts, the cells of the proximal convoluted and anterior proximal
straight tubule are enlarged, periodic acid schiff (PAS) and Oil Red O positive, and display a clear cytoplasm after
hematoxylin and eosine staining. Ultrastructural analysis showed the vhl” tubule to accumulate large numbers of
vesicles of variable size and electron density. Microinjection of the endocytic fluorescent marker AM1-43 in
zebrafish embryos revealed an accumulation of endocytic vesicles in the vhl mutant pronephric tubule, which we can
recapitulate in human cells lacking VHL. Conclusions: Our data indicates that vhl is required to maintain pronephric
tubule and glomerulus integrity during zebrafish development, and suggests a role for VHL in endocytic vesicle

trafficking.
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Introduction

The von Hippel-Lindau (VHL) disease is characterized by heterozygous inactivation of a single VHL allele, which
predisposes to benign and malignant tumor development in many organ systems . In the kidney, biallelic VHL
inactivation results in the formation of numerous benign cysts in ~75% of the patient population . It is thought
that clear cell renal cell carcinoma (ccRCC, 35-75% prevalence) develops from cells lining these premalignant renal
tubular cysts, however, not all cysts develop ccRCC, and not all cases of ccRCC are preceded by cysts .
Therefore, the exact mechanisms behind the development of these disease aspects are currently debated. Several lines

of evidence suggest multiple steps to be involved, including microtubule instability EI, loss of cilia (associated with

cyst formation) |7-10], changes in the extracellular matrix |11-13], and constitutive activation of the hypoxia

inducible transcription factor HIF .

Modeling renal aspects of VHL disease in rodents has been challenging; renal pathology was not observed in mice in
which Vhlh was inactivated in a systemic mosaic pattern , or in systemic Vhlh™" mice , which were also not

more susceptible to streptozotocin-induced renal carcinogenesis . Conditional inactivation of Vhih in the renal

tubule failed to induce ccRCC in mice [18]19], yet led to some important insights into the development of renal

cysts. Deletion of Vhlh in the renal proximal tubule using a Cre recombinase under the control of a
phosphoenolpyruvate carboxykinase (PEPCK) promoter, resulted in a low incidence (around 30% of mice over 12
months) of glomerular and tubular cysts in a HIF-1a independent, HIF-1p dependent manner . Cre/lox site-
specific recombination using the Kspl.3 promotor (cadherin 16) resulted in conditional inactivation of Vhih
throughout the renal epithelium (although rarely in the proximal tubules), yet renal neoplasms were not observed
. It was therefore postulated that additional VHL-independent events may be required that lead to the activation
of other cancer signaling pathways. pVHL might also exert a broader role in maintaining renal integrity. Ding et al.
showed that selective deletion of Vhih in glomerular podocytes results in a CXCR4-dependent development of
necrotizing glomerular vasculitis with prominent segmental fibrin deposits, also termed rapid degenerative
glomerulonephritis (RPGN) in mice from 4 weeks of age. In primary renal proximal epithelial cells (RPTECs) and
mouse embryonic fibroblast (MEFs) it was shown that only the combined inactivation of pVHL and glycogen
synthase kinase beta (GSK3p) resulted in the loss of pre-established primary cilia, likely through activation of
protein kinase Akt . This was supported by in vivo data, where combined deletion of Vhlh and the tumor
suppressor Pten (a negative regulator of the phosphatidylinositol-3-kinase (PI3K) signaling pathway and thus Akt
activity) in Kspl.3-cre mice resulted in the robust formation of proliferative cysts with reduced cilia numbers .
In support, a triple knock-out conditional murine model inactivating Vhih, p53 and ciliary Kif3a resulted in
neoplastic renal lesions . Collectively, most researchers agree that the mouse models of Vhlh inactivation are not

yet optimized for modelling renal cell regulation in the context of VHL-associated renal pathology.
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Due to its anatomical simplicity of consisting of just two nephrons, the zebrafish embryonic kidney - or pronephros
- has proven itself to be a valuable and relevant model for studies of kidney development and disease (reviewed by
Drummond ; Wingert and Davidson ; van de Hoek |25|). We have previously shown that zebrafish mutants
in the von Hippel-Lindau tumor suppressor develop key aspects of the human disease condition, including
activation of the HIF signaling pathway, the development of polycythemia and excessive neovascularization of the
retina and brain, and recently loss of vhl was also shown to recapitulate ccRCC characteristics in zebrafish . Here
we report that vhl is required to maintain pronephric tubule and glomerulus integrity in zebrafish embryos. vhl
mutant glomeruli are enlarged, capillary loops are dilated and the Bowman space is widened. While we did not
observe pronephric cysts, the cells of the proximal convoluted and anterior proximal straight tubule are enlarged,
PAS and Oil Red O positive, and display a clear cytoplasm after hematoxylin and eosine staining. Ultrastructural
analysis revealed the vk’ tubule to accumulate large numbers of vesicles of unknown content. Confocal fluorescent
imaging in zebrafish embryos and human VHL deficient cell suggest a role for VHL in endocytic trafficking. Our
results indicate that zebrafish vAl mutants will contribute to the understanding of the complex nature of VHL-

associated renal processes.
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Results

vhl mutants develop severe proximal tubule and glomerular abnormalities

The segmental organization of the zebrafish pronephros is very similar to the mammalian metanephros (Figure
la). In live embryos, the smooth lining of the proximal convoluted tubule (PCT) and proximal straight tubule (PST)
is easily visible from a lateral view (Figure 1a’,b). Strikingly, from 3 days post-fertilization (dpf) vAl mutant tubular
cells are irregular with a grape-like or alveolar appearance, which is most pronounced in the neck (not shown), PCT
and anterior PST, as shown in Figure 1b,c at 7.5 dpf. This phenotype can be rescued by injection with 10 pg human

VHLp30 mRNA (Supplemental Figure 1).

Human VHL" ccRCC cells accumulate glycogen and as a consequence their cytoplasm appears clear when stained
for hematoxylin and eosin (H&E) but stains positive for Periodic Acid Schiff (PAS) . To investigate whether vhl
mutant cells would share these distinct ccRCC characteristics, we performed a histopathological analysis of the
affected proximal tubule. H&E staining on paraffin-embedded sections revealed the large vhl”- PCT cells to have a
clearer cytoplasmic appearance when compared to a sibling cross-section at 7.5 dpf (Figure 1c). In siblings, the lining
of the PCT and PST is composed of a single layer of smooth cuboidal cells with a PAS-positive apical brush border
(Figure 1d). Proximal tubule vhl”" cells, however, are uniformly PAS-positive (Figure 1d). This is most pronounced
in the PCT and anterior PST, while more posteriorly staining is reduced and cells appear morphologically less
affected (Figure 1d). Interestingly, occasionally pink cells were observed amongst PAS negative cells in the more
distal pronephric segments of vkl mutants (arrows, Figure le), suggesting that other segments might be affected as
well. Diastase treatment, however, did not alter vhl” PAS staining of the proximal tubule, demonstrating that the
PAS staining in vkl mutants is not due to glycogen depositions (not shown). Oil Red O staining suggest an increased
lipid content in the enlarged PT cells (Figure 1f). Further examination of vk’ tubule cells using plastic-embedded
sections also supports the notion that these cells do not represent typical clear cell morphology, since under these
conditions PT cells show a granular staining for both eosin and haematoxylin (Figure 2d-f). Likely, these changes are
due to the use of different dehydrating agents during paraffin embedding, which have been shown to remove

cytoplasmic vesicles present in chromophobe renal cell carcinoma .

Histological examination furthermore revealed severe glomerular abnormalities in the vhl mutant (Figures 2a-f). We
observe that compared with glomeruli of age-matched siblings, the vhl” glomerulus is enlarged, the Bowman space
is widened (double arrow) and the capillary loops are dilated (red arrowheads; Fig 2b). o-Dianisidine staining
revealed the capillary loops to contain blood cells and perfusion of the glomerulus to be increased in vhl mutants

(Figure 2¢).
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Deletion of Vhih in glomerular podocytes induced the formation of dilated capillary loops and de novo expression of
Cxcr4 in mouse podocytes . In zebrafish, Cxcr4 is duplicated in cxcr4a and cxcr4b, with both fulfilling distinct
functions . We have previously shown that vil mutants express cxcr4a in angiogenic blood vessels in the brain
and retina, both tissues which, like the vhl”- glomerulus, express high levels of vegf . In Figure 2d, cxcrda-positive
capillary loops can be observed. Furthermore, some smaller cells appear to express cxcr4a (arrows), however it needs
to be further investigated whether these represent podocytes. cxcr4b is expressed in the pronephric hematopoietic
tissue (PHT) in both mutants and siblings (Figure 2e). While a widened Bowman space was observed in 8/8

histologically examined vkl mutants, this is not observed in Figures 2d and e.

To investigate proliferation levels in the pronephros, we pulsed the embryos with BrdU. vkl mutants did not display
an altered proliferation rate in the glomerulus and PT compared to siblings at 7.5 dpf, whereas brown proliferating

cells could be readily observed in the vhl”- pronephric hematopoietic tissue (Figure 2f).

Accumulation of vesicles in vhl” proximal tubule

To investigate the cytoplasmic content and ultrastructural characteristics of the PT cells, we performed electron
microscopy analysis on two vkl mutants and siblings at 7.5 dpf. In siblings, a regular organization of the polarized
PCT cells is observed (Figure 3a,b). At the apical side, brush border microvilli and cilia (arrow) reach into the
tubular lumen, and endocytic vesicles (arrowheads) are observed close to the apical membrane (Figure 3b). The
nucleus and numerous mitochondria are located towards the basement membrane (Figure 3b). The posterior PST
showed a similar polarization, however, endocytic vesicles were less frequently observed (Figure 3c). In vhl mutants,
PCT cells contain a striking quantity of vesicles (asterisks) of unknown content, variable in size and electron density,
which are located throughout the cytoplasm (Figure 3d). Cell boundaries or other organelles could hardly be
discerned. Moving in a more distal direction from the PCT (from Figure 3e to 3g) abnormalities gradually become
less severe and at the level of the PST/DE no vesicles were observed (Figure 3g). Electron micrographs of the
pancreas, showed a similar accumulation of vesicles in the exocrine (zymogens) and endocrine (beta cells) tissues
(Supplemental Figure 2). We also observed an aberrant morphology of mitochondria in the liver (Supplemental

Figure 3).

Due to the severe abnormalities of the PCT we could not distinguish the presence of cilia, however in more posterior
segments cilia of normal 9+2 architecture were observed (Figure 3e-g). Since vkl mutants do not develop pronephric
cysts it is likely that ciliary function is not impaired. It has been shown that only the combined inactivation of VHL
and GSK3p or PTEN (activation of AKT) resulted in the loss of cilia in primary cells or mice , respectively,

leading to renal cyst development in vivo . To test this hypothesis, we treated 3 dpf zebrafish vhi-/- and sibling
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embryos with a single dose of GSK3/ chemical inhibitor LiCl in a concentration range from 1-10 mM from 3-6 dpf.

While 10 mM LiCl was lethal, we did not observe pronephric cysts at lower concentrations (not shown).

Glomerular filtration in vhl” cells is not impaired
The injection of fluorescent compounds into the circulation is a well-established tool to visualize filtration by the
zebrafish pronephros. It has been shown that biologically inert rhodamine-dextran conjugates are cleared by the

glomerulus and subsequently reabsorbed by the proximal tubule by endocytosis (detectable in apical endosomes) or

excreted via the cloaca |32-34|. To investigate whether the severely affected vhl”- glomerulus and proximal tubules

are able to exert these functions, we injected 7 dpf TG(kdr-like:egfp) vhl mutants and siblings with
tetramethylrhodamine conjugated 70k MW dextran (TAMRA). Between 5-7 hours post administration embryos
were analyzed. Confocal imaging of the proximal tubule revealed that in both mutants and siblings TAMRA was
cleared by the glomerulus (not shown) and taken up by the PT (Figure 4a) or excreted via the cloaca (not shown).
While in siblings TAMRA-containing vesicles are small and appear to have a more apical distribution, vesicles in the

vhl’ PT are larger and appear to fill up most of the PT cell lumen (left panels).

Neovascularization of the vhl” proximal tubule does not contribute to the aberrant cell morphology

Confocal analysis of the blood vasculature of the pronephric bed (Figure 4a, middle and right panels) revealed severe
neovascularization of the vhl” PT. While in siblings the PT is wrapped around one main blood vessel, in vhl mutants
the PT is surrounded by blood vessels that form a fine cocoon-like structure over the tubular epithelium. To assess
whether this network of blood vessels surrounding the PT and the general excess of vegf signaling might contribute
to the aberrant tubular morphology, we treated embryos with the 676475 VEGFR-2 inhibitor (Calbiochem) that we
previously showed to effectively block the enhanced angiogenic response in vAl mutants . Similarly, Figure 4b
shows that VEGF receptor inhibition from 2.5 to 5.75 dpf blocked the vhl”- PT neovascularization when compared to
DMSO treated mutants. Importantly, PT cell morphology was not obviously affected, indicating that the aberrant

neovascularization or vegf overexpression do not contribute to this specific phenotype.

vhl mutants show endocytic changes and vesicle trafficking

To address the hypothesis that endocytosis on the apical membrane of PT cells may be affected in the vhl”
pronephros, we performed cardiac administration of the styryl dye molecule AM1-43. AM1-43 is a fixable
fluorescent activity-dependent endocytosis marker with a lipophilic tail and a hydrophilic, cationic head group,
which is virtually non-fluorescent in aqueous solution . When taken up by endocytosis, AM1-43 is strongly
fluorescent. Upon cardiac injection of AM1-43 in vhl”- embryos, we observe a specific increase in dye uptake in the

pronephric tubule as well as the intestine (Figure 5a,b). In siblings only moderate uptake was observed in these

7
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organs (Figure 5a), with a notable absence of uptake in a distinct distal region of the intestine. Interestingly, in the
vhl” embryos, dye uptake is observed in this region (Figure 5b). Vibratome sections of the PT confirm the robust

increased uptake and evident vesicle accumulation of the AM1-43 dye in cells (Figure 5c¢,d).

We next asked whether human PT cells lacking VHL exhibit similar changes in vesicle accumulation and trafficking.
Using a well-established ccRCC cell line with biallelic VHL mutations (786-0) and isogenic sister clone with
reconstituted VHL added back to confirm specificity, we microinjected a fluorescently labeled mCherry-RAB7A
construct, as a RAS-related protein involved in endocytosis. After 24 hours, we performed live cell imaging of 10
individual fluorescent labeled cells for each condition. In all cells lacking VHL, we observed perinuclear clustering of
large RAB7A positive vesicles, which were diffusely spread upon VHL introduction (Figure 5e,f & supplemental

movies 1-2). Collectively, these data support a role for VHL in endocytic vesicle uptake and transport.
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Discussion

Here we describe developmental defects of the zebrafish pronephros as a result of the inactivation of the vhl tumor
suppressor gene. Notably, the morphological changes of the PT we observe are not secondary to the
hypervascularization defect in the fish and may be attributed to endocytic vesicle dynamics. Histological analysis of
Vhil cells in the proximal tubule or other tubular segments of the mouse kidney did not reveal a similar
defect. Since zebrafish live in a strong hyposmotic environment of freshwater, where the kidney faces a dual problem
of osmotic water loading and salt depletion, reabsorption and excretion by the PT might be more strongly regulated.

Therefore, the zebrafish vhl PT phenotype might be more pronounced than murine Vhih models.

Previously we have shown that our zebrafish vhl model is characterized by a marked increase in circulating red blood
cells . Here, we demonstrate broad glomerular abnormalities due to vkl loss which are not characterized by
altered proliferation, although we are not curtain that the glomerular phenotype is primary in nature. Rankin et al.
reported that mice with a conditional deletion of Vhlh in the renal proximal tubule develop glomerular cysts
(defined as the glomerular taft occupying < 25% of the Bowman corpuscle) and proliferative tubular cysts in around
30% of PEPCK-Vhih’ mice over 12 months of age. Results, however, are complicated by Cre-transgene expression
in the liver which induced HIF-2a mediated EPO expression and the development of polycythemia . Transgenic
tg6 mice that constitutively over-express human EPO cDNA develop severe erythrocytoses. Regularly enlarged
glomeruli with a widened Bowman space and an enlarged and irregular basement membrane were observed .
Monitoring of urine composition in 7-8 month old mice demonstrated significant hematuria and proteinuria
indicating that renal ultrafiltration is severely disturbed. Furthermore, high altitude-associated erythrocytoses was
found to be positively correlated to the development of proteinuria in humans [38]. These data suggest that the
glomerular defects observed in both PEPCK-VhIh" mice and vkl mutant zebrafish are likely to be - at least in
part- a secondary consequence to the induced polycythemia in both species. Likewise, impairment of podocyte
function in zebrafish has been shown to affect glomerular permeability . Loss of vkl in podocytes might
contribute to the glomerular defects in vhl mutants as conditional inactivation of Vhih in these cells was shown to
severely affect glomerular integrity in mice, leading to hematuria, proteinuria and renal insufficiency from 4 weeks
of age in a Cxcr4-dependent and Vegf-independent manner . In another study using the same transgene, mice
exhibited a milder phenotype, including glomerulomegaly, an increased Bowman space, glomerulosclerosis and no
significant proteinuria . Background-related polymorphisms likely underlie the differences between phenotypes.
Interestingly, we show vkl mutants to display glomerulomegaly, dilated Bowman space, dilated cxcr4a-positve
capillary loops and podocytes. Although further experimental evidence is warranted, collectively these studies
indicate that both the vhl-induced polycythemia, as direct loss of vAl in podocytes might lead to defective and leaky

ultrafiltration in systemic vhl mutants.
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Intriguingly, we find an excessive accumulation of variably sized vesicles of unknown content in the vh/ mutant
proximal tubule. This becomes visible by non-invasive visual examination around 3 dpf, one day after glomerular
filtration in zebrafish embryos starts . Since PT cells become larger over time, this might suggest an accumulative
defect, an increased PT reabsorption, or both. Oil Red O staining indicates that the PT cell accumulate large
amounts of lipids. Hypoxia has previously been shown to instigate a metabolic shift towards glycolysis, potentially
leading to lipid accumulation . The accumulation of lipid droplets and/or other vesicle components appears to
be independent of the hypervascularization of the pronephros, since reducing vasculature by VEGFR inhibition does
not alter the grape-like architecture of the vhl”~ pronephros. We conclude that the vhl-/- pronephros phenotype is

cell autonomous.

Endocytosis and exocytosis are dynamic processes that are key to maintain osmotic homeostasis in the kidney.
Several renal channels and transporters involved in apical and basolateral trafficking utilize a microtubule-based
vesicle transport system (reviewed by Hamm-Alvarez and Sheetz ; Rodriguez-Boulan et al. ) Interestingly,
several studies reported that exposure of rats to microtubule-depolymerizing agents colchicine and/or nocodazole

led to random cytoplasmic and basolateral distribution of vesicles that normally have an apical localization

42§44845|. pVHL promotes microtubule (MT) stability |6§46|, and interacts with MTs through binding with the

kinesin-2 motor protein [47§48]|, that is involved in the plus-end directed transport of vesicles and protein cargos

along MTs. Although, TAMRA dye excretion tests indicate that endocytosis is altered in vhi mutants, we
demonstrate that RAB7 dynamics do appear to be affected by VHL status. We do not examine the role of exocytosis,
yet it is intriguing to speculate that our data might reflect a defect in MT-based exocytosis (or transcytosis),
involving an impaired kinesin-2 mediated transport towards the basolateral membrane (plus-end). We are currently
investigating the exact nature of the vhl”" proximal tubule and glomerulus abnormalities. Our results indicate that
zebrafish vhl mutants will contribute to a better understanding of the complex molecular mechanisms underlying vhl

function and dysfunction in the kidney.
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Material and Methods

Zebrafish lines

The vhI"?'"7(Q23X) and vhI"%!(C31X) mutant alleles were isolated from the Hubrecht target-selected ENU-
mutagenized F1 zebrafish library and out-crossed into the TG(kdr-like:egfp)™® transgenic line.
Transheterozygote embryos (vhI"?!77/vh["?%!) were used in experimental assays, hereafter termed vhl”. Where

indicated, embryos were anesthetized with MS222 (final concentration of 0.17 mg/ml).

In situ hybridization

Whole-mount in situ hybridizations were performed as described with minor modifications. Antisense
digoxygenin (Roche) labeled mRNA probes for cxcrda and cxcr4b were transcribed as previously indicated .
Probes were purified with NucleoSpin RNA clean-up columns (Machery-Nagel). To improve probe penetration,
larvae older than 5 dpf were partially cut open at the level of the yolk sack extension after ProtK permeabilization.
After in situ hybridization, pigmented embryos were incubated with 0.1 M K,Cr,O; in 5% acetic acid for 30 minutes,
washed extensively with PBS-0.1% Tween-20 (PBT) and subsequently bleached in a 1-3% H,O, -PBT solution in

bright light for approximately 2 hours.

VHLp30 mRNA rescue
Rescue experiments were performed as previously described . Human VHLp30 mRNA was generated using the
SP6 mMESSAGE mMACHINE kit (Ambion). 10 pg VHLp30 mRNA was injected into the yolk of one-cell stage

embryos. Following phenotypic analysis embryos were genotyped by sequencing.

BrdU proliferation assay and immunohistochemistry
Embryos were pulsed with 3 mM bromodeoxyuridine (BrdU; Sigma Aldrich) in embryo medium for 6 hours at
28°C. Embryos were fixed in 4% paraformaldehyde and BrdU-incorporation was detected with primary anti-BrdU

antibody (1:100, DAKO) and secondary anti-mouse IgG HRP (1:300, DAKO) according to standard protocols .

Pronephric fluorescent dye uptake and confocal analysis

Anesthetized embryos were embedded in 0.5% agarose and administered one nanoliter of a 35 mg/ml
tetramethylrhodamine conjugated 70k MW dextran (TAMRA, Molecular probes) solution by cardiac puncture at 7
dpf. Only embryos exhibiting TAMRA throughout the cardiovascular system immediately after injection were
further analyzed. To allow sufficient time for pronephric clearance and tubular reabsorption of TAMRA, embryos

were incubated for 5 to 7 hours in embryo medium at 28°C. For confocal analysis, embryos were anesthetized

11
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and embedded in 0.5% agarose on a coverslip. Images were collected using either a Zeiss LSM510 or Leica DM IRE2

confocal microscope using a 20x oil objective at the same laser intensity.

VEGF receptor tyrosine kinase inhibitor treatment

Embryos were treated with 10uM (12.5 mM stock in DMSO) VEGF receptor tyrosine kinase inhibitor 676475
(Calbiochem) in embryo medium at 28°C in 6-well culture plates, containing 15 vhl mutants and 15 siblings per
well. Control embryos were incubated with the equivalent amount of DMSO solution under the same conditions.

Experiments were performed in triplicate.

Am1I-43 injection

Sibling and vhl mutants where sorted by phenotype at 5 dpf. Cardiac administration of 1nl of 5 pM AM1-43 was
performed in 15 embryos of each phenotypic group. Embryos recovered for 24h prior to confocal imaging (as
above). Genotype was confirmed by Sanger sequencing after termination of the experiment. Of some embryos,
vibratome sections (Leica VT1000S) were made and counterstained with DAPI for improved imaging of the

pronephros.

LiCl treatment
Three day old vkl mutants and siblings were incubated with 0.5, 1, 1.5, 5 and 10 mM LiCl or CaCl, (control) in
embryo medium at 28°C in 6-well culture plates, containing 30 embryos per well. Embryos were kept at 28°C and

monitored daily for the development of pronephric cysts.

Transmission electron microscopy

Embryos were fixed in Karnovsky fixative (2% paraformaldehyde, 2.5% glutaraldehyde, 0.08 M Na-cacodylate pH
7.4, 0.25 mM calcium chloride, 0.5 mM magnesium chloride set to pH 7.4) for at least 24 hours at 4°C. Samples were
postfixed in 1% osmiumtetroxide and embedded in Epon 812. Ultrathin sections (60nm) were contrasted with 3%

uranyl magnesium acetate and lead citrate and viewed with a Jeol JEM 1010 transmission electron microscope.

Histology
Plastic or paraffin sections (7 pm) were stained with periodic acid schiff (PAS), haematoxylin and/or eosin using
standard protocols. Cryo-sections (10 pm) were used for Oil Red O staining according to standard protocol. Blood

cells were visualized by o-dianisidine staining of hemoglobin as described .
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RAB7A microinjections

786-0 cells where purchased from ATCC (CRL-1932) and cultured as suggested. Stable cell lines re-expressing the
p30 isoform of VHL have been previously characterized . The mCherry-RAB7A construct was a kind gift from
Chris Westlake. Microinjections using the FemtoJet (Eppendorf) and micropipette puller (P-97, Sutter Instrument),

and imaging 10 cells per condition was performed approximately 24 hours later.
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Figure legends

Figure 1: vhl mutants display proximal tubule abnormalities. a Schematic representation of the zebrafish pronephros
at 6-7 dpf after the segmentation model of Wingert et al. and a’ bright field image of a 7.5 dpf vhl”" mutant
zebrafish. b Bright field lateral view of the PT at 7.5 dpf. Compared to the smooth cuboidal lining of the PCT and
PST in wild-type sibling, vkl mutant tubular cells are irregular with a grape-like or alveolar appearance, which is
most pronounced in the PCT and anterior PST. ¢ H&E staining on paraffin cross sections reveals the enlarged vhl”
PT cells display a clearer cytoplasm compared to siblings at 7.5 dpf. Original magnification 20x. d Sagittal section of
the PT at 7.5 dpf shows the lining of the PCT and PST is composed of a single layer of smooth cuboidal cells with
apical brush border PAS staining in siblings, while vhil” affected tubular cells are completely PAS positive. Original
magnification 20x. e Occasionally, vhl”" PAS-positive cells (arrows) are observed in more distal pronephric segments.
Original magnification 20x. f Cross section of haematoxylin and Oil-Red-O staining shows increased lipid contents
in the vhl” PT. Anterior is to the left in all images. PCT, proximal convoluted tubule; PST, proximal straight tubule;
PT, proximal tubule (PCT+PST); DE, distal early; CS, corpuscle of Stannius; DL, distal late; PD, pronephric duct; C,

cloaca; SB, swim bladder; PAS, periodic acid schiff; H&E, haematoxylin and eosin; dpf, days post-fertilization.

Figure 2: vhl mutants display glomerular abnormalities. a Schematic representation of a cross section through a 7.5
dpf zebrafish larva at the level of the glomerulus. b Compared to age-matched siblings, the vhl”" Bowman space is
widened (double arrow), the glomerulus is enlarged and dilated capillary loops (red arrowheads) are observed. ¢ o-

Dianisidine staining reveals capillary loops to contain blood cells and perfusion of the glomerulus to be increased in
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vhl mutants. d In situ hybridization shows cxcr4a to be expressed in the capillary loops and podocytes (arrows) of vkl
mutants, while in sibling cxcr4a mRNA levels were too low to detect. e Both in siblings and vkl mutants, cxcr4b
mRNA is expressed in the PHT. f BrdU incorporation assays did not reveal altered proliferation of the affected vhi”-
glomerulus and PT compared to siblings. Increased proliferation is observed in the vkl mutant PHT. In all figures,
dorsal is up and the proximal tubule is outlined for clarification. G, glomerulus; BS, Bowman space; PT, proximal

tubule; PHT, pronephric hematopoietic tissue; NC, notochord; CV, caudal vein.

Figure 3: Accumulation of vesicles in the vhi”" proximal tubule. Ultrastructural analysis of the proximal tubule at 7.5
dpf. a, b In siblings, a regular organization of the polarized PCT cells is observed. At the apical side, brush border
microvilli and cilia (arrow) reach into the tubular lumen, and endocytic vesicles (arrowheads) are observed close to
the apical membrane. Moving towards the basement membrane, the nucleus and numerous mitochondria are
observed. ¢ The posterior PST shows a similar polarization, however, endocytic vesicles are less frequently observed.
d In vkl mutants PCT cells contain a striking amount of vesicles (yellow asterisks) of unknown content, variable in
size and electron density, which are located throughout the cytoplasm. The PCT is outlined since individual cells
could not be discerned. Moving in a more distal direction from the PCT (from e to g) abnormalities gradually
become less severe and brush border microvilli (e, f) and cilia of normal 942 architecture (f) are observed. At the
level of the posterior PST/DE (g), no abnormal vesicles are present. PCT, proximal convoluted tubule; PST, proximal
straight tubule; PT, proximal tubule; DE, distal early; BB, brush border; N, nucleus; M, mitochondrion; BM,

basement membrane; BV, blood vessel.

Figure 4: Neovascularization of the vhl” proximal tubule does not obviously contribute to the aberrant cell
morphology. a Confocal analysis after rhodamine-dextran (TAMRA) injection into vkl mutants and siblings
carrying the kdr-like:egfp transgene at 7.5 dpf. Both mutants and siblings clear TAMRA via the glomerulus (not
shown), which is subsequently taken up by endocytosis in the PCT and PST (left panels) or excreted via the cloaca
(not shown). While in siblings TAMRA-containing vesicles are small and appear to have a more apical distribution,
vesicles in the vhl” PT are larger and appear to fill up most of the PT cell lumen (left panels). Analysis of the blood
vessels (middle and right panels) revealed excessive neovascularization of the vhl”~ PT. While in siblings the PT is
wrapped around one main blood vessel, in vkl mutants the PT is surrounded by blood vessels that form a fine
cocoon-like structure over the tubular epithelium. Original magnification is 40x. b VEGF receptor inhibitor
treatment (10 pM) from 2.5 to 5.75 dpf reduced the Vegf-induced vhl”" neovascularization compared to DMSO (10
pM) treated control mutants, however, PT cell morphology was not obviously affected. Left panel, bright field image

of the PT. Middle panel, blood vessels around the PT. Right panel, overlay of the bright field image (false-colored red
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in Photoshop) and blood vessels. Original magnification is 20x. Anterior is to the left and dorsal is up in all images.
PCT, proximal convoluted tubule; PST, proximal straight tubule; PT, proximal tubule; hpf, hours post fertilization;

dpf, days post fertilization.

Figure 5: The endocytic pathway is affected in in vkl mutants. a, b Confocal analysis 24 hours after AM1-43
injection into vkl mutans and siblings carrying the kdr-like:egfp transgene at 6 dpf. Both mutants and siblings clear
AM1-43 via the intestine and PT, with higher fluorescence intensity observed in the mutant embryos. Neural tube
staining intensity is equal in both mutant and sibling. vhl mutant embryos retain some of their yolk, which also
stains positive for AM1-43. An unstained region was observed in siblings in the more distal region of the intestine
which does stain positive in the vhl mutant. Anterior is to the right. Original magnification is 10x. ¢, d Cross sections
of the PT of AM1-43 injected embryos shows increased AM1-43 uptake in vkl compared to sibling. Scale bar is
10um. e, f Confocal analysis of micro-injected 786-0 cells shows perinuclear localization of mCherry-RAB7A upon

VHL loss.

Supplemental Figure 1: Injection of 10 pg human VHLp30 mRNA into one-cell stage zebrafish vhl mutants rescues

the pronephric phenotype (arrow) at 4 dpf.

Supplemental Figure 2: Electron micrographs of 7.5 dpf sibling (sib) and vkl mutant (-/-) pancreas. vhl mutants
display an increased number of zymogens in the exocrine pancreas, and an increased number of vesicles in beta cells

of the endocrine pancreas (pancreatic islet). Scale bar is 2pm.

Supplement Figure 3: Electron micrographs of 7.5 dpf sibling (sib) and vkl mutant (-/-) liver. vhl mutants display
altered mitochondrial (m) morphology, and numbers. These changes might reflect metabolic reprogramming from
acetyl-CoA generation by fatty acid mitochondrial -oxidation to glycolysis, a feature characteristic of hypoxic cells.

Scale bar is 2pm.
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