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The classical B ¼ 5 Skyrmion can be approximated by a two-cluster system in which a B ¼ 1 Skyrmion
is attached to a core B ¼ 4 Skyrmion. We quantize this system, allowing the B ¼ 1 to freely orbit the core.
The configuration space is 11 dimensional but simplifies significantly after factoring out the overall spin
and isospin degrees of freedom. We exactly solve the free quantum problem and then include an interaction
potential between the Skyrmions numerically. The resulting energy spectrum is compared to the
corresponding nuclei—the helium-5/lithium-5 isodoublet. We find approximate parity doubling not seen
in the experimental data. In addition, we fail to obtain the correct ground-state spin. The framework laid out
for this two-cluster system can readily be modified for other clusters and in particular for other B ¼ 4nþ 1

nuclei, of which B ¼ 5 is the simplest example.

DOI: 10.1103/PhysRevD.97.125004

I. INTRODUCTION

The Skyrme model is a nonlinear theory of pions that
admits topologically nontrivial configurations called
Skyrmions, labeled by a topological charge B. Skyrme’s
pioneering idea [1] was to identify these configurations
with nuclei and the topological charge with baryon number.
The theory captures many phenomenological features of

nuclei such as isospin symmetry, α clustering [2], and
rotational bands [3] and even contains a version of the
liquid drop model [4]. Recently, the model has successfully
explained the energy spectrum of carbon-12 and the large
root-mean-square charge radius of the Hoyle state [5] and
has been able to describe the rich energy spectrum of
oxygen-16 [6]. The Skyrme model is attractive theoretically
as there are few adjustable parameters in the Lagrangian.
Further, all nucleon interactions and dynamics are deter-
mined by this initial Lagrangian.
The model can approximately reproduce the low-energy

spectrum of all light (B ¼ 1–8) nuclei except the 5Li=5Be
isodoublet [3,7]. These two nuclei are usually described in
the shell model as an inert core (the α particle) plus one
orbiting nucleon. In the most basic shell model, the
additional nucleon has either spin 1=2 or 3=2. The spin-
orbit interaction breaks this degeneracy, making the spin-
3=2 state energetically favored. Hence, the ground states of

helium-5 and lithium-5 have spin 3=2. This story is
partially mirrored in the Skyrme model. Here, the B ¼ 5
Skyrmion is approximately described by a B ¼ 4 Skyrmion
plus an additional B ¼ 1 Skyrmion. In the standard Skyrme
model, the clusters merge into a D2-symmetric Skyrmion,
although it takes little energy to separate them. In modified
Skyrme models such as the loosely bound Skyrme model
[8–10] and lightly bound Skyrme model [11,12], the B ¼ 5
Skyrmion is very well approximated by the two-cluster
system. There should then be a low-energy manifold of
configurations: those in which the B ¼ 1 orbits the B ¼ 4
core. Taking account of these degrees of freedom (d.o.f.)
allows us to describe the B ¼ 5 as a 4þ 1-cluster system,
just like the shell model. The shell model notion of the spin-
orbit force is not present in the Skyrme model; instead,
there is an interaction potential that depends on the internal
orientations of the Skyrmion clusters. The link between
these ideas was explored in a two-dimensional toy model
in Ref. [13].
In this paper, we consider the quantization of the B ¼ 5

Skyrmion as a two-cluster system. Each cluster is indi-
vidually allowed to rotate and isorotate. This is the first
time such a system has been quantized within the Skyrme
model. The resultant spectrum contains the low-energy
spin-3=2− and −1=2− states, though in the wrong order. We
also find parity doubling, not seen in experimental data.
The unwanted 3=2þ and 1=2þ states are not allowed by the
D2-symmetric Skyrmion, which is not included in our
configuration space. Its existence should still affect the
energy of the states, though the size of this impact is
difficult to measure.
Many nuclei can be described as a coreþ particle system,

such as those close tomagic nuclei. TheB ¼ 5 is the simplest
of these systems. This motivates us to study the system

*bjarke@impcas.ac.cn
†christ@impcas.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 125004 (2018)

2470-0010=2018=97(12)=125004(19) 125004-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.125004&domain=pdf&date_stamp=2018-06-07
https://doi.org/10.1103/PhysRevD.97.125004
https://doi.org/10.1103/PhysRevD.97.125004
https://doi.org/10.1103/PhysRevD.97.125004
https://doi.org/10.1103/PhysRevD.97.125004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


carefully, and the framework we develop should apply more
broadly,with a few simplemodifications. In fact,much of our
formalism applies to any two-cluster system. These are used
frequently in nuclear physics, from modeling bound nuclei
such as lithium-7 [14] to describing scattering between α
particles [15] or carbon-12 nuclei [16].Hence,webelieve our
work provides an important step toward understanding this
wide range of problems within the Skyrme model.
In the next section, we carefully set up our model of the

5He=5Li isodoublet as a 4þ 1 two-cluster system within the
Skyrme model. We then quantize the system in Sec. III
before dealing with the cubic symmetry of the core in
Sec. IV. The methods described in this section are very
general and can be applied to any vibrational quantization
in the Skyrme model. We then find states with definite
parity and discuss some additional symmetries of the
configuration space in Sec. V. The energies of the derived
wave functions are calculated and compared to experimen-
tal data in Sec. VI. The framework we develop in this paper
may be applied to a wide range of systems; we suggest
several avenues for further work in Sec. VII. Concluding
remarks can be found in Sec. VIII.

II. SKYRME MODEL, OUR CONFIGURATION
SPACE, AND RELATIVE COORDINATES

The variant of the Skyrme model we consider in this
paper is the most commonly used version, albeit with a pion
mass and the possibility of a loosely bound potential [8].
The Lagrangian density is

L ¼ Tr

�
1

2
LμLμ þ 1

16
½Lμ; Lν�½Lμ; Lν� −m2

1ð12 −UÞ
�

−
1

4
m2

2ðTr½12 −U�Þ2; ð2:1Þ

where Lμ ≡U†∂μU is the left-invariant suð2Þ-valued
current, U is the Skyrme field, m1 is the pion mass, and
m2 is a parameter of the loosely bound potential. The
Skyrme field is SUð2Þ valued and can be written in terms of
the pion field πðxÞ as

U ¼ 12σ þ iτ · π; ð2:2Þ

where τ is the triplet of Pauli matrices and σ is an auxiliary
field that ensures thatU takes values in SUð2Þ. To visualize
a Skyrme configuration, we plot a contour of constant
energy density. This is then colored to represent the
direction of the pion field at that point on the energy
contour. The Skyrme field is colored white/black when
π̂3 ¼ �1 and red, green, and blue when π̂1 þ iπ̂2 ¼ expð0Þ,
expð2iπ=3Þ, and expð4iπ=3Þ, respectively, where π̂≡
π=jπj is the normalized pion field.
A Skyrmion is a static energy minimizer of (2.1), for a

given topological charge B. When the loosely bound
potential [8,9] is turned off, m2 ¼ 0, the B ¼ 5 Skyrmion
has D2 symmetry. As m2 is increased, the Skyrmion
separates into two clusters. A B ¼ 1 Skyrmion is gradually
detached from a B ¼ 4 core that acquires approximate cubic
symmetry. This process is shown in Fig. 1.
The initial setup we study in this paper is based on the

two-cluster system displayed in Fig. 2. Here, a B ¼ 1
Skyrmion orbits a cubic B ¼ 4 Skyrmion at a fixed radius.
Both clusters are free to rotate, isorotate, and move around
one another. We take the B ¼ 4 to be fixed at the origin.
Although we are not in the center-of-mass frame, several
other aspects of the problem simplify using this approxi-
mation. There are different ways to interpret the model.
One is that the configurations, such as the one in Fig. 2, are
good approximations to the classical low-energy configu-
rations of the model. This is true for the loosely bound
model, as we have seen in Fig. 1. Another way to interpret
the model is that we are simply using convenient coor-
dinates to describe a submanifold of the B ¼ 5 vibrational
manifold. In this case, the image in Fig. 2 does not
accurately describe the configuration represented by this
point in configuration space. Instead, the point corresponds
to some deformed version of the configuration, in which the
clusters have merged and distorted. Regardless of inter-
pretation, our analysis of the symmetries and quantization
of the system will apply. However, the details of the specific
moments of inertia and energies will change.

FIG. 1. The B ¼ 5 Skyrmion with an increasing value of the loosely bound potential parameterm2. The leftmost figure corresponds to
the standard Skyrme model, while the rightmost figure is the loosely bound Skyrme model with the B ¼ 1 Skyrmion detached from the
cube. The pion mass is taken to be m1 ¼ 1.
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Our plan is to solve the free system in which the two
clusters do not interact (though are bound together since we
have fixed their separation). We will then include the
interaction energy by diagonalizing a truncated set of free
states with respect to the Hamiltonian, including a numeri-
cally generated potential term. This method breaks down if
the potential is strong, and hencewe are solving the problem
in the weak-coupling limit. We will suggest how one may
study the strong-coupling limit in Sec. VII. The system is
described by 11 coordinates: there are six that specify the
orientation of the B ¼ 4 cluster in space and isospace, three
that describe theB ¼ 1’s orientation, and the remaining two
that specify the orbital position of the B ¼ 1. This is a
formidable number of d.o.f. However, the system transforms
simply under overall rotations and isorotations. In particular,
the interaction potential is invariant under such transforma-
tions. If we can “factor out” these symmetries, only five
coordinates, describing the relative interaction between
clusters, will remain. This type of reduction is common
in the study of comets, many of which are described by two-
cluster systems bound together by the gravitational force.
We closely follow the work of Maciejewski [17], who first
solved such a problem.
To proceed, we must introduce notation for the individ-

ual momenta of the Skyrmions. We define:
(i) JðiÞ: space-fixed angular momentum of the B ¼ i

Skyrmion.
(ii) LðiÞ: body-fixed angular momentum of the B ¼ i

Skyrmion.
(iii) IðiÞ: space-fixed isospin of the B ¼ i Skyrmion.
(iv) KðiÞ: body-fixed isospin of the B ¼ i Skyrmion.
(v) R: position of the B ¼ 1 Skyrmion relative to the

B ¼ 4, in the space-fixed frame.
(vi) P: orbital angular momentum of the B ¼ 1 Sky-

rmion relative to the B ¼ 4 Skyrmion.
The body-fixed and space-fixed angular and isoangular
momenta are related by the orthogonal matrices AðiÞ and
BðiÞ, also known as the attitude matrices. Explicitly,

JðiÞ ¼ AðiÞLðiÞ and IðiÞ ¼ BðiÞKðiÞ: ð2:3Þ

Further, the momenta of the B ¼ 1 are related. We use the
conventions that the body-fixed momenta are related as
Lð1Þ ¼ −Kð1Þ. This is the convention used in Ref. [3] but is
opposite to that used in Ref. [18]. It implies that the space-
fixed momenta obey

Jð1Þ ¼ −Að1ÞBð1ÞTIð1Þ: ð2:4Þ

One may combine Að1ÞBð1ÞT into a single matrix, reflecting
the fact that the B ¼ 1’s orientation can be parametrized by
only three coordinates. We do not do this, to keep the
symmetries of the formalism explicit and to emphasize that
this method may be applied to any two-cluster system, not
just a coreþ particle system.
The total (iso)angular momentum is the sum of the

individual (iso)momenta and the orbital momentum. A
simple way to describe these quantities is to go into the
body-fixed frame of the B ¼ 4 Skyrmion. In this frame, the
total angular momentum is

J ¼ Lð4Þ þ Að4ÞTAð1ÞLð1Þ þ Að4ÞT l; ð2:5Þ

where l ¼ R × P is the orbital angular momentum in
the space-fixed frame. The total isoangular momentum
(isospin) is

I ¼ Kð4Þ þ Bð4ÞTBð1ÞKð1Þ: ð2:6Þ

As these are body-fixed momenta, they will satisfy the
anomalous commutation relations when quantized. These
are

½Ji; Jj� ¼ −iϵijkJk; ½Ii; Ij� ¼ −iϵijkIk and ½Ji; Ij� ¼ 0:

ð2:7Þ

After quantization, the conserved quantities J and I will
correspond to the spin and isospin of the nucleus.
We can now define the relative momenta. One has some

choice in how to define these, and ours are chosen for their
simplicity in describing the Finkelstein-Rubinstein con-
straints that we meet in the next section. The relative
momenta are

S ¼ Að4ÞTAð1ÞLð1Þ þ Að4ÞT l; ð2:8Þ

T ¼ Bð4ÞTBð1ÞKð1Þ: ð2:9Þ

These act on the B ¼ 1 Skyrmion, leaving the cubic core
unchanged. The momentum S generates a rolling motion of
the B ¼ 1 around the B ¼ 4, while T acts only on the
orientation of the B ¼ 1. They satisfy the usual commu-
tation relations

½Si; Sj� ¼ iϵijkSk; ½Ti; Tj� ¼ iϵijkTk ð2:10Þ

FIG. 2. The basic set up for our model. A B ¼ 1 Skyrmion
orbits a B ¼ 4 Skyrmion.
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and commute with each other and the overall momenta J
and I. One could think of the relative coordinates as
vibrational d.o.f. of the B ¼ 5 Skyrmion. Then, in the
language of Ref. [6], S and T generate the vibrational
manifold, while J and I generate the rotational manifold.
The classical configuration space of the system is naively

M ¼ SOð3ÞJ × SOð3ÞI ×
SOð3ÞS × SOð3ÞT

Uð1Þ : ð2:11Þ

The Uð1Þ factor accounts for the fact that there is a
degeneracy in the S=T space. This is clear as we only
require 5 d.o.f. to describe the position and orientation of
the B ¼ 1 but SOð3ÞS × SOð3ÞT is six dimensional.
Explicitly, a simultaneous rotation about the 3-axis in
the S and T spaces leaves the system invariant. We have
also not yet accounted for the discrete symmetries of the
system. We consider both the Uð1Þ symmetry and the
discrete symmetries carefully in the next section.

III. QUANTIZATION

Having described the classical configuration space of our
model, we can now quantize the system using a semi-
classical quantization. This is done by promoting the
coordinates on M to dynamical d.o.f. Each classical
momentum becomes a quantum operator, and the four
momenta produce quantized spins, which we denote J, I, S,
and T. A general wave function can be written as

jΨi ¼
X

j3;i3;s3;t3;s03;t
0
3

aj3i3s3t3s03t03 jJj3JijIi3IijSs3s03ijTt3t03i;

ð3:1Þ

where the three labels of each spin state represent the total
spin, the projection onto the body-fixed third axis, and the
projection onto the space-fixed third axis. For the overall
angular momentum and isospin (J and I), the space-fixed
projections do not affect the structure of the spin state or its
energy. Hence, we may set them to any value, and we
choose to fix them equal to their total spins. However, the
space-fixed projections for the relative momenta do alter
the energies, and so we must allow for linear combinations
of these as well as the body-fixed projections.
The Uð1Þ degeneracy in the S=T part of the configura-

tion space M constrains the wave function (3.1). To see
how, we put coordinates on this part of the space. These
describe the relative orientation between the B ¼ 1 and
B ¼ 4 Skyrmions. The rolling motion (generated by S) may
be parametrized using Euler angles ðϕ; θ;ψÞ. We will use
the passive Z-Y-Z conventions (applying ψ first, then θ,
and finally ϕ). Using these, when ψ ¼ 0, the remaining
coordinates are the usual spherical polars. The internal
motion of the B ¼ 1 (described by T) can also be para-
metrized by Euler angles ðα; β; γ0Þ. The spin states can be

written in terms of the Euler angles using Wigner-D
functions. The relations are

jTt3t03i ¼ DT
t0
3
t3
ðα; β; γ0Þ and jSs3s03i ¼ DS

s0
3
s3
ðϕ; θ;ψÞ;

ð3:2Þ

where

DT
t0
3
t3
ðα; β; γ0Þ ¼ eiαt3DT

t0
3
t3
ð0; β; 0Þeiγ0t03 : ð3:3Þ

The system is invariant under a simultaneous increase in both
γ0 and ψ , as these coordinates rotate the B ¼ 1 Skyrmion
around the z axis in opposite directions. This leads to a
constraint on the space-fixed projections of S and T,

ð∂γ0 þ ∂ψÞjΨi ¼ jΨi ⇒ s03 ¼ −t03; ð3:4Þ

and so the overall wave function contains the factor

eis
0
3
ψþit0

3
γ0 ¼ eit

0
3
ð−ψþγ0Þ ≡ eit

0
3
γ; ð3:5Þ

where we have defined a new coordinate, γ. Using this
coordinate is equivalent to setting ψ ¼ 0 and γ0 ¼ γ in
(3.2). Hence, the general wave function is given by

jΨi ¼
X

j3;i3;s3;t3;t03

aj3i3s3t3t03 jJj3JijIi3IiDS
−t0

3
s3
ðϕ; θ; 0Þ

×DT
t0
3
t3
ðα; β; γÞ: ð3:6Þ

Note that jt03j can only take values up to minð2Sþ1;2Tþ1Þ.
The Finkelstein-Rubinstein (FR) constraints [19] deal

with the fact that the B ¼ 5 Skyrmion is constructed out of
five nucleons, and so the system must obey fermionic
statistics. The constraints provide restrictions on the
allowed wave functions and determine if J, I, S, and T
are integers or half-integers. This may be determined by
considering the rotations physically. Consider a 2π rotation
about the 1-axis in the J space, as seen in Fig. 3. This
rotates the B ¼ 4 Skyrmion by 2π, and the B ¼ 1 Skyrmion
rolls around the cube in a circular orbit. Overall, both
Skyrmions rotate by 2π on their own 1-axes. Physically, the
B ¼ 1 represents a single nucleon, a fermion, while the
B ¼ 4 represents four nucleons, a boson. Hence, the wave
function should transform by−1 under this rotation. Hence,
Jmust be a half-integer. This was already guaranteed by the
fact that B is odd. Similar arguments show that the other
conserved spins (I, S, and T) must each be half-integers.
Note that all of the spins are conserved in the free system
but after inclusion of the potential only J and I will be.
States with different S and T values will mix in the nonfree
theory. The classical configuration spaceM cannot be used
to describe systems with half-integer spins. Finkelstein and
Rubinstein showed that we must use the double cover ofM
instead, and so the quantum configuration space is
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Mq ¼ SUð2ÞJ × SUð2ÞI ×
SUð2ÞS × SUð2ÞT

Uð1Þ : ð3:7Þ

FR constraints also apply to the discrete symmetries of
the configuration space. These are inherited from the
discrete symmetries of the clusters. The B ¼ 1 has no
discrete symmetries (and we have already dealt with its
continuous symmetry by our parametrization), but the
B ¼ 4 has cubic symmetry. The wave function either
transforms trivially or picks up a sign under each element
of the symmetry group. To determine which, we may use
the algorithm developed in Ref. [18]. The explicit sym-
metries are most easily expressed in terms of the cube’s
body-fixed momenta. In these terms, the group is generated
by a C4 symmetry,

exp
�
−
πi
2
L̂ð4Þ
3 − πiK̂ð4Þ

1

�
jΨi ¼ jΨi; ð3:8Þ

and a C3 symmetry,

exp

�
−

2πi

3
ffiffiffi
3

p ðL̂ð4Þ
1 þ L̂ð4Þ

2 þ L̂ð4Þ
3 Þ − 2πi

3
K̂ð4Þ

3

�
jΨi ¼ jΨi:

ð3:9Þ

To find out how these operators act in M, they must be
expressed in terms of the new momenta. Our choice of S
and T means that the relation is simple. The constraints
become

exp

�
−
πi
2
ðĴ3 − Ŝ3Þ − πiðÎ1 − T̂1Þ

�
jΨi ¼ jΨi; ð3:10Þ

exp

�
−

2πi

3
ffiffiffi
3

p ðĴ1þ Ĵ2þ Ĵ3− Ŝ1− Ŝ2− Ŝ3Þ−
2πi
3

ðÎ3− T̂3Þ
�
jΨi

¼jΨi: ð3:11Þ

The form of these operators highlights the fact that
applying a rotation to the B ¼ 4 is equivalent to applying
a rotation to the entire two-cluster system, then “undoing”
this rotation for the B ¼ 1. The wave functions of the form
(3.6) that satisfy (3.10) and (3.11) are allowed by the
symmetries of our system. We call these permissible wave
functions. For a fixed J, I, S, and T, these constraints

become a simple linear algebra problem for the coefficients
a of (3.6), which one may solve. We will take an alternative
approach by using representation theory. This will highlight
the similarity between our calculation and other calcula-
tions in many subjects such as the Skyrme model [6],
molecular vibrations [20], and other nuclear models [21].
Additionally, the method laid out here may be applied to
any rotational-vibrational system in the Skyrme model.
A reader less interested in our rather technical calculation
may wish to skip the next section.
Before proceeding, we comment on the exponentiation

of the rotation operators, used in the FR constraints. To
evaluate these operators, we must find a matrix represen-
tation of the suð2Þ Lie algebras. The S and T operators
obey the usual commutation relations (2.10), and so the
matrix representation M for the operators Ŝ and T̂ is well
known. For example, the spin-1=2 matrices are simply the
Pauli matrices (divided by 1=2) and satisfy

½Mi;Mj� ¼ iϵijkMk: ð3:12Þ

However, the J and I operators satisfy the anomalous
commutation relations (2.7). Hence, we cannot use the
usual M. Instead, we use the conjugate representation M�,
which satisfies

½M�
i ;M

�
j � ¼ −iϵijkM�

k: ð3:13Þ

For example, a π
2
rotation about the (0,1,0) axis acts on the

S ¼ 1=2 wave functions as

exp

�
−
πi
2
M2

�
¼exp

�
−
πi
4

�
0 i

−i 0

��
¼ 1ffiffiffi

2
p

�
1 1

−1 1

�
;

ð3:14Þ

but the same rotation acts on a J ¼ 1=2 wave function as

exp

�
−
πi
2
M�

2

�
¼ exp

�
−
πi
4

�
0 −i
i 0

��
¼ 1ffiffiffi

2
p

�
1 −1
1 1

�
:

ð3:15Þ

FIG. 3. A 2π rotation around the x axis. Note that the B ¼ 1 Skyrmion does a 2π rotation on its own axis and so the wave function
should pick up a minus sign under this rotation.

B ¼ 5 SKYRMION AS A TWO-CLUSTER SYSTEM PHYS. REV. D 97, 125004 (2018)

125004-5



IV. CONSTRUCTING PERMISSIBLE
WAVE FUNCTIONS

In this section, we construct a basis of wave functions
that satisfy the constraints (3.10) and (3.11) by splitting the
total symmetry group into two parts: one that acts only on
the J=I space and the other that acts on the S=T space.
Suppose we have a basis of states in the J=I space fjΨiig
and a similar basis in the S=T space fΦig. We may act on
the jΨii states using the J=I part of one of the operators that
feature in (3.10) and (3.11). For example, the C4 operator
transforms the state as

jΨii → e−
πi
2
Ĵ3−πiÎ1 jΨii ¼ NijjΨji; ð4:1Þ

for some matrix N. A total wave function,

jΨi ¼
X
i

ΦijΨii; ð4:2Þ

will be invariant under (3.10) and (3.11) if the Φi
transform as

Φi → e
πi
2
Ŝ3þπiT̂1Φi → N−1

ji Φj ¼ N�
ijΦj; ð4:3Þ

that is, if the Φi transform as the dual representation
compared to the jΨii.1 For the unitary groups, the dual
matrix representations are simply complex conjugates of
each other.
To construct permissible wave functions, we must first

understand the representations of the symmetry groups,
which we denote GJI and GST . First, we consider GJI, which
is generated by the J=I part of the full symmetry trans-
formations (3.10) and (3.11). These are

ĈJ;I
4 ¼ exp

�
−
πi
2
Ĵ3 − πiÎ1

�
;

ĈJ;I
3 ¼ exp

�
−

2πi

3
ffiffiffi
3

p ðĴ1 þ Ĵ2 þ Ĵ3Þ −
2πi
3

Î3

�
: ð4:4Þ

The group is closely related to the cubic group O. The
difference can be seen by considering the C4 element.
Applying this four times gives a 2π rotation and a 4π
isorotation. Hence, the wave function should pick up an
overall minus sign under ðC4Þ4, meaning that ðC4Þ4 ≠ e,
where e is the identity operator. Thus, GJI is not homo-
morphic toO. In contrast, ðC3Þ3 ¼ e. Overall, the group has
48 elements, though we neglect the inversion operator for
now. The character table of GJI is displayed in Table I. It
contains the character table ofO since the quotient of GJI by
2π isorotations is O. There are three irreducible representa-
tions (irreps) not contained in O. A four-dimensional irrep,
denoted 4, descends from the fundamental representation of

SUð2ÞJ × SUð2ÞI . The remaining irreps both have dimen-
sion 2, and sowe label them 2þ and 2−. The symmetry group
GST is isomorphic to GJI , and hence they share the same
character table.
The character table may be used to decompose the set of

spin states

fjJj3JijIi3Iijj3 ¼ −J;…; J; i3 ¼ −I;…; Ig ð4:5Þ

into irreducible parts. As an example, take the J ¼ 3=2,
I ¼ 1=2 basis. First, we find the matrix representation of
the operators (4.4) using M�, as explained in Sec. III. This
is an eight-dimensional representation that satisfies

Tr
�
C
J¼3

2
;I¼1

2

3

�
¼ −1 and Tr

�
C
J¼3

2
;I¼1

2

4

�
¼ 0: ð4:6Þ

Comparing these traces to the character table, one finds that
this representation contains a single copy of 4, 2þ, and 2−.
One can do a similar decomposition for any ðJ; IÞ pair, and
the results for a number of different pairs are shown in
Table II. The decomposition is the same for the S=T wave
functions since the symmetry groups are isomorphic.
Using Table II, we can quickly see which combinations

of J, I, S, and T give permissible wave functions, and how
many exist. A permissible wave function exists if there is a
matching irreducible factor between the J=I part and
the S=T part. For instance, there is one allowed state
with ðJ; I; S; TÞ ¼ ð1=2; 1=2; 1=2; 1=2Þ, since there is one

TABLE I. The character table for GJI and GST . The first five
rows show the character table for the usual cubic group.

Irrep e Ĉ4 Ĉ3 2π rotation

1þ 1 1 1 1
1− 1 −1 1 1
20 2 0 −1 2
3þ 3 1 0 3
3− 3 −1 0 3

2þ 2
ffiffiffi
2

p
i −1 −2

2− 2 −
ffiffiffi
2

p
i −1 −2

4 4 0 1 −4

TABLE II. The decomposition of spin states into irreducible
parts.

ðJ; IÞ or ðS; TÞ Irreducible decomposition

ð1
2
; 1
2
Þ 4

ð1
2
; 3
2
Þ 2þ ⊕ 2− ⊕ 4

ð3
2
; 1
2
Þ 2þ ⊕ 2− ⊕ 4

ð5
2
; 1
2
Þ 2þ ⊕ 2− ⊕ 4 ⊕ 4

ð7
2
; 1
2
Þ 2þ ⊕ 2− ⊕ 4 ⊕ 4 ⊕ 4

ð3
2
; 3
2
Þ 2þ ⊕ 2− ⊕ 4 ⊕ 4 ⊕ 4

1We thank Jonathan Rawlinson for bringing this to our
attention.
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factor of 4 in common for ðJ; IÞ ¼ ð1=2; 1=2Þ and
ðS; TÞ ¼ ð1=2; 1=2Þ. There are four allowed states with
ðJ; I; S; TÞ ¼ ð3=2; 1=2; 5=2; 1=2Þ: two arising from the 4
irreps, one arising from the 2þ irrep, and one arising from
the 2− irrep. There is only one allowed state with
ðJ; I; S; TÞ ¼ ð1=2; 1=2; 3=2; 1=2Þ. We denote the ith wave
function, whose J=I and S=T parts each transform as the
irrepX, having spins ðJ; I; S; TÞ and space-fixed projection
t3 as

jJIST;Xit03i: ð4:7Þ

We omit i if there is only one such state.
To explicitly construct the permissible wave functions,

we must choose a concrete realization of the irreps. Here,
we make such a choice. The 4 irrep descends from the
fundamental representation of SUð2Þ × SUð2Þ. Hence, an
obvious choice of basis is the usual spin states2 with spins
ð1=2; 1=2Þ. The transformations then correspond to the
matrices

N4
C3

¼ 1ffiffiffi
2

p

0
BBB@

e
iπ
12 0 e−

5iπ
12 0

0 e−
7iπ
12 0 e

11iπ
12

e
iπ
12 0 e

7iπ
12 0

0 e−
7iπ
12 0 e−

iπ
12

1
CCCA

and N4
C4

¼

0
BBB@

0 e
iπ
4 0 0

e
iπ
4 0 0 0

0 0 0 e
3iπ
4

0 0 e
3iπ
4 0

1
CCCA: ð4:8Þ

The two-dimensional irreps are simpler. For the 2þ irrep,
we may use a basis that transforms as

N2þ
C3

¼ 1ffiffiffi
2

p
�
e−

3iπ
4 e

3iπ
4

e
iπ
4 e

3iπ
4

�
and N2þ

C4
¼ 1ffiffiffi

2
p

�
e
3iπ
4 0

0 e
iπ
4

�
:

ð4:9Þ

Finally, there is a basis for the 2− irrep, which transforms as

N2−
C3

¼ 1ffiffiffi
2

p
�
e−

3iπ
4 e

3iπ
4

e
iπ
4 e

3iπ
4

�
and N2−

C4
¼ 1ffiffiffi

2
p

�
e−

iπ
4 0

0 e−
3iπ
4

�
:

ð4:10Þ

We can now construct a wave function that satisfies
(3.10) and (3.11), and we do so for ðJ; I; S; TÞ ¼
ð1=2; 1=2; 1=2; 1=2Þ. There is a set of ðJ; IÞ ¼
ð1=2; 1=2Þ states that transform as 4 and in particular

transform as (4.8) under the action (4.4). These are
given by

jΨii ¼
�				 12

1

2

1

2


				 12 −
1

2

1

2



;−

				 12
1

2

1

2


				 12
1

2

1

2



; ð4:11Þ

−i

				12−
1

2

1

2


				12
1

2

1

2



;i

				12−
1

2

1

2


				12−
1

2

1

2


�
i
: ð4:12Þ

The ðS; TÞ ¼ ð1=2; 1=2Þ states that transform as (4.3),
where N is given by (4.8), are

Φi¼
�				12

1

2
t03


				12−
1

2
− t03



;−

				12
1

2
t03


				12
1

2
− t03



; ð4:13Þ

i

				12−
1

2
t03


				12
1

2
− t03



;−i

				12−
1

2
t03


				12−
1

2
− t03


�
i
:

ð4:14Þ

There are two sets of states that are identical apart from
their space-fixed projections in S=T space. Note that the
bases jΨii and Φi are simply related—their coefficients are
complex conjugates. This is true in general since the S=T
wave functions must satisfy (4.3). Combining these two
bases gives two wave functions with ðJ; I; S; TÞ ¼
ð1=2; 1=2; 1=2; 1=2Þ that are permitted by the cubic sym-
metry of the system. They are

				 12
1

2

1

2

1

2
; 4t03



¼ 1

2

�				 12
1

2


				 12 −
1

2


				 12
1

2
t03


				 12 −
1

2
− t03




þ
				 12

1

2


				 12
1

2


				 12
1

2
t03


				 12
1

2
− t03




þ
				 12 −

1

2


				 12
1

2


				 12 −
1

2
t03


				 12
1

2
− t03




þ
				 12 −

1

2


				 12 −
1

2


				 12 −
1

2
t03


				 12 −
1

2
t03


�
;

ð4:15Þ

where we have suppressed the space-fixed projections of J
and I for economy. To find wave functions with larger
values of J, I, S, and T, we can simply repeat the process.
The wave functions are large, complicated objects, as one
would expect from quantization of an 11-dimensional
system. We tabulate the bases of spin states that transform
as (4.8), (4.9), and (4.10) in Appendix A. These can be used
to construct wave functions with high spins.

V. PARITY AND ADDITIONAL SYMMETRIES

A. Parity

In the Skyrme model, the inversion operator is easily
expressed in terms of the pion field, πðxÞ. It is

2Note that the spin states jJj3Ji and jIi3Ii are not the usual
spin states. Their generating matrices are conjugate to the usual
ones.
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P̂∶ πðxÞ → −πð−xÞ: ð5:1Þ

This inverts the orientation of the Skyrmion in space and in
isospace. To apply the operator to our states, we must first
express it in terms of the coordinates on the configuration
space. We can split this into two parts, one acting on the
overall spin and isospin space P̂J;I and another acting on
the relative space P̂S;T . For our setup, P̂J;I is easier to
express using a momentum operator,

P̂J;I ¼ exp ð−iÎ3πÞ; ð5:2Þ

while the relative part is simplest to describe using an
explicit coordinate transformation,

P̂S;T∶ ðθ;ϕ; α; β; γÞ → ðπ − θ;ϕþ π; αþ π; β þ π; π − γÞ:
ð5:3Þ

The equivalence between (5.1) and the combined action of
(5.2) and (5.3) is shown in Fig. 4, at a generic point in
configuration space.
Using properties of the Wigner functions, we find that

the inversion operator acts on the basis states as

P̂jJj3ijIi3ijSs3 − t03ijTt3t03i
¼ ð−1Þ1þSþTþt3−i3 jJj3ijIi3ijSs3t03ijTt3 − t03i: ð5:4Þ

This can be used to construct states with definite parity P
that satisfy P̂jΨi ¼ PjΨi ¼ �jΨi. To find definite parity
wave functions, we begin with a set of degenerate energy
eigenstates. We have not yet constructed such states
but will do so soon. There are only two states with
J ¼ I ¼ S ¼ T ¼ 1=2, degenerate in their t03 value. The
space-fixed projection cannot affect the energy, and so
these states, displayed in (4.15), must be energy eigenstates
and can be used as a basis for the definite parity states. The
definite parity states are

jP¼�1i ¼ 1ffiffiffi
2

p
�				12

1

2

1

2

1

2
;4

1

2



�
				12
1

2

1

2

1

2
;4−

1

2


�
: ð5:5Þ

There is an alternative way to calculate the parity at
certain points in configuration space—those in which the
Skyrme configuration has a reflection symmetry. At these,
P̂ can be written in terms of the Ĵ and Î momentum
operators. This gives a nontrivial consistency check on the
global parity operator. As an example, consider the con-
figuration displayed in Fig. 5(a). This is the point
αz ¼ ðθ;ϕ; α; β; γÞ ¼ ðπ=2; π=4; 0; π=2; 0Þ. At this point,
the parity operator is

P̂jαz ¼ exp ð−iπĴ3Þ exp ðiπÎ3Þ: ð5:6Þ

We may apply this operator to the wave function evaluated
at αz and should obtain the same parity as before. For the
negative-parity wave function in (5.5), we find that

P̂jαz jP ¼ −1ijαz ¼
1

8
ffiffiffi
2

p e−iπĴ3þiπÎ3

�
e
iπ
8

				 12
1

2


				 12 −
1

2




þ e−
iπ
8

				 12 −
1

2


				 12
1

2


�
ð5:7Þ

¼ −jP ¼ −1ijαz ; ð5:8Þ

as expected. If the global parity operator is particularly
difficult to write down, one could use this local method to
construct definite parity states. For large spins, one would
need to evaluate the wave function at several different
points in configuration space where the configuration has a
reflection symmetry. More of these are displayed in Fig. 5.
Each energy eigenstate (which will be constructed in

Sec. VI) has a 2n degeneracy in which

2n ¼ min ð2Sþ 1; 2T þ 1Þ: ð5:9Þ

Half of these have positive parity, and other half have
negative parity. Hence, there is at least parity doubling for
each state. This is not seen in the 5He=5Li energy spectra.
The doubling is ultimately due to the lack of symmetry in
our configuration space. The configurations with the largest

FIG. 4. A visual representation of the equivalence between the inversion operator acting on the Skyrme field and its realization in our
configuration space.
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symmetry group include those seen in Figs. 5(a) and 5(d),
which have an overall C2 symmetry. This order-2 group
partitions the total spin/isospin basis into two sets: those
that transform trivially under the C2 element and those that
pick up a sign. One of these sets is disregarded due to the
FR constraints. The remaining, allowed, wave functions are
once again partitioned in two by the order-2 parity operator.
For half-integer spin and isospin, the set of free states is
divisible by 4, and so each positive-parity state has a
negative-parity partner. For example, there are four J ¼
I ¼ 1=2 basis states. Two are allowed by the FR con-
straints: one has positive parity, and the other has negative
parity. By this reasoning, if a Skyrmion has only C2

symmetry, its energy spectrum will contain approximate
parity doubling,3 almost never seen in experimental data.
This appears to be a problem for Skyrme models with low
classical binding energy. For example, the lightly bound
model [12] contains parity doubling for many of its
Skyrmions. This argument suggests that one should attempt
to construct a Skyrme model with low classical binding
energy and high symmetry. There have been several
attempts to write down such a model. One is to include
vector mesons in the Lagrangian. Recently, it was shown
that inclusion of the rho meson reduces the classical
binding energy by 2=3, while retaining the symmetry group
of each Skyrmion up to baryon number 8 [22]. If one
integrates out the mesons, a term that contains sixth-order
derivatives of the pion field appears [23]. If one only
includes this term, the theory is Bogomol'nyi-Prasad-
Sommerfield (BPS) (i.e., has no classical binding energy),
and so, unsurprisingly, its inclusion lowers the binding
energy [4]. Numerical work [11] has shown that the
classical symmetries do remain for a family of
Lagrangians in which the sixth-order term does not
completely dominate. One can also modify the pion
potential term that, again, has been shown to reduce
binding energies while retaining much of the Skyrmion
symmetries [8–10]. In all of these models, quantum effects
arising from the spin of the B ¼ 1 Skyrmion spoil the small
classical binding energies. An alternative approach is to
start with a classically tightly bound but highly symmetric
Skyrme model and reduce the binding energy by taking
account of more modes in the quantization procedure, as

suggested in Refs. [7,24]. If the classical B ¼ 5 Skyrmion
has a symmetry group of order 4, the parity doubling
problem is avoided.
Finally, we compare our results about parity with the

shell model, which does not contain doubling. The key
difference is that, in the shell model, the core and additional
particle are individual quantum objects. They are then
combined to make a two-cluster system. Since the core is
already quantized, it has spherical symmetry, and the
additional particle is governed by a central potential. In
our case, the additional particle feels the classical structure
of the core, which has much less symmetry than the
spherical core of the shell model. This reduction in
symmetry means that relatively more states are allowed
in our model, leading to incorrect results. Our clusters are
combined at the classical level and then quantized. We
could perhaps reproduce the shell model results by quantiz-
ing the B ¼ 4 and B ¼ 1 separately and then combining
them. It may be of interest to compare these two methods
and find out when each is appropriate.

B. C2 symmetry

The configuration space appears to contain more sym-
metries than we have considered so far. Here, we will
consider one such symmetry and explain why it is in fact
included in our calculation.
Consider the point in Fig. 5(a), αz. This has a C2

symmetry, realized as

exp

�
−

πiffiffiffi
2

p ðĴ1 þ Ĵ2Þ − πiÎ1

�
jΨijαz

¼ jΨijαz : ð5:10Þ

The cubic group that we considered earlier includes a
closely related C2 element,

exp

�
−
πiffiffiffi
2

p ðĴ1þ Ĵ2Þ−πiÎ1þ
πiffiffiffi
2

p ðŜ1þ Ŝ2ÞþπiT̂1

�
jΨi¼jΨi:

ð5:11Þ

The S=T part of this transformation can be viewed as a
coordinate transformation on the S=T space. It takes αz to
itself. Hence,

�
πiffiffiffi
2

p ðŜ1 þ Ŝ2Þ þ πiT̂1

�
jΨijαz ¼ jΨijαz ; ð5:12Þ

meaning that the S=T part of (5.11) is trivial at the point αz
and thus (5.10) is satisfied.
Provided that the constraint (5.10) is satisfied, several

other constraints are automatically dealt with. Denote the
point in Fig. 5(d) as αy ¼ ðπ=4; 0; 4π=3; π=2; π=2Þ. This
should satisfy the constraint

FIG. 5. Four points in the configuration space with a reflection
symmetry. The B ¼ 1 lies at an edge, a face, a corner, and a
different edge of the cube in (a), (b), (c), and (d), respectively.

3The structure of the moment of inertia tensor may break the
degeneracy slightly.
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Ĉy
2jΨijαy ≡ exp

�
−

πiffiffiffi
2

p ðĴ1 þ Ĵ3Þ − πiðcosð4π=3ÞÎ1

þ sinð4π=3ÞÎ2Þ
�
jΨijαy ¼ jΨijαy : ð5:13Þ

To show that this does hold, we will need to introduce some
extra terminology. Denote the C3 operator that relates the
configurations in Figs. 5(a) and 5(d) in S=T space as

ĈS;T
3 ¼ exp

�
2πi

3
ffiffiffi
3

p ðŜ1 þ Ŝ2 þ Ŝ3Þ þ
2πi
3

T̂3

�
: ð5:14Þ

The total wave function has been constructed to be
invariant under (5.14) combined with the related action
on the J=I space:

ĈJ;I
3 ¼ exp

�
−

2πi

3
ffiffiffi
3

p ðĴ1 þ Ĵ2 þ Ĵ3Þ −
2πi
3

Î3

�
: ð5:15Þ

Hence, the total wave function satisfies

ĈS;T
3 ĈJ;I

3 jΨi ¼ jΨi; ð5:16Þ

which means that

jΨijαz ¼ ðĈS;T
3 Þ−1jΨijαy ¼ ĈJ;I

3 jΨijαy : ð5:17Þ

The first equality is simply a coordinate transformation on
the S=T space, while the second is a consequence of (5.16).
Now, we can consider the wave function at αy. It satisfies

Ĉy
2jΨijαy ¼ ðĈJ;I

3 Þ−1ðĈJ;I
3 Ĉy

2ðĈJ;I
3 Þ−1ÞðĈJ;I

3 jΨijαyÞ
¼ ðĈJ;I

3 Þ−1Ĉz
2jΨijαz

¼ ðĈJ;I
3 Þ−1jΨijαz

¼ jΨiαy : ð5:18Þ

Hence, the wave function obeys the constraint at αy,
provided it also obeys the constraint at αz, due to the
group structure. This type of argument is rather straightfor-
ward, but it contains a key message: get the symmetry of
the configuration space correct, and everything else will
follow.

C. Enhanced D2 symmetry

There is an additional symmetry we may consider. This
exists just outside of our configuration space. Consider the
point αz in Fig. 5(a). In the standard Skyrme model, when
the B ¼ 1 Skyrmion is brought closer to the cube, the
configuration deforms into the well-known D2-symmetric
B ¼ 5 Skyrmion. This deformation process is displayed in
Fig. 6. The B ¼ 5 Skyrmion has D2 symmetry, generated
by two elements. The first is the C2 symmetry (5.11), and
the other is another C2 element that enforces an extra
constraint on the wave function at the point αz,

exp
�
−iπ

�
1

2
Ĵ1−

1

2
Ĵ2þ

1ffiffiffi
2

p Ĵ3

�
−iπ

�
1ffiffiffi
2

p Î2−
1ffiffiffi
2

p Î3

��
jΨijαz

¼−jΨijαz : ð5:19Þ

We calculated the FR sign using the approach of Krusch
based on the rational map approximation [18]. We can
check if our definite parity energy eigenstates obey the
constraints by evaluating the wave functions at αz. When
there are degenerate eigenstates (S; T > 1=2), we can
attempt to construct linear combinations of the states that
obey the constraints. If the wave function satisfies the
constraint at αz, it is automatically enforced at the other
D2-symmetric points due to the argument used in the
previous subsection.
We do not rule out states that do not satisfy (5.19) since

our configuration space does not explicitly include the D2-
symmetric Skyrmions. However, their existence still affects
the energies of our states. To see why, consider a quantiza-
tion that includes a parameter τ describing the flow seen in
Fig. 6 (it could be thought of as the radial coordinate), and
suppose the D2 symmetry is restored at τ�. The wave
functions of this system will look schematically like

uðτÞ × jΨi; ð5:20Þ

where the jΨi are the wave functions we have calculated in
this paper. Now, consider a “rotational” state that is allowed
by the D2 symmetry, denoted jΨ;Di. Here, the wave
function uðτÞ coupled to jΨ;Di is not restricted in any
way. Now, consider a rotational wave function not allowed
by the D2 symmetry (5.19), denoted jΨ;Ci. If this is
coupled to a wave function uðτÞ, then the only way to
satisfy the D2 symmetry (5.19) is for uðτÞ to vanish at τ�.
This imposes an extra constraint on the wave function.

FIG. 6. Gradient flow from the configuration in Fig. 5(a) to the D2-symmetric Skyrmion. This process is carried out in the standard
Skyrme model with dimensionless pion mass m1 ¼ 1.
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Constrained wave functions naturally have higher energy,
and so the total wave function containing jΨ;Ci has more
energy than the one containing jΨ;Di. The implication for
our model is that wave functions not allowed by (5.19)
should gain an additional energy contribution. We call this
the constraint energy. If one thinks of τ as a radial
coordinate, the jΨ;Di states are coupled to a ground-state
radial wave function, while the jΨ;Ci states would be
coupled to an excited radial wave function, since it must
vanish at the minimum of the potential energy (for the
standard Skyrme model).
The size of the constraint energy is hard to measure. To

do so properly, one should consider a configuration space
and corresponding quantization scheme that includes a
coordinate like τ. Even to estimate the contribution, one
needs to understand the distance between the configura-
tions we consider in our model and the D2-symmetric
Skyrmion. This depends crucially on the interpretation of our
configuration space M, briefly mentioned in Sec. II. One
may interpretM as already including theD2 Skyrmion at the
point αz. The relative coordinates between the clusters are
then internal, vibrational excitations of the D2-symmetric
B ¼ 5 Skyrmion. The two-cluster picture is then just a
convenient way to think about these coordinates. In this
picture, the constraint energy is very large. To see if this
interpretation is possible, one would need to do a small
amplitude analysis of theB ¼ 5 Skyrmion to see if there is a
map between its vibrational d.o.f. and those in this model.
The true picture is likely somewhere between this interpre-
tation and the interpretation of the Skyrmion as two weakly
bound clusters. To understand it properly, a more thorough
investigation of the B ¼ 5 configuration space is required.

VI. CALCULATING ENERGIES

A. Kinetic energy

The Hamiltonian H of the system is simple to express
in terms of the body-fixed momenta of the individual
Skyrmions. Ignoring deformations caused by the Skyrmion
interaction that will change themoment of inertia tensors, the
kinetic part of the energy is

Hfree ¼
1

2
ðLð4ÞTV−1

4 Lð4Þ þ Kð4ÞTU−1
4 Kð4Þ þ Lð1ÞTV−1

1 Lð1Þ

þ ðM1R2Þ−1lT lÞ; ð6:1Þ

whereVi andUi are the moment of inertia tensors associated
with the angular and isoangular motion of the B ¼ i
Skyrmion, M1 is the mass of the B ¼ 1 Skyrmion, and R ¼
jRj is the (fixed) distance between the Skyrmions. We can
express the Hamiltonian in terms of the new momenta
by inverting Eqs. (2.5), (2.6), and (2.8). By doing this, we
find that

0
BBB@

Lð4Þ

Kð4Þ

Lð1Þ

l

1
CCCA¼

0
BBB@
1 0 −1 0

0 1 0 −1
0 0 0 −Bð1ÞTBð4Þ

0 0 Að4Þ Að1ÞBð1ÞTBð4Þ

1
CCCA

0
BBB@

J

I

S

T

1
CCCA; ð6:2Þ

where 1 represents the 3 × 3 unit matrix. The Hamiltonian
becomes

Hfree ¼
1

2

�
J I S T

�
G

0
BBB@

J

I

S

T

1
CCCA;

G≡

0
BBB@

V−1
4 0 −V−1

4 0

0 U−1
4 0 −U−1

4

−V−1
4 0 V−1

4 þ ðM1R2Þ−1 −ðM1R2Þ−1Að4ÞTAð1ÞBð1ÞTBð4Þ

0 −U−1
4 −ðM1R2Þ−1Að4ÞTAð1ÞBð1ÞTBð4Þ U−1

4 þ V−1
1 þ ðM1R2Þ−1

1
CCCA: ð6:3Þ

The only complicated term in this expression is the S=T
cross term. We are unsure how to evaluate this term, and so
we replace it by its expectation value

ðM1R2Þ−1Að4ÞTAð1ÞBð1ÞTBð4Þ

→ ðM1R2Þ−1hAð4ÞTAð1ÞBð1ÞTBð4Þi ¼ 0: ð6:4Þ
Although we would ideally evaluate this term properly, we
are comforted by the fact that M1R2 is the largest scale in
the metric.

The moment of inertia tensors are all diagonal, and most
are proportional to the unit matrix. We use small letters to
describe the diagonal elements so that

V4 ¼ v41; V1 ¼ v11 and R2M1 ¼ μ1: ð6:5Þ

The B ¼ 4 isospin tensor is slightly more complicated.
There are two independent diagonal components. In the
orientation we have used,
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ðU4Þ11 ¼ ðU4Þ22 ¼ u11 and ðU4Þ33 ¼ u33: ð6:6Þ

We fix the free moments of inertia and masses numerically
using the results from the standard Skyrme model with
dimensionless pion mass m1 ¼ 1. In Skyrme units, this
gives

v4 ¼ 661; u11 ¼ 147; u33 ¼ 176;

M4 ¼ 613; v1 ¼ 48 and M1 ¼ 168: ð6:7Þ

We are left to fit R and hence find μ. We take R ¼ 3, and
this length is also used when we numerically generate the
interaction potential.
To find the energy eigenstates, we simply diagonalize the

Hamiltonian matrix for each set of allowed states with a
fixed set of spins. We review the low-lying states here, and
an extensive table of higher-energy states can be found in
Appendix B. We list many more states than are exper-
imentally seen. This is not because we are directly
interested in them. Rather, we are interested in how their
existence affects the lowest-energy states, once the poten-
tial is turned on.
The ground state of the free system is the state calculated

in (4.15)

				12
1

2

1

2

1

2
; 4t03



: ð6:8Þ

This has energy

E ¼ 3

8v1
þ 3

4μ
: ð6:9Þ

The state is doubly degenerate, due to the free t03 label.
There is one state with negative parity, permitted by the
D2-symmetric configuration, and one with positive parity,
which is not. This state is simple to interpret: since there is
no Vð4Þ or Uð4Þ dependence, the B ¼ 4 core is at rest, while
the orbiting nucleon has spin 1=2. Not all states have such a
simple interpretation.
Just above the ground state, there is a spin-3=2 state,

ffiffiffi
2

p 				32
1

2

3

2

1

2
;4t03



þ
				32
1

2

3

2

1

2
;2þt03



þ
				32
1

2

3

2

1

2
;2−t03



; ð6:10Þ

which has energy

E ¼ 3

8v1
þ 9

4μ
: ð6:11Þ

Once again, this is doubly degenerate with a negative-parity
state, permitted by the D2 Skyrmion, and a positive-parity
state which is not. Of the four states discussed so far, the
two negative-parity states are identified with the two low-
energy states of the 5He=5Li isodoublet. Experimentally,

there are no low-energy positive-parity states. Hence, to
match data, the constraint energy from the D2-symmetric
Skyrmion must be large. This provides some evidence that
the correct Skyrme Lagrangian should contain a low-
energy D2-symmetric B ¼ 5 Skyrmion. This is not true
for lightly bound models such as Refs. [8–10,12]. It is
unclear what happens near the BPS limit of the sextic
model [11].
The experimental data then have a large gap of around

15 MeV. Our spectrum also has a large gap. The next six
states are energetically degenerate. They are

				32
1

2

1

2

1

2
; 4t03



; ð6:12Þ

				52
1

2

1

2

1

2
; 41t03



; ð6:13Þ

and

				32
3

2

1

2

1

2
; 42t03



−

ffiffiffi
3

p 				32
3

2

1

2

1

2
; 43t03



; ð6:14Þ

where t03 ¼ � 1
2
. Each of these has a positive- and negative-

parity version. They all have energy

E ¼ 3

8v1
þ 1

2u11
þ 1

2u33
þ 3

v4
þ 3

4μ
: ð6:15Þ

The large degeneracy in the spectrum may be expected
since the model is a free theory with a simple kinetic
operator. In the full model, the Skyrmions interact, which
alters the moment of inertia tensor. This will likely break
the degeneracy of these states.
The energy spectrum then becomes rather dense—there

are many states with similar energies. Many of these can be
found in Appendix B, and we plot their spectrum in Fig. 7.
The main success of the free theory is the large energy gap
in the spectrum.

B. Potential energy

Having found the wave functions for the free system, we
can now estimate the potential energy contribution. To find
the potential Vðθ;ϕ; α; β; γÞ, we insert a symmetrized
product ansatz of a B ¼ 1 and B ¼ 4 Skyrmion into the
static Skyrme Lagrangian. Numerically, we discretize the
angles with a lattice spacing of π=12. This amounts to
finding V at approximately 2 million points.
The full HamiltonianH is the kinetic operator (6.3) plus

the numerically generated potential. Denoting our free
wave functions as jΨii, the energy spectrum is found by
diagonalizing

hΨijVðθ;ϕ; α; β; γÞjΨji: ð6:16Þ

Although the wave functions depend on 11 coordinates, the
part of the matrix element that depends on J and I is rather
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trivial. Hence, to calculate the matrix element, we only need
to do an integration over the five-dimensional S=T space.
States with different spins, isospins, and parities have zero
mixing, and so we focus on one sector at a time. We only
calculate a finite number of free energy eigenfunctions, and
so we diagonalize with respect to a truncated basis. We
include all states that we found up to and including an
energy cutoff, which is

E ¼ 15

8v1
þ 5

2u11
þ 1

2u33
þ 3

v4
þ 15

4μ
: ð6:17Þ

This means that, for example, we include 14 states with
ðJ; IÞ ¼ ð1=2; 1=2Þ and 27 states with ðJ; IÞ ¼ ð3=2; 1=2Þ.
We include fewer basis states when considering larger
spins. Fortunately, we are primarily interested in the two
low-spin cases, in which we have already calculated a large
basis of states.
The results of the calculation are shown in Fig. 7 alongside

the free energy spectrum and the experimental data, which
are taken from Ref. [25]. To calibrate the model, we must
choose energy and length scales or, equivalently, choose an
energy scale and the value of ℏ in Skyrme units. We take
ℏ ¼ 21.26, the same value taken in Ref. [3]. We use an
energy scale in which one Skyrme energy unit is 4.04 MeV;
this is 70% smaller than the scale used in Ref. [3]. Our
calibration is different since we are using a different
quantization scheme. However, it is encouraging that the
two sets of parameters are reasonably similar.

The results contain some successes—all experimental
states are seen, and the spectrum contains a large gap. There
are more free spin-3=2 states than spin-1=2 states, and so
one may expect, with a larger basis to mix, the low-lying
spin-3=2 and −1=2 states would reverse their order.
However, due to the details of the mixing, the spin-1=2
states remain the lowest-energy ones. Hence, we do not get
the correct ground-state spin. The potential only has a small
effect on the spectrum since the Skyrmions interact weakly
where they are positioned. If we artificially increase the size
of the potential, the states remain in the incorrect order. In
fact, the size of the gap between the low-energy spin-1=2
and −3=2 states increases. This is the opposite of what one
would expect from spin-orbit coupling. Hence, the struc-
ture of the pion field may not account of the spin-orbit
effect in the Skyrme model, at least at weak coupling. We
calculated the potential for the Skyrme model with m2 ¼ 0
and m2 ¼ 2.8. The change of potential had little impact on
the results.
The model also contains approximate parity doubling—

not seen in the 5He=5Li spectra. We have already suggested
one way to remedy the problem: by including the D2-
symmetric Skyrmion in the configuration space, or energeti-
cally punishing the states that are not permitted by this
symmetry. This would add a constraint energy contribution
to both the low-lying 3=2þ and 1=2þ states, which are not
permitted by this symmetry. In addition, we fail to obtain the
1=2þ ground state of the isospin-3=2 nuclei, hydrogen-5, and
beryllium-5, although there is a low-energy 1=2þ state in our
spectrum. These nuclei are highly unstable, so our bound

FIG. 7. The energy spectrum for the free theory and after the inclusion of the potential term, compared to the energy spectrum of 5He,
taken from Ref. [25]. Bars that are red (blue) represent states with negative (positive) parity, while a striped bar represents a parity
doublet—two degenerate states with opposite parities.
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two-cluster model is likely unsuitable to accurately describe
such states.

VII. FURTHER WORK

The framework developed in this paper may be applied to
a wide range of systems. For any strongly bound Skyrmion
with baryon numberB, our approach can be used to study the
Bþ 1 nucleus. In the Skyrme model, like many nuclear
models, nuclei with B ¼ 4N are particularly stable. For
example, the B ¼ 32 Skyrmion is strongly bound and has
cubic symmetry [26]. Hence, the B ¼ 33 Skyrmion’s
configuration space will likely have a low-energy subspace
that looks like a 32þ 1 two-cluster system. This will model
certain states of the sulfur-33/chlorine-33 isodoublet.
Experimentally, the first two states of these nuclei have
spin parity 3=2þ and 1=2þ, respectively. Applying the free
model developed in this paper (which is rather naive), we
would find these low-lying states, alongside their negative-
parity partners. A more careful study may explain why the
positive-parity states are preferred.
There is evidence of large-radius “Hoyle-like” states in

the carbon-13 spectrum [27]. In the Skyrme model, these
would be described by a single nucleon orbiting the B ¼ 12
chain-like Skyrmion, which models the Hoyle state. One
could describe these novel states using the framework from
this paper, but rather than restricting the B ¼ 1 to a sphere,
it should be restricted to an ellipse. In fact, one could
restrict the B ¼ 1 to any surface that reflects the symmetry
of the core Skyrmion, such as those with tetrahedral,
octahedral, or dodecahedral symmetry. This technique
could be used to study nuclei with one nucleon more than
the “magic” tetrahedral Skyrmions discussed recently in
Refs. [28,29]. One could even repeat the calculation in this
paper but insist that the B ¼ 1 is restricted to a cube so that
it is always just touching the B ¼ 4 core. Then, the Wigner
functions in the S=T space used as a basis for the wave
functions would be replaced with free wave functions on
the surface of the cube.
In the lightly bound Skyrme model [11,12], large

Skyrmions are approximately described by a set of indi-
vidual B ¼ 1 Skyrmions that take positions on a face-
centered cubic lattice. Here, there are strongly bound
Skyrmions that arise when a layer of the face-centered
cubic lattice is filled. The Skyrmion with one extra baryon
is then described by a core þ particle system. To quantize
these, Manton suggested that one should allow the extra
Skyrmion to only take positions on the next layer of the
face-centered cubic lattice [28]. One must still quantize the

overall spin and isospin of the system, and our framework
shows how to do so. It amounts to replacing the classical
configuration space

SOð3ÞJ × SOð3ÞI ×
SOð3ÞS × SOð3ÞT

Uð1Þ ð7:1Þ

with

SOð3ÞJ × SOð3ÞI × Cn; ð7:2Þ

where Cn is a collection of n positions that the additional
Skyrmion may take: those on the next layer of the face-
centered cubic lattice. The Hamiltonian is then a hopping
Hamiltonian, and the relative part of the wave function is a
function on a finite set of points. The overall wave
functions must still obey the FR constraints discussed in
this paper, but now the symmetry transformations are
members of the symmetric group of n points, rather than
rotations in SOð3ÞS × SOð3ÞT . This reduces the complexity
of the problem as there is no longer a need to generate a
potential on the relative space and the Schrödinger equation
is likely exactly solvable. With this simplicity, one may
then try to study more complex systems such as those with
more than one orbiting nucleon. These include most of the
halo nuclei and those with a few more nucleons than a
magic nucleus. This quantization may even be relevant for
the standard Skyrme model. For example, in the B ¼ 5
sector, we could restrict the B ¼ 1 to only take positions at
the minima of the interaction potential between the B ¼ 1
and B ¼ 4 clusters. In our case, this is at the faces, edges,
and corners of the cube (with the B ¼ 1 orientated in the
attractive channel). This will correspond to the tight bind-
ing limit rather than the weakly interacting limit we have
considered in this paper. It would be interesting to compare
the resulting spectra in each limit.
The initial results of this paper are not very promising,

but the model can be improved in many ways. To match
data, we will need to rely on the existence of the D2-
symmetric B ¼ 5 Skyrmion. However, our configuration
space does not include it. We were able to find free wave
functions that do satisfy the constraint arising from the
D2-symmetric Skyrmion. However, after inclusion of the
potential energy, these were mixed with states that do not.
Hence, the overall state only approximately satisfies the
constraint. This inconsistency is ultimately due to our
exclusion of the D2 configuration. We should take account
of the mode seen in Fig. 6. However, this evolution is only
half of a vibrational mode. The full mode is seen in Fig. 8.

FIG. 8. A vibrational mode of the 4þ 1 system.
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A B ¼ 1 Skyrmion is positioned at an edge of the B ¼ 4
cube. It merges with the cube to become the D2 Skyrmion,
but as this process continues, a different B ¼ 1 Skyrmion is
knocked out of the system. The original B ¼ 1 has become
part of a leftover cube, which is rotated and isorotated
relative to the original cube.
This novel vibrational mode, which creates a nontrivial

relationship between the initial and final configurations of
Fig. 8, should be included in the configuration space of the
full model. Our calculation knows nothing of the nontrivial
relationship, and hence we cannot consistently create
nonfree wave functions that are permitted by the D2

symmetry. The work of this paper will serve as an essential
initial step to understanding the full model. In particular,
the wave functions calculated here can be used as part of the
eigenfunction basis for the more complicated system.
Before progress can be made, a careful study of the B ¼
5 vibrational space must be completed.

VIII. CONCLUSION

We have attempted to describe the 5He=5Li isodoublet in
the Skyrme model by treating the B ¼ 5 Skyrmion as a
two-cluster system. To do so, we found coordinates in
which the overall rotations and isorotations are factored out
of the full configuration space. This step is essential for any
coreþ particle system in the Skyrme model. It also
drastically reduces the complexity of the problem since
the interaction potential only depends on the relative
coordinates between the clusters: a five-dimensional space
rather than the original 11-dimensional space.
We then constructed wave functions permitted by the

cubic symmetry of the B ¼ 4 core. This construction relied
on the representation theory of the system’s constituent
symmetry groups. The same construction may be applied to
any system in which one considers a configuration space
of deformed Skyrmions. The representation theory was not
enough to construct energy eigenfunctions of definite
parity states, and standard techniques were used to deter-
mine these.
Until this point, the work was rather model independent,

relying only on the cubic symmetry of the B ¼ 4 core. To
calculate the energy spectrum, we had to choose a specific

Skyrme model to fix the moments of inertia and interaction
potential. This was done for the standard Skyrme model as
well as the loosely bound Skyrme model. The energy
spectra of the free and full systems were calculated and
compared to experimental data. Both spectra do include
low-lying spin-1=2− and −3=2− states and a large gap.
However, the results contain approximate parity doubling.
This is not seen experimentally. It is possible that one can
remedy this problem by including the D2-symmetric
Skyrmion in the quantization scheme. Our work will serve
as a foundation for this much more complicated problem
and many other two-cluster systems in the Skyrme model.
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APPENDIX A: BASIS WAVE FUNCTIONS

In this Appendix, we tabulate bases of wave functions
that transform as the irreps of the symmetry groups GJI and
GST . Tables III and IV list sets of wave functions in the J=I
space, which transform as explained in Sec. III, for a variety
of different J=I values. For aesthetic reasons, it is con-
venient not to normalize the wave functions. However, the
wave functions in the text (used to construct the energy
eigenstates) are assumed to be normalized. Since the
symmetry groups are homomorphic, a table for the Φi
wave functions on the S=T space would be almost identical.
In our conventions, the coefficients of the S=T states are
complex conjugates to those of the J=I states.
A permissible wave function takes the form

jΨi ¼
X
i

ΦijΨii; ðA1Þ

where the two sets of wave functions fall into the same
irrep. For example, the j3
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We have suppressed the space-fixed projection for aesthetic
reasons. We can then use these wave functions to generate
the energy eigenfunctions.

APPENDIX B: ENERGY EIGENSTATES

Low-energy eigenstates were mentioned in the main text.
Here, we tabulate several higher-energy states, including all
of those used in Fig. 7, in Tables IV and V. We list them in
order of increasing energy. In this table, we assume that the
constituent states have been normalized.

In the search for low-energy states, we considered a wide
variety of different ðJ; I; S; TÞ combinations. For ðJ; IÞ ¼
ð1=2; 1=2Þ and ðJ; IÞ ¼ ð3=2; 1=2Þ, we considered

ðS; TÞ ¼
��

1

2
;
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2
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��
: ðB1Þ

For the higher spins and isospins,

TABLE III. Sets of spin states that transform under the irreps of the symmetry group GJI . These are chosen to transform as the
realization of the irreps detailed in Sec. IV. The factor of N represents the fact that the wave functions in the table are not normalized,
though the ones used in the text are assumed to be.
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TABLE IV. More spin-state bases, for ðJ; IÞ ¼ ð3=2; 3=2Þ and ðJ; IÞ ¼ ð7=2; 1=2Þ, which transform under the
irreps of GJI .

Irrep i N jΨii ¼
P

aj3i3 jJj3ijIi3i
41 1 j 3

2
1
2
ij 3

2
3
2
i − ij 3

2
− 3

2
ij 3

2
3
2
i

2 j 3
2
1
2
ij 3

2
− 3

2
i þ ij 3

2
− 3

2
ij 3

2
− 3

2
i

3 j 3
2
3
2
ij 3

2
3
2
i þ ij 3

2
− 1

2
ij 3

2
3
2
i

4 −j 3
2
3
2
ij 3

2
− 3

2
i þ ij 3

2
− 1

2
ij 3

2
− 3

2
i

42 1 j 3
2
1
2
ij 3

2
1
2
i þ ij 3

2
− 3

2
ij 3

2
1
2
i

2 j 3
2
1
2
ij 3

2
− 1

2
i − ij 3

2
− 3

2
ij 3

2
− 1

2
i

3 −j 3
2
3
2
ij 3

2
1
2
i þ ij 3

2
1
2
ij 3

2
1
2
i

4 j 3
2
3
2
ij 3

2
− 1

2
i þ ij 3

2
− 1

2
ij 3

2
− 1

2
i

43 1 j 3
2
1
2
ij 3

2
− 3

2
i − ij 3

2
− 3

2
ij 3

2
− 3

2
i

2 j 3
2
1
2
ij 3

2
3
2
i þ ij 3

2
− 3

2
ij 3

2
3
2
i

3 j 3
2
3
2
ij 3

2
− 3

2
i þ ij 3

2
− 1

2
ij 3

2
− 3

2
i

4 −j 3
2
3
2
ij 3

2
3
2
i þ ij 3

2
− 1

2
ij 3

2
3
2
i

2þ 1 j 3
2
3
2
ij 3

2
1
2
i þ j 3

2
3
2
ij 3

2
− 1

2
i þ ij 3

2
− 1

2
ij 3

2
1
2
i − ij 3

2
− 1

2
ij 3

2
− 1

2
i

2 j 3
2
1
2
ij 3

2
1
2
i − j 3

2
1
2
ij 3

2
− 1

2
i − ij 3

2
− 3

2
ij 3

2
1
2
i − ij 3

2
− 3

2
ij 3

2
− 1

2
i

2− 1 j 3
2
3
2
ij 3

2
1
2
i − j 3

2
3
2
ij 3

2
− 1

2
i þ ij 3

2
− 1

2
ij 3

2
1
2
i þ ij 3

2
− 1

2
ij 3

2
− 1

2
i

2 j 3
2
1
2
ij 3

2
1
2
i þ j 3

2
1
2
ij 3

2
− 1

2
i − ij 3

2
− 3

2
ij 3

2
1
2
i þ ij 3

2
− 3

2
ij 3

2
− 1

2
i

41 1
ffiffiffi
3

p j 7
2
5
2
ij 1

2
1
2
i þ i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
1
2
i þ 3j 7

2
− 3

2
ij 1

2
1
2
i − i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
1
2
i

2
ffiffiffi
3

p j 7
2
5
2
ij 1

2
− 1

2
i − i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
− 1

2
i þ 3j 7

2
− 3

2
ij 1

2
− 1

2
i þ i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
− 1

2
i

3
ffiffiffi
7

p j 7
2
7
2
ij 1

2
1
2
i þ 3ij 7

2
3
2
ij 1

2
1
2
i − ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
1
2
i þ i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
1
2
i

4 −
ffiffiffi
7

p j 7
2
7
2
ij 1

2
− 1

2
i þ 3ij 7

2
3
2
ij 1

2
− 1

2
i þ ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
− 1

2
i þ i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
− 1

2
i

42 1
ffiffiffi
3

p j 7
2
5
2
ij 1

2
− 1

2
i − j 7

2
− 3

2
ij 1

2
− 1

2
i

2
ffiffiffi
3

p j 7
2
5
2
ij 1

2
1
2
i − j 7

2
− 3

2
ij 1

2
1
2
i

3 −ij 7
2
3
2
ij 1

2
− 1

2
i þ i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
− 1

2
i

4 −ij 7
2
3
2
ij 1

2
1
2
i þ i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
1
2
i

43 1
ffiffiffi
7

p j 7
2
1
2
ij 1

2
− 1

2
i − ffiffiffi

5
p j 7

2
− 7

2
ij 1

2
− 1

2
i

2 −
ffiffiffi
7

p j 7
2
1
2
ij 1

2
1
2
i − ffiffiffi

5
p j 7

2
− 7

2
ij 1

2
1
2
i

3 i
ffiffiffi
5

p j 7
2
7
2
ij 1

2
− 1

2
i þ i

ffiffiffi
7

p j 7
2
− 1

2
ij 1

2
− 1

2
i

4 −i
ffiffiffi
5

p j 7
2
7
2
ij 1

2
1
2
i − i

ffiffiffi
7

p j 7
2
− 1

2
ij 1

2
1
2
i

2þ 1
ffiffiffi
7

p j 7
2
7
2
ij 1

2
1
2
i − ffiffiffi

7
p j 7

2
7
2
ij 1

2
− 1

2
i − 3ij 7

2
3
2
ij 1

2
1
2
i − 3ij 7

2
3
2
ij 1

2
− 1

2
i−ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
1
2
i þ ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
− 1

2
i − i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
1
2
i − i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
− 1

2
i

2 −
ffiffiffi
3

p j 7
2
5
2
ij 1

2
1
2
i − ffiffiffi

3
p j 7

2
5
2
ij 1

2
− 1

2
i þ i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
1
2
i − i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
− 1

2
i−

3j 7
2
− 3

2
ij 1

2
1
2
i − 3j 7

2
− 3

2
ij 1

2
− 1

2
i − i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
1
2
i þ i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
− 1

2
i

2− 1
ffiffiffi
7

p j 7
2
7
2
ij 1

2
1
2
i þ ffiffiffi

7
p j 7

2
7
2
ij 1

2
− 1

2
i − 3ij 7

2
3
2
ij 1

2
1
2
i þ 3ij 7

2
3
2
ij 1

2
− 1

2
i−ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
1
2
i − ffiffiffi

5
p j 7

2
− 1

2
ij 1

2
− 1

2
i − i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
1
2
i þ i

ffiffiffi
3

p j 7
2
− 5

2
ij 1

2
− 1

2
i

2 −
ffiffiffi
3

p j 7
2
5
2
ij 1

2
1
2
i þ ffiffiffi

3
p j 7

2
5
2
ij 1

2
− 1

2
i þ i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
1
2
i þ i

ffiffiffi
5

p j 7
2
1
2
ij 1

2
− 1

2
i−

3j 7
2
− 3

2
ij 1

2
1
2
i þ 3j 7

2
− 3

2
ij 1

2
− 1

2
i − i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
1
2
i − i

ffiffiffi
7

p j 7
2
− 7

2
ij 1

2
− 1

2
i

B ¼ 5 SKYRMION AS A TWO-CLUSTER SYSTEM PHYS. REV. D 97, 125004 (2018)

125004-17



ðJ; IÞ ¼
��

5

2
;
1

2

�
;
�
7

2
;
1

2

�
;
�
1

2
;
3

2

�
;
�
3

2
;
3

2

��
; ðB2Þ

we only considered ðS; TÞ ¼ ð1=2; 1=2Þ and ðS; TÞ ¼ ð3=2; 1=2Þ. In total, we calculated 144 energy eigenstates of the free
system.
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