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Abstract: This paper uses the linear-elastic Theory of Critical Distances (TCD) to verify 

and quantify the analysis of a particular central fracture mode occurring in the classical 

double-cracked flat plate specimen subjected to mixed mode I / mode II loading. Analytical 

formulae for estimating the critical loading condition for such a special central fracture mode 

of double-cracked flat plate specimen are derived using both standard elastic beam theory 

and the TCD. The influence of the crack length, specimen geometry and material 

parameters on the critical loading angle for such a special central fracture mode is 

discussed in detail. Finally, in order to verify the proposed central fracture prediction 

formulae, linear elastic stress analyses for two double-cracked flat plate specimens made 

of different materials and having different loading angles were conducted using finite 

element analysis. The results in this study confirm the possibility of interior fracture modes 

and provide insight on the mechanism of analogous interior fracture occurring in practical 

applications. 
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1. Introduction 

Assessing the integrity of cracked-bodies continues to be a significant issue in the 

fracture community. It is generally accepted that the fracture of most cracked-components 

typically initiates from the crack tip due to the obvious localized stress concentration 

phenomenon. However, many investigations and practical failure analyses (e.g. Li et al., 

2016; Taylor, 2011) show that not all of the practical components containing stress raisers 

fail at the stress raiser tip. For some cracked-components with a given geometry and 

material property, under a certain loading condition, the fracture of the component being 

assessed may initiate at a material region far away from the crack tip. Such a phenomenon 

cannot be explained by classical linear elastic fracture mechanics (LEFM), since LEFM 

always predicts unrealistic singular stresses at the crack tip, which inevitably leads to the 

conclusion that failure must start at the crack apex. On the other hand, since the material 

microstructural features are not modelled explicitly, LEFM usually fails to capture the 

fracture behavior of components containing short cracks (Askes and Susmel, 2014) (i.e. the 

situation whereby the investigated crack length is of the same order of magnitude as the 

material characteristic length), in which the detrimental effect of the crack becomes 

insignificant and the fracture is more inclined to initiate at other regions away from the crack 

tip (Taylor, 2011). In this condition, new methods should be developed to predict and 

explain these special fracture modes. 

Examination of the state of the art shows that, currently, two linear elastic approaches 

are available to solve the aforementioned shortcomings of LEFM and can be used to verify 

the existence of this special interior fracture mode also in cracked/notched components. 

The first approach is the so-called gradient elasticity (see Askes and Aifantis, 2011, for a 

broad overview). This approach introduces a material-dependent microscopic characteristic 

length parameter incorporating higher-order spatial gradients into the constitutive equation 
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of the material which, thus, can remove singularities from the crack tip fields. Therefore, the 

crack tip stress can directly be used to assess the actual failure condition of the component 

(Askes et al., 2013). Further, since the underlying material microstructural characteristic are 

considered in the material constitutive equations, gradient elasticity can also be used to 

capture accurately the behavior of cracks having different lengths (Susmel et al., 2013). 

Another approach that can be used to avoid the ambiguities of stress singularities is 

the Theory of Critical Distances (TCD) (Taylor, 2007). The fundamental ideas on which the 

TCD is based can be dated back to the pioneering works of Neuber (1958) and Peterson 

(1959). These methods were then reformulated by Taylor (1999, 2007, 2008) to make them 

suitable for addressing different structural integrity problems. The basic principle of this 

linear elastic method is to use an effective stress calculated at a certain distance away from 

the crack tip, or by averaging over a line, area or volume around the crack tip (depending 

on the material microstructural characteristics which will be described in detail later) to 

assess the failure of the cracked component. Thus, the linear elastic integrity assessment 

of a cracked component can directly be performed, with this removing the problem of 

singular stresses at the crack tip. On the other hand, since this type of approach implicitly 

accounts for the material microstructure via a material-depended length scale parameter, it 

can be used to evaluate the failure of components with complex stress concentration 

features (such as notches, cracks and corners) under different scale dimensions (Askes et 

al., 2013). In recent years, the TCD has been extended to other ambits of the structural 

integrity discipline. The theory was shown to be successful in estimating the static strength 

of notched/cracked brittle and quasi-brittle material (such as PMMA, cement, rocks) (Taylor, 

2004; Susmel and Taylor, 2008a; Cicero et al., 2012, 2014) as well as of notched/cracked 

ductile material subjected to uniaxial (Susmel and Taylor, 2008b; Madrazo et al., 2012) and 

multiaxial static loading (Li et al., 2016; Susmel and Taylor, 2010a, 2010b). It is clear, then, 
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that the TCD allows accurate and robust analysis of the complex fracture behaviour of 

cracked-bodies to be performed in a very accurate way. 

This paper aims to use the linear-elastic TCD to analyze a particular interior fracture 

mode. Such a fracture mode has been observed in a recent work conducted by the present 

authors (Li et al., 2016), where the failure of a flat plate specimen, having double 

symmetrical notches at the gauge section and subjected to a mixed tensile-shear loading, 

was observed to initiate at the central region, rather than at the stress raiser tips, which 

cannot be explained and estimated by LEFM. Here, analytical formulae (using standard 

beam theory as well as the TCD) are derived to estimate the critical loading condition of a 

classical double-cracked flat plate specimen subjected to mixed mode I / mode II loading. 

Subsequently, an expression for the critical loading angle required to trigger the interior 

failure mode is obtained by imposing the failure conditions at the crack tip and in the central 

region of the specimen to be valid simultaneously. The influence of the crack length, 

specimen geometry and material parameters on the critical loading angle for central failure 

condition is then discussed in detail. Finally, in order to verify the validity of the proposed 

central fracture prediction formulae, linear-elastic stress analysis for two double-cracked 

specimens made of different materials and having different loading angles is conducted 

using the finite element software ABAQUS, where the validation of the proposed analytical 

formulae are verified by comparing the results obtained from both the theoretical formulae 

and the numerical simulations. 

2. Theoretical considerations 

2.1 Geometry and loading of the double-cracked flat plate specimen 

The geometry of the double-cracked flat plate specimen investigated in this paper is 

shown in Fig.1(a), where the parameters 2b and t refer to the width and thickness of the 

plate, respectively. Two symmetrical cracks are assumed to be located in the gauge section 
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of the plate with the length of both cracks being equal to a. The investigated specimen can 

be treated as a plane stress or plane strain problem according to the variation of the plate 

thickness. In order to create a mixed tensile-shear stress state (i.e. mixed mode I and mode 

II loading state) at the gauge section, uniaxial in-plane tension load F, with a certain angle β 

between the specimen axis and the force direction, is applied at both ends of the specimen 

(see Fig.1(a)). Such a loading condition is equivalent to applying simultaneously uniaxial 

tension load FN and in-plane shear forces FS (FN=Fcosβ, FS=sinβ) at both ends of the 

gauge section (see Fig.1(b)). Further, a two-dimensional Cartesian coordinate system X-Y 

and a polar coordinate system r-θ are used, with their origins being located at the crack tip 

(see Fig.1(b)). 

2.2 Procedure and basic assumptions 

The object of this paper is to verify the existence of the special condition in which the 

crack initiates at the central region (i.e. the central material point with a coordinate (b-a,0) 

as shown in Fig.1(b)), rather than the crack tip, of the double-cracked flat plate specimen 

under in-plane mixed mode I / mode II loading and derive the corresponding analytical 

formulae for such a special condition. The specific steps of the derivation are as follows: 

(1) The linear elastic stress field in the central region of the double-cracked specimen 

under mixed modes loading is obtained by using elastic beam theory. Correspondingly, the 

failure condition at the central region of the specimen can be obtained. 

(2) Next, the linear elastic stress field at the crack tip of the specimen under mixed 

mode loading is obtained by using classical elastic continuum mechanics (Lazzarin and 

Tovo, 1996). The failure condition at the crack tip is then derived by applying the TCD to 

these results. 

(3) By equating the failure conditions from steps (1) and (2), an analytical expression 

for the critical condition in which the fracture occurred at both the crack tip and the central 
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region can be obtained. This formula can be used to determine the geometry and loading 

angles required for satisfying the special central failure condition. 

(4) Finally, two types of double-cracked flat plate specimens, having different loading 

angles, have been analysed using finite element software ABAQUS. The accuracy of the 

proposed analytical formula is checked by comparing the results obtained from the 

theoretical formulae and the numerical simulations. 

In addition, the following assumptions need to be made prior to the actual derivations: 

(1) The material is taken to be isotropic and elastic. No flaws or voids are considered. 

(2) The line of action of the uniaxial force applied at both ends of the specimen crosses 

the central point of the gauge section. Thus, the gauge section is only subjected to an axial 

force FN and shear force FS, without bending moment. 

(3) The crack length a is much smaller than the half-width of the specimen b, i.e. a<<b. 

This assumption ensures that the stress fields at the crack tip and the center of the 

specimen do not interfere with each other. 

(4) As usual, different equivalent stress measures may be appropriate for different 

materials (e.g. maximum principal stress for brittle materials and Tresca or von Mises’ 

stress for ductile materials). Thus, the maximum principal stress σ1 (for brittle material) and 

von Mises’ stress σ  (for ductile material) are adopted as the stress indices to derive the 

critical loading formulae for specimens made of different materials. 

2.3 Failure condition at central region of the double-cracked flat plate specimen 

According to the classical elastic beam theory, for a double-cracked flat plate specimen 

subjected to in-plane uniaxial tension load FN and pure shear load FS (as shown in Fig.1(b)), 

the distributed normal stress σn and the shear stress τ along the cross-section containing 

the two cracks (i.e. plane y=0) can be expressed as: 
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where, I is the inertia moment of the cross-section containing the two cracks 

( 31
12

(2 2 )I t b a= − ), whereas x1=b-a-x is a conversion coordinate. 

Accordingly, the maximum principal stress 1σ  
and von Mises’ stress σ  at the central 

cross-section (y=0) can be obtained by using the following conversion relationships: 
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From Eqs.(3-4) the maximum principal stress and von Mises’ stress have their 

maximum at the central point of the cross-section (i.e. the point having coordinates (b-a,0) 

as shown in Fig.1(b)): 
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The critical failure condition can be determined by using the relevant material failure 

criteria, which are assumed to be expressed in terms of material ultimate tensile strength 

σUTS: 

1, =center UTSσ σ                                 (7) 

=center UTSσ σ                                  (8) 
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2.4 Linear-elastic stress field at the crack tip 

In order to determine the critical failure condition at the crack tip, the linear elastic 

stress field at the crack tip is required. Many early expressions for the linear elastic stress 

field at the crack tip are available, including those by Inglis (1913), Westergaard (1939) and 

Williams (1957). However, considering that the research results in this study can be 

extended to other more general notched-specimens (will be discussed in Section 4), a 

general closed-form solution for determining the linear elastic stress field at the tip of a 

V-shaped notch with an opening angle equal to 2α (as shown in Fig.2) proposed by 

Lazzarin and Tovo (1996) is adopted here. This analytical solution can be used to 

determine the linear-elastic stress field at the tip of both the V-notch and a crack (the case 

where the opening angle α=0). According to the results in this research, the stress field in 

the vicinity of the V-notch shown in Fig. 2 can be represented as the sum of the stress fields 

due to modes I and II loading, respectively, where the polar stress components at the tip of 

the V-notch under mode I loading can be expressed as 

1
1 1 11

I
1 1 1 1 1

1 1 1

1 1 1

(1 )cos(1 ) cos(1 )
1

(3 )cos(1 ) (1 ) cos(1 )
(1 ) (1 )2

(1 )sin(1 ) sin(1 )

r

r

r K
θ λ

θ

σ λ λ θ λ θ

σ λ λ θ χ λ λ θ
λ χ λπ

τ λ λ θ λ θ

−
 + − +      
      = − − + − − +      + + −       − − +      

    (9) 

whereas the stress components at the tip of the V-notch under mode II loading can be 

written as 

2
2 2 21
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2 2 2 2 2

2 2 2

2 2 2

(1 )sin(1 ) sin(1 )
1

(3 )sin(1 ) (1 ) sin(1 )
(1 ) (1 )2
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r

r
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θ
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−
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  (10) 

In Eqs.(9-10), KI and KII are the mode I and II stress intensity factors, respectively; σθ, στ, τrθ 

are the normal and shear stress components in the polar coordinate system; iλ , iχ (i=1, 2) 

are two parameters which are functions of the opening angle, α. According to the work 
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conducted by Lazzarin and Tovo (1996), the values for parameter iλ  ( 0iλ > ) can be 

obtained as the minimum eigenvalue of the following equations: 

1 1sin( ) sin( ) 0q qλ π λ π+ =               Mode I loading (11) 

2 2sin( ) sin( ) 0q qλ π λ π− =              Mode II loading (12) 

whereas parameter iχ  can be obtained from 

[ ]
[ ]

sin (1 ) / 2
=

sin (1 ) / 2

i

i

i

q

q

λ π
χ

λ π
−

−
+

                             (13) 

Parameter q in Eq.(13) is a coefficient which is used to establish the geometrical 

relationship between the Cartesian coordinate system and the auxiliary curve coordinate 

system as defined by Lazzarin and Tovo (1996), which has the following geometrical 

relations with opening angle 2α: 

2
2q

α
π

= −                                  (14) 

The crack investigated in this study is a special case of V-notch with an opening angle 

2α=0. In this case, the crack tip stress field parameters are q=2, 1λ = 2λ =0.5, 1χ = 2χ =1.0. 

Then, by substituting these parameters into Eq.(9) and (10), the stress components at the 

crack tip under mode I and mode II loading on the plane crossing the two cracks ( =0) can 

be derived as: 

1

2

2

I
xI

K x
σ

π

−

= , 

1

2

2

I
yI

K x
σ

π

−

= , 0xyIτ =         mode I loading (15) 

0xIIσ = , 0yIIσ = , 

1

2

2

II
xyII

K x
τ

π

−

=          mode II loading (16) 

Then, by applying the equivalent conversions to Eqs.(15-16), the stress field at the crack tip 

expressed in terms of maximum principal stress 1,crackσ  and von Mises’ stress crackσ  can 
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be obtained in terms of stress intensity factors KI and KII as 

1

2 2 2
1,

1 1
[( ) ( )] [( ) ( )] 4( ) =

2 2 2

I II
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2 2 1
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3
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π
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In general, the mode I and mode II stress intensity factors, i.e. KI and KII, can be 

expressed as functions of the remote normal stress, the shear stress and the geometry 

correction factor G(a/b): 

I NK aGσ π=                               (19) 

IIK aGτ π=                                (20) 

Then, the general forms for the maximum principal stress, 1,crackσ , and von Mises’ stress, 

crackσ , at the crack tip on the plane crossing the two cracks can be obtained by substituting 

Eqs.(19-20) into Eqs.(17-18): 
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                 (22) 

Eqs.(21-22) are the analytical solutions for the stress fields at the crack tip of the 

double-cracked flat plate expressed in terms of maximum principal stress 1,crackσ  and von 

Mises’ stress crackσ . As it can be seen from Eqs.(21-22), both the maximum principal stress 

and von Mises’ stress at the crack tip can be expressed as polynomial terms of power 
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functions of x, which depend on the geometry (b, t, G), the crack length (a) and the applied 

external loads (FN and FS). When x tends to 0 (i.e. the tip of the crack), both the maximum 

principal stress and von Mises’ stress tend to infinity (stress singularity phenomenon 

caused as described by LEFM), with this holding true irrespective of the magnitude of the 

external loads being applied to the specimen. This stress singularity precludes the direct 

use of the stress value at the crack tip to determine the actual failure condition. 

2.5 Failure conditions at the crack tip 

As discussed in the introduction, the Theory of Critical Distances (TCD) (Taylor, 2007) 

is a local linear elastic failure analysis method, which can be used to overcome the 

ambiguities due to crack-tip stress singularities. According to the integration domains being 

adopted for determining the effective stress, in two-dimensional analysis the different 

formalizations of the TCD are the Point Method (PM), the Line Method (LM) and the Area 

Method (AM). In this study, the PM in the TCD is used to derive the critical failure condition 

at the crack tip of the double-cracked flat plate specimen being investigated, where the 

principle of the PM is illustrated in Fig.3. 

The PM (see Fig.3(b)) is the simplest version of the TCD. The PM postulates that, for a 

cracked specimen subjected to arbitrary external loads (see Fig.3(a)), the failure of the 

cracked specimen being assessed is assumed to occur when the effective stress, σeff, 

determined at a distance L/2 from the crack tip on the straight line experiencing the 

maximum stress gradient, equals the material inherent strength σ0, i.e.: 

( ) 00, / 2 =σ σ θ σ= = =eff r L                          (23) 

In Eqs.(23), σ is the equivalent linear-elastic stress at the crack tip, which can be calculated 

according to one of the classical hypotheses (e.g. Von Mises, Tresca, maximum principal 

stress criterion, etc.), whereas, L and σ0 are the so-called material critical distance and 

inherent strength, respectively. Both L and σ0 are material constants, which are related to 
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the ductility and strength of the material being assessed (Taylor, 2007). The most accurate 

way to determine these two material properties is to conduct experiments on samples 

containing, at least, two different geometrical features (Li et al., 2016; Taylor, 2007; Susmel 

and Taylor, 2008b, 2010b). Fig.4 schematically depicts the specific steps for determining L 

and σ0, where the two stress-distance curves are plotted, in the incipient failure condition, in 

terms of the adopted equivalent stress obtained by testing a sharp and blunt notch, 

respectively. According to the PM, the coordinates of the point at which these two curves 

intersect each other directly gives the values of both L and σ0. 

According to the PM (Eq.(23)), the critical failure condition at the crack tip expressed in 

terms of maximum principal stress, 1,effσ , and von Mises’ stress, effσ , can be obtained as: 

( )
1
2

1

2

1, 1, 03

3
4

( )
2 4( )2

eff crack N S

L
aGL b a

L aG
x F F

b a tb a tL
σ σ σ

 − − 
 = = = + =
−−

           (24) 

( )

1
2 2

2 2

2 2

02 6 22

27
4

( )
2 16( )4

S

N
eff crack

L
aLG b a F

aG FL
x

b a tb a t L
σ σ σ

  − −  
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 
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          (25) 

2.6 Analytical formulae for central failure condition 

In Sections 2.3-2.5, the analytical solutions of the failure conditions at both the central 

region and the crack tip of the double-cracked flat plate specimen have been derived – see 

Eqs.(7-8) and Eqs.(24-25). In order to obtain the special fracture mode in which the crack 

initiates at the center of the specimen rather than the crack tip, we need Eqs.(7-8) as well 

as Eqs.(24-25) being not satisfied at the same time. 

Further, it should be noted that, according to the basic principle of the TCD, the value 

of the ultimate tensile strength σUTS is always less than (for ductile materials) or equal to (for 

classic brittle materials) the material’s inherent strength σ0 (Taylor, 2007; Ameri et al. 2015; 



13 

 

Susmel and Taylor, 2010b; Li et al., 2016; Louks et al., 2016): 

0UTSσ σ≤                                  (26) 

Correspondingly, the special central failure mode can be obtained as long as the effective 

stress
effσ , determined by the TCD at the crack tip, is lower than the peak stress value 

centerσ  at the central point of the specimen during the entire loading process: 

1, 1, 0eff center UTSσ σ σ σ≤ = ≤           for brittle material (27) 

0eff center UTSσ σ σ σ≤ = ≤           for ductile material (28) 

In order to explain the meaning of Eqs.(27-28), Fig.5 shows an example of the 

maximum principal stress distribution at both the crack tip and the central region of the 

double-cracked flat plate specimen having a crack length a=2 mm and a half-width b=40 

mm under a unit tensile-shear load (i.e. FN=1 kN and FS=1 kN). The black solid line in the 

figure is the stress distribution at the central region of the specimen determined by Eq.(3), 

whereas the red solid line is the maximum principal stress distribution at the crack tip 

determined by Eq.(21). It should be noted that since the crack investigated in this study is a 

small crack with the crack length a being much smaller than the specimen half-width b 

(a<<b), the value of geometry correction factor G(a/b) maintains at the well-known 1.12 with 

little variation. Thus, G=1.12 is adopted here and in the following derivations. 

Then, by substituting Eqs.(5-6) and Eqs.(24-25) into Eqs.(27-28) with factor G being 

equal to 1.12, the analytical formula for the special central failure mode can be obtained in 

terms of both the maximum principal stress and the von Mises’ stress. 

For brittle material: 

( ) ( )1
2

1

2
2 2

1, 1,3

3.36
91.12 4

4( ) 42

N S N

eff N S center

L
aL b a

F F Fa
F F

b a t b a tb a tL
σ σ

 − −  + + = + ≤ =
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  (29) 

For ductile material: 
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Since the angle between the uniaxial tension load, FN, and the shear force, FS, is defined as 

β (see Fig.1(a)), namely tanβ=FS/FN, Eq.(29) can be elaborated as 
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3 2

2 2 3 2

9 9 9
tan = -

9

S

N

C CC C C C C CF C

F C C C C
β

+ + −
≥ −

−
              (31) 

where ( )( )21 2.24C a L b a= − − , 
2 3.36
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L
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, ( )2
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Similarly, Eq.(30) can be simplified as 
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≥  
   − − − −       

                (32) 

Eqs.(31-32) are the formulae of the central failure condition for the double-cracked flat 

plate specimen. They indicate that, for a double-cracked specimen with a given specimen 

geometry (a, b) and material length scale (L), the fracture of the double-cracked flat plate 

specimen being investigated will initiate at the central point of cross-section rather than the 

crack tip when the specimen loading angle β exceeds a certain value. This result directly 

proves the existence of interior failure for a cracked-component from a theoretical point of 

view, which is obviously different from the prediction result given by the classical LEFM. 

Further, it should be noted that, despite the critical loading angle formulae derived 

above, an ultimate load is needed for triggering the central failure condition of the specimen. 

According to section 2.3, the critical ultimate load Fu for triggering the central failure 

condition of the double-cracked flat plate specimen can be easily obtained by substituting 

the Eqs.(5-6) into Eqs.(7-8): 
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For brittle material: 
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For ductile material: 
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where βc is the corresponding critical loading angle determined by Eq.(31) and (32). 

2.7 Influence of the specimen geometry and material properties on the critical 

loading angle 

According to Eqs.(31-32), the critical loading angle required for the special central 

failure condition of the double-cracked flat plate specimen can be expressed as a function 

of crack length a, specimen half-width b and the material length parameter L. In order to 

investigate the influence of geometrical parameters a, b and the material parameter L on 

the critical loading angle β, nine double-cracked specimen configurations with different 

crack length a and half-width b were investigated. Three types of crack length, i.e. a=2 mm, 

5 mm and 10 mm, and three types of crack length to specimen half-width ratio a/b, i.e. 

a/b=1/10, 1/15 and 1/20, are adopted. 

Fig.6 shows the relationship between critical loading angle β and critical distance L for 

the investigated nine specimen configurations calculated according to Eq.(32). As it can be 

seen, both the crack length, a, and the material parameter, L, have obvious influences on 

the critical loading angle, β. Their effects can be summarized as follows: 

(1) the required critical loading angle β for satisfying the central failure condition of the 

double-cracked flat plate specimen increases as material critical distance L decreases; 

(2) the crack length has a significant effect on the critical loading angle, β: under the 

same value of L (i.e. for the same adopted material), the critical loading angle β increases 
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with the increase of the crack length a; 

(3) the crack length, a, also has a significant influence on the critical distance, L, 

required for the central failure condition: under the same loading angle β, the value of L for 

central failure condition increases as the crack length increases; 

(4) for configurations with identical crack length, the ratio a/b has insignificant effect on 

both the critical loading angle, β, and the critical distance, L. 

In the meantime, in order to further investigate the influence of geometrical and 

material’s parameters on β-L/a function curves, the abscissa, L, in Eq.(32) and Fig.6 was 

normalized (i.e. by dividing L by a). Correspondingly, a critical loading angle equation 

expressed in terms of the L to a ratio can be obtained as follow 
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 (35) 

where the relationship between the critical loading angle, β, and ratio L/a for the 

investigated nine specimen configurations are shown in Fig.7. 

As it can be seen in Fig.7, the following important aspects need to be highlighted: 

(1) the crack length, a, and ratio a/b has no obvious effects on the β-L/a function. It is 

interesting to see that, the β-L/a function curves for specimens having different crack 

lengths and crack-length to specimen half-width ratio are basically coincident. 

(2) For the investigated nine configurations in this study, Eq.(32) is only valid for the 

regime when ratio L/a<1.255. According to Taylor (2011), ratio L/a, which is also called 

normalised defect size, can be used to assess the detrimental effect of the pre-existing 

crack on the overall behavior of the component: the crack basically has no detrimental 

effect on the overall strength of the specimen when the value of crack length a is far lower 

than that of the material’s critical distance L. Conversely, the crack is damaging and will 
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reduce the overall strength of the specimen when the crack length is far larger than the 

material critical distance, L, where, under such circumstances, the detrimental effect of the 

crack can be quantitatively assessed by using LEFM. Obviously, Eq.(32) predicts the failure 

of the specimen containing the crack with obvious detrimental effect. This result proves 

from a theoretical point of the view that failure of a component with the overall behavior 

controlled by the local behavior at the crack tip may initiate at other material regions far 

away from the crack tip. 

(3) According to Eq.(35), the limit condition of the critical loading angle Eq.(35) is β=0°, 

where, under such circumstances, L/a=G2=1.255. This result indicates that geometry 

correction factor G(a/b) determines the upper boundary of the L to a ratio required for 

triggering the central fracture condition in the double-cracked flat plate specimens. 

3. Numerical verification of the central failure formulae 

This section aims to verify numerically the validity and accuracy of the linear elastic 

stress field formulae (3-4) for the central region, formulae (21-22) for the crack tip and the 

proposed central failure formulae (31-32) for the double-cracked flat plate specimen being 

assessed. For this purpose, two types of double-cracked flat plate specimens, made of 

different materials, were adopted (see Fig.8). The geometric and material parameters of the 

two double-cracked specimens are taken as follows: 

(1) a=2 mm, b=40 mm (a/b=1/20), t=2 mm, L=0.609 mm; 

(2) a=2 mm, b=40 mm (a/b=1/20), t=2 mm, L=2.081 mm. 

According to Eq.(31) and Eq.(32), the critical loading angles for the central failure of the 

above two specimens are β=45° and β=10°, respectively. Thus, the included angles of the 

investigated first and second specimen are set to be 45° and 10°, respectively - see 

Fig.8(a-b). For convenience, the above two specimens will be referred as Specimen-45 and 

Specimen-10 in what follows. 
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The linear-elastic stress fields of these two specimens were post-processed using FE 

software ABAQUS/Standard, assuming a linear-elastic behavior. Two-dimensional plane 

FE models (see Figs.9-10) were solved to determine the relevant linear-elastic stress fields. 

In order to obtain accurate stress fields, the mesh density in the vicinity of the crack tip of 

the specimen was gradually increased, resulting in elements having a size of the order of 

0.01 mm. A uniaxial tension load, F, was applied at the top edge of the specimen, whereas 

the bottom edge of the specimen was fully fixed. 

Figs.11-12 show the stress distributions, under 1 kN, in terms of maximum principal 

stress and von Mises’ stress for the two double-cracked flat plate specimens under 

consideration. As it can be seen, obvious stress concentrations occur at the crack tips of 

the two specimens. On the contrary, compared with the stress field at the crack tip, the 

stress magnitude in the central region of the two specimens is relatively low. 

In order to verify the adopted stress distribution formulae at both the crack tip and the 

center of the specimen, the stress distribution results on the cross-section across the two 

cracks of the two specimens are extracted. Figs.13-14 show the stress results at both the 

crack tip and the central region of specimen-45 and specimen-10 obtained from the 

analytical formulae and the FE analysis, where the black solid lines denote the stress fields 

at crack tip calculated by Eqs.(21-22); the blue solid lines denote the stress distributions at 

center of the specimen calculated by Eqs.(3-4); and the red dash lines denote the results 

obtained from the FE analysis. 

As it can be observed in Figs.13-14, for the investigated two different materials, the 

stress distribution formulae (3-4) and (21-22) can successfully predict the linear elastic 

stress fields at both the central region and the crack tip region of the double-cracked 

specimens. The stress distribution curves predicted by the analytical formulae (blue and 

black solid lines) agree with the numerical simulation results (red dash lines) fairly well for 
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the two investigated regions. Further, in order to quantify the accuracy of the expression 

(3-4) and (21-22), the stress value at the central point of the specimen and the material 

point at a distance of L/2 away from the crack tip were extracted, respectively. The errors of 

formulas (3-4) and (21-22) are calculated according to the following equations: 

, ,

,

T center FEA center

center

T center

σ σ

σ

−
D =                             (36) 

, ,
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T crack FEA crack

crack

T crack

σ σ

σ

−
D =                            (37) 

where, △center and △crack denote the calculated errors of the stress field formulas (3-4) and 

(21-22); σT,center and σFEA,center are the stress values at the central point of the specimen 

calculated via the analytical formulae and numerical simulation, respectively; whereas, the 

σT,crack and the σFEA,crack are the stress values at the point with a distance L/2 away from the 

crack tip calculated via the analytical formulae and the numerical simulation, respectively. 

Table 1 lists the prediction errors of the formula 3-4 and 21-22. As it can be seen from 

the Table, compared with the numerical simulation results, the errors of the adopted four 

analytical formulae are within 7%, which indicates that the adopted stress field formulae 

have high-level accuracy. 

Further, in order to verify the validity of expressions (31-32), i.e. the critical central 

failure condition formulae, the stress values, obtained from the FE analysis, at both the 

central point and the point a distance L/2 away from the crack tip of the two specimens are 

compared with each other. According to the proposed formulae (31-32), under the 

corresponding loading angles (namely 45° and 10°investigated in this Section), the stress 

value at center point should be equal to that at the material point with a distance equal to 

L/2 away from the crack tip irrespective of the external loads being applied. Thus, the 

accuracy of the proposed critical formula can be checked by comparing the stress 

magnitudes at these two points. 
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According to this idea, Figs.13-14 show the stress values at both the central point and 

the material point having a distance L/2 away from the crack tip for the two investigated 

double-cracked flat plate specimens obtained from the FE analysis. As it can be observed, 

the stress values at these two points are very similar: for specimen-45, the magnitudes of 

the maximum principal stress at center and the crack tip obtained from the numerical 

simulation are equal to 9.72 MPa and 9.03 MPa (with a deviation of 7% between each 

other), respectively; whereas, for specimen-10, the magnitudes of von Mises’ stress at 

center and at the crack tip obtained from the numerical simulation are equal to 6.76 MPa 

and 7.05 MPa (with a deviation of 4% between each other), respectively. These results 

demonstrate the validity of the proposed analytical formulae in estimating the central failure 

condition of the double-cracked flat plate specimen under the mixed mode I / mode II 

loading. 

4. Discussion 

4.1 Basic principle for judging the interior failure or notch failure and its extension 

use 

In fact, according to the idea of the PM, the basic principle for judging whether a notch 

failure or an interior failure occurred on a specimen is to determine the position of the 

maximum stress point in the material region having a distance of L/2 away from the 

notch/cracked tip. According to this idea, if the maximum stress point keeps appearing at a 

material region far away from the notch/crack tip throughout the loading process, an interior 

failure will occur on the specimen. Accordingly, the ultimate strength of the specimen can 

be estimated by comparing the stress value obtained at this maximum stress point with the 

corresponding material strength limit, i.e. the σUTS. This principle holds valid for all types of 

notched/cracked specimen irrespective of its complexity of the geometry. 

In this study, the critical central failure condition of the double-cracked flat plate 
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specimen being assessed is just derived based on such a basic principle. As It can be seen, 

under the condition of a<<b, we can easily obtain the linear elastic stress field at both the 

crack tip and central region of the specimen in an analytical way. Then, by ensuring the 

maximum stress point maintains locating at the central point of the specimen, the critical 

loading condition for such an interior failure mode can be obtained. 

Similarly, the principle mentioned above can be also extended to derive the critical 

interior failure condition of other types of notched specimens by following the same 

procedures. However, for such types of specimens, more focus needs to be paid on how to 

accurately obtain the linear elastic stress field in the vicinity of the different notches. In this 

condition, a usage of a general approach for evaluating the stress field at the notch tip 

becomes more convenient. This is also why we use a general solution (i.e. Eqs.(9-14) 

proposed by Lazzarin and Tovo (1996)) rather than the more straightforward classic 

Westergaard formula to determine the stress field at the crack tip, since such a unified 

stress field solution can be directly extended to derive the interior failure condition of other 

types of notches in the future work with more generalization. 

Further, it is worth to mention that the working principle above can be also extended to 

the specimen with a more complex geometry, e.g. a practical engineering component. 

Under such a circumstance, the geometric complexity of the specimen may introduce a 

number of stress concentrations on the surface or the interior region combining with a 

coupled stress fields existed on the specimen, which makes it difficult to obtain the 

analytical solution of the stress field. Under such a circumstance, one can still find the 

maximum stress point on the specimen and obtain an empirical interior failure condition 

formula with the aid of the numerical simulation analysis. 

Finally, it should be noted that the working principle discussed above is established on 

the validity of the PM in the TCD. In other words, for a specific notched specimen being 
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assessed, what degree of the PM can be successfully applied determines the validity of 

such an interior failure mode determination principle. Obviously, the validity of the PM can 

be fully guaranteed for a crack investigated in this study, since the crack is a limit case of a 

notch which would introduce the highest degree of stress gradient in enough area in the 

vicinity of the crack tip (i.e. process zone). However, for a more general blunt notch, what 

extent of notch bluntness determines the invalid limit of the PM needs more works to be 

answered. In fact, the application range of the TCD was discussed in the Taylor ’s research 

(2007), which indicated that the application limit of the TCD depended on the relationship 

between the size of the process zone affected by the stress raiser and the value of material 

critical distance L. However, the specific details of such a topic are obviously beyond the 

scope of this study. 

4.2 Discussion on different failure criteria applied for the crack tip and interior region 

It is worth to mention that, in the process of deriving the interior critical failure condition 

of the double-cracked flat plate specimen, different treatments were applied for the crack tip 

and the central region, respectively. For the crack tip region having a high stress gradient, a 

LEFM based local approach (i.e. the TCD) was used to analyze the failure condition with σ0 

being as the material’s strength limit. On the contrary, the central region of the specimen 

was treated as a plain specimen and the plain specimen's ultimate tensile strength σUTS 

was used as the strength limit for determining the failure condition of the region. In the 

author’s point of view, the adoption of such a different treatment is attributed to the different 

overall failure mode presented by the cracked-specimen: if a notch failure occurs on the 

cracked-specimen, it means that the overall performance of the specimen being assessed 

is controlled by the local material at the crack tip. Under such a condition, a use of local 

approach (i.e. TCD) to determine the overall failure of the specimen is reasonable. On the 

contrary, if an interior failure occurs on the cracked-specimen, it means that the overall 
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performance of the specimen will be no longer controlled by the local material at the crack 

tip region. In other words, the cracked-specimen performs more like a plain specimen with 

its overall behavior transferred from a “local-controlled” mode to a “global-controlled” mode. 

Under such circumstances, the applicability of the TCD becomes invalid, since this theory is 

designed to specifically assess stress raisers rather than un-notched components. In this 

condition, the ultimate tensile stress σUTS, which is usually adopted as the strength limit for 

the un-notched material, should be used to determine the failure condition of the specimen. 

However, there is another point of view on determining the failure condition of the 

cracked-specimen: since the stress magnitude at the interior material region maintains 

higher than that at the notch tip region throughout the loading, the interior material regions 

can be also treated as stress raisers, where, under such a condition, one can apply the 

TCD on all regions, i.e. use the σ0 as the strength limit for all regions, to determine the 

critical failure condition of the specimen. The rationality of such an approach was actually 

discussed in our recent research (Li et al, 2016), which indicated that such an approach 

seemed to provide reasonable results compared with the experiment. However, attention 

must be paid when using this approach since no previous work in this field suggests that 

the internal material region can be regarded as a stress raiser and addressed by using a 

local failure theory, which needs further works to be answered properly. 

Nonetheless, as it can be seen that, even if such an approach is used, it would not 

affect the validity of the critical central failure condition derived in this study, since as long 

as the stress magnitude at the central material region maintains larger than that at the 

crack tip throughout the loading (see Eq.(27-28)), one can ensure that the stress magnitude 

at central material region reaches the material strength limit σ0 earlier than that at the crack 

tip region, which will result in an interior failure occurred on the specimen. The only 

difference caused by such an approach is that the ultimate load of the critical interior failure 
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condition will be changed since the σ0 rather than the σUTS is used as the strength limit for 

the interior material region. In this condition, the ultimate load in Eqs.(33-34) would be 

changed as 

For brittle material: 
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For ductile material: 
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4.3 Size effect on the critical interior failure condition 

According to the critical central failure formula (31-32) derived in this paper, the critical 

interior failure condition of the double-cracked specimen is influenced by an obvious 

specimen size effect (i.e. affected by the relationship between the overall size of the 

specimen, crack length and the value of L). In other words, in order to obtain the interior 

failure mode of the cracked-specimen made of a material having a specific value of L, how 

to choose an appropriate match between the specimen size, flaw size and the value of L 

becomes a key point. 

Taking the double-cracked flat plate specimen designed for numerical validation in 

section 3 as an example, being same as the most material property test specimen, the 

overall size of the specimen and the crack length designed in this study are in an order of 

centimeter and millimeter, respectively. Accordingly, according to the critical loading angle 

formulae 31-32 and Fig.6, by using such a specimen size, the critical interior failure 

condition of different cracked materials with the value of L being in an order of millimeter 

can be easily obtained in a wide loading angle regime. However, when such a specimen 

size is used to obtain the interior failure condition of the cracked-material with a much 
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smaller L value, e.g. the material having a value of L being in an order of micron, the 

situation becomes difficult and unreasonable, since under such a circumstance, the interior 

failure condition of the cracked material being assessed can be only obtained by keeping 

the loading angle of the specimen at a very small area close to the 90 degrees (see Fig.6), 

which would provide a result with a very low resolution. 

One method for solving the problem above is to adjust the relationship between the 

crack length, the overall specimen size and the value of L. In other words, according to 

formulae 31-32, the critical interior failure condition of the cracked material being assessed 

can be easily obtained as long as the three dimensions mentioned above are in the same 

order. Therefore, for a cracked material with a value of L being in an order of micron 

discussed above, the critical interior failure condition of the cracked material can be easily 

obtained in a wide loading angle regime as long as the overall specimen size and crack 

length is reduced in the level of dozens or hundreds of microns. However, such a situation 

would propose a new challenge for machining the specimen. 

4.4 Similarity of this study with the Failure Assessment Diagram method 

It is interesting to find that the contents in this study have a similarity with the Failure 

Assessment Diagram (FAD) method (Milne et al., 1988), which is a useful engineering tool 

for assessing the fracture-plastic collapse of the cracked components. In more details, the 

FAD method provides a simultaneous assessment on both fracture and plastic collapse on 

a cracked component by using two normalized parameters Kr and Lr, which are defined as 
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where KI is the stress intensity factor, KC is the corresponding material fracture toughness 

measured by the stress intensity factor (e.g., KIC, KJC, etc.), P is the applied load on the 

cracked component, PL is the plastic collapse load of the component. According to the idea 

of the FAD, the parameter Kr is used to evaluate the resistance of the component against 

the fracture caused by the flaws, whereas the Lr is used to evaluate the resistance of the 

component against the plastic collapse. Therefore, the overall resistance of the cracked 

component can be assessed through a series of coordinates (Kr, Lr), which constitutes a 

line, i.e. the so-called Failure Assessment Line (FAL), for determining the resistance limit of 

the component. Under such a circumstance, if an assessment point (Kr, Lr), obtained from a 

cracked component is located between the FAL and the Kr-Lr coordinates axes, the 

component can be considered to be safe. Otherwise, a failure would occur on the cracked 

component being assessed. 

According to the idea of the FAD, the integrity assessment on the cracked specimen 

conducted in this study can be performed in a similar way: i.e. using two newly defined 

normalized parameters σr and Fr to assess the notch failure and interior failure occurred on 

the cracked specimen, where the parameters σr and Fr are defined as: 
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where σeff is the effective stress used in the TCD (see Eq.(23)), σ0 is material’s inherent 

strength, F is the applied load on the cracked component, Fu is the ultimate load for the 

interior failure of the specimen (see Eqs.(33-34)). In this way, similar to the principle of the 

FAD, the newly defined parameter σr, which is established based on the PM, can be used 

to evaluate the resistance of the component against the fracture caused by the flaws and 

the parameter Fr can be used to evaluate the resistance of the component against the 
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interior failure. In this way, for different cracked/notched specimens, a new type of σr-Fr 

diagram can be established on the basis of the TCD to assess both the notch failure and 

interior failure of the specimens. 

In fact, according to the results in this study, a direct relationship can be established 

between the PM in the TCD and the parameter Kr used in the FAD method under mode I 

loading condition. In more details, according to Eqs.(17-18) and Eq.(23), a connection 

between the effective stress σeff and the stress intensity KI can be established under mode I 

loading: 
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Meanwhile, the inherent strength σ0 in the TCD has the following relationship with the 

material’s fracture toughness Kc (Taylor, 2007): 
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Then by substituting Eqs.(44) and (46) into Eq.(42), one can find that the newly defined 

parameter σr is actually equal to the parameter Kr in the FAD: 

r rKσ =                                (47) 

This result is very interesting since it provides a new version of the FAD for assessing the 

integrity of cracked/notched specimen considering the advantages of the TCD. However, it 

should be noted, the relationship between the σr and Kr above is only limited to the mode I 

loading condition. For an in-plane mixed mode loading, a direct relationship between σ0 and 

Kmc, i.e. the fracture toughness considering the mode II loading effect, is missing. 

Nonetheless, as it can be seen that the newly derived σr-Fr diagram can work well for the 
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cracked-specimen under the mixed-mode loading conditions, which provides a new tool for 

assessing the integrity of the cracked/notched specimens. 

4.5 Suggestions for experimental validation 

Obviously, the theoretical results in this study would benefit from a further experimental 

validation. However, compared with the theoretical deduction, more practical factors need 

to be considered in the experimental validation to ensure the accurate acquisition of the 

interior failure mode being assessed, where more cares should be paid on the choice of an 

appropriate test material, an accurate calibration of material’s properties in the TCD and a 

reasonable design on the specimen geometry. These works will be considered in our 

follow-up research. 

5. Conclusions 

This paper uses the linear elastic Theory of Critical Distances, LEFM and standard 

beam theory to derive a failure condition of a special central fracture mode occurring in 

classical double-cracked flat plate specimens subjected to mixed mode I and mode II 

loading. The influence of the crack length, specimen geometry and material parameters on 

the critical loading angle for such a central fracture mode is fully investigated. In addition, 

linear elastic stress analyses were conducted on two double-cracked specimens made of 

different materials and having different loading angles using finite element software 

ABAQUS/Standard. The proposed analytical formulae were verified by comparing the 

results obtained from both the theoretical formulae and the numerical simulations. The 

main conclusions in this study can be summarized as follows: 

(1) The results in this study demonstrate the possibility of interior fracture mode on the 

cracked-component from a theoretical point of view. According to the results in this paper, 

for the classical double-cracked flat plate specimen with a given geometry and material 

property, under a certain in-plane loading angle, fracture in a double-cracked flat plate 
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specimen would start at the central point, not at the crack tips. 

(2) The material’s critical distance L and crack length a have a significant effect on the 

critical loading angle of the central failure condition of the double-cracked flat plate 

specimen. On one hand, for the specimens containing the same crack length, the critical 

loading angle required for the central fracture mode decreases with the increase of the 

material’s critical distance. On the other hand, when the investigated material is identical 

(i.e. having the same value of critical distance L), the critical loading angle for central 

fracture mode of the specimen increases with the increase of the crack length. 

(3) For specimen configurations with identical crack length, the crack-length to 

specimen half-width ratio a/b has insignificant effects on the critical loading angle β for the 

central fracture mode. 

(4) The results in this study provide a reference for derivation of the analytical formula 

of the interior failure mode for other types of cracked/notched specimens. 

(5) The results in this study would benefit from further experimental validations. 
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Tables 

Table 1 Prediction error of the formulae used for estimating the stress field at crack tip and 

central region of the specimen  
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Figures 

 

Fig.1 Geometry and loading conditions of the double-cracked flat plate specimen 

 

 

Fig.2 V-shaped notch (with an opening angle 2α) investigated by Lazzarin and Tovo (1996) 
and the local coordinate system located at the crack tip 

 

 

 

Figure(s)
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Fig.3 Local coordinate system located at the crack tip of the cracked component (a); the 
working principle of the Point Method (b). 

 

Fig.4 Determination of the material critical distance L and inherent strength σ0 through two 
linear-elastic stress-distance curves generated by testing two notched specimens with 

different notch sharpness under nominal uniaxial loading. 
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Fig.5 The critical condition for central fracture mode of the double-cracked flat plate 
specimen 

 

Fig.6 The relationship between the central failure critical loading angle β and the critical 
distance L for the investigated nine configurations 

 

Fig.7 The relationship between the central failure critical loading angle β and the ratio L/a 
for the investigated nine configurations 
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(a) The geometry of the specimen-45 (the angle between the specimen axis and loading 
axis is 45°) 

 

(b) The geometry of the specimen-10 (the angle between the specimen axis and loading 
axis is 10°) 

Fig.8 The geometry of the double-cracked flat plate specimen investigated in this study 
(dimensions in millimeter) 
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Fig.9 The finite element model for the double-cracked flat plate specimen-45 

 

 

Fig.10 The finite element model for the double-cracked flat plate specimen-10 
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Fig.11 The maximum principal stress distribution at the gauge section and crack tip of the 
specimen-45 under unit tension load (1 kN) 

 

 

Fig.12 The von Mises’ stress distribution at the gauge section and crack tip of the 
specimen-10 under unit tension load (1 kN) 
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Fig.13 The maximum principal stress distribution along the cross-section of the 
specimen-45 under unit tension load (1 kN) 

 

 

Fig.14 The von Mises’ stress distribution along the cross-section of the specimen-10 under 
unit tension load (1 kN) 

 


