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MULTIPLICITY BOUNDS IN PRIME CHARACTERISTIC

MORDECHAI KATZMAN AND WENLIANG ZHANG

Dedicated to Gennady Lyubeznik on the occasion of his sixtieth birthday

Abstract. We extend a result by Huneke and Watanabe ([HW15]) bounding
the multiplicity of F -pure local rings of prime characteristic in terms of their
dimension and embedding dimensions to the case of F -injective, generalized
Cohen-Macaulay rings. We then produce an upper bound for the multiplic-
ity of any local Cohen-Macaulay ring of prime characteritic in terms of their
dimensions, embedding dimensions and HSL numbers. Finally, we extend
the upper bounds for the multiplicity of generalized Cohen-Macaulay rings in
characteristic zero which have dense F -injective type.

1. Introduction

In [HW15], Huneke and Watanabe proved that, if R is a noetherian, F -pure
local ring of dimension d and embedding dimension v, then e(R) ≤

(

v
d

)

where e(R)
denotes the Hilbert-Samuel multiplicity of R. The following was left as an open
question in [HW15, Remark 3.4]:

Question 1.1 (Huneke-Watanabe). Let R be a noetherian F -injective local ring
with dimension d and embedding dimension v. Is it true that e(R) ≤

(

v
d

)

?

In this note, we answer this question in the affirmative when R is generalized
Cohen-Macaulay.

Theorem 1.1. Let R be a d-dimensional noetherian F -injective generalized Cohen-

Macaulay local ring of embedding dimension v. Then

e(R) ≤

(

v

d

)

.

Using reduction mod p, one can prove an analogous result for generalized Cohen-
Macaulay rings of dense F -injective type in characteristic 0, cf. Theorem 5.2.

We also generalize these result to Cohen-Macaulay, non-F -injective rings as fol-
lows.

Definition 1.2 (cf. section 4 in [Lyu97]). Let A be a commutative ring and let
H be an A-module with Frobenius map θ : H → H (i.e., an additive map such
that θ(ah) = apθ(h) for all a ∈ A and h ∈ H). Write NilH = {h ∈ H | θeh =
0 for some e ≥ 0}. The Hartshorne-Speiser-Lyubeznik number (henceforth abbrevi-

ated HSL number) is defined as

inf{e ≥ 0 | θeNilH = 0}.

W.Z. is partially supported by NSF grants DMS #1606414 and DMS #1752081.

1

http://arxiv.org/abs/1804.11288v2


2 MORDECHAI KATZMAN AND WENLIANG ZHANG

The HSL number of a local, Cohen-Macaulay ring (R,m) is defined as the HSL

number of the top local cohomology module HdimR
m (R) with its natural Frobenius

map.

For artinian modules over a quotient of a regular ring, HSL numbers are finite.
([Lyu97, Proposition 4.4]).

Without the F -injectivity assumption, we have the following upper bound in the
Cohen-Macaulay case which involves the HSL number of R.

Theorem 1.2 (Theorem 3.1). Assume that (R,m) is a reduced, Cohen-Macaulay

noetherian local ring of dimension d and embedding dimension v. Let η be the HSL

number of R and write Q = pη. Then

e(R) ≤ Qv−d

(

v

d

)

.

This bound is asymptotically sharp as shown in Remark 3.2.

2. Bounds on F -injective rings

For each commutative noetherian ring R, let Ro denote the set of elements of R
that are not contained in any minimal prime ideal of R.

Remark 2.1. If R is a reduced noetherian ring, then each c ∈ Ro is a non-zero-
divisor.

Given any local ring (R,m), we can pass to S = R[x]mR[x] which admits an
infinite residue field: this does not affect the multiplicity, dimension, embedding
dimension and Cohen-Macaulyness (cf. [HS06, Lemma 8.4.2]). In addition, since S

is a faithfully flat extension of R, Hi
mS(S) = Hi

m(R) ⊗R S and, if φi : H
i
m(R) →

Hi
m(R) is the natural Frobenius map induced by the Frobenius map r 7→ rp on R,

then the natural Frobenius map on Hi
mS(S) takes an element a⊗xα to φi(a)⊗xαp.

Therefore, passing to S preserves HSL numbers (and hence also F -injectivity).
Therefore, for the purpose of seeking an upper bound of multiplicity, we may assume
that that all mentioned local rings (R,m) have infinite residue fields; consequently,
m admits a minimal reduction generated by dimR elements (cf. [HS06, Proposition
8.3.7]).

We begin with a Skoda-type theorem for F -injective rings which may be viewed
as a generalization of [HW15, Theorem 3.2].

Theorem 2.2. Let (R,m) be a commutative noetherian ring of characteristic p
and let a be an ideal that can be generated by ℓ elements. Assume that each c ∈ Ro

is a non-zero-divisor. Then

aℓ+1 ⊆ a
F ,

where aℓ+1 is the integral closure of aℓ+1 and aF the Frobenius closure of a.

Proof. For each x ∈ aℓ+1 pick c ∈ Ro such that for N ≫ 1, cxN ∈ a(ℓ+1)N ([HS06,
Corollary 6.8.12]). Note that c is a non-zero-divisor by our assumptions. We have
cxN ∈ c(a(ℓ+1)N : c) ⊆ cR ∩ a(ℓ+1)N . An application of the Artin-Rees Lemma
gives a k ≥ 1 such that cxN ∈ c a(ℓ+1)N−k for all large N , and so xN ∈ a(ℓ+1)N−k

for all large N . For any large enough N = pe we have xpe

∈ a[p
e], i.e., x, and hence

ad+1 is in the Frobenius closure of a. �
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Corollary 2.3. Let (R,m) be a d-dimensional noetherian local ring of characteristic

p. Assume that m admits a minimal reduction J . Then

(a) md+1 ⊆ md+1 = Jd+1 ⊆ JF , and

(b) e(R) ≤
(

v
d

)

+ ℓ(JF /J).

Proof. Since md+1 ⊆ md+1 = Jd+1, (a) follows from Theorem 2.2.

For part (b), since Jd+1 ⊆ JF and J is generated by d elements, we have
ℓ(R/JF ) ≤

(

v
d

)

(as in the proof of [HW15, Theorem 3.1]). Then

e(R) ≤ ℓ(R/J) = ℓ(R/JF ) + ℓ(JF /J) ≤

(

v

d

)

+ ℓ(JF /J).

�

Proof of Theorem 1.1. Let R̂ denote the completion of R. Then R is F -injective
and generalized Cohen-Macaulay if and only if R̂ is so, and e(R) = e(R̂). Hence
we may assume that R is complete. Since R is F -injective, it is reduced ([SZ13,
Remark 2.6]) and hence each c ∈ Ro is a non-zero-divisor by Remark 2.1. It is
proved in [Ma15, Theorem 1.1] that a generalized Cohen-Macaulay local ring is
F -injective if and only if every parameter ideal is Frobenius closed. Let J denote
a minimal reduction of m, then JF = J . Our theorem follows immediately from
Corollary 2.3. �

3. Bounds on multiplicity using HSL numbers

Theorem 3.1. Assume that (R,m) is a reduced, Cohen-Macaulay noetherian local

ring of dimension d and embedding dimension v. Let η be the HSL number of R
and write Q = pη. Then e(R) ≤ Qv−d

(

v
d

)

.

Proof. We may assume that R is complete since e(R) = e(R̂). Hence m admits
a minimal reduction J (generated by d elements). We have e(R) = ℓ(R/J), and

Theorem 2.2 shows that md+1 ⊆ JF . Now
(

JF
)[Q]

= J [Q] for Q = pη hence
(

md+1
)[Q]

⊆ J [Q].
Extend a set of minimal generators x1, . . . , xd of J to a minimal set of generators

x1, . . . , xd, y1, . . . yv−d of m. Now R/J [Q] is spanned by monomials

xγ1

1 . . . xγd

d yα1Q+β1

1 . . . y
αv−dQ+βv−d

v−d

where 0 ≤ γ1, . . . γd, β1, . . . , βv−d < Q and 0 ≤ α1+ · · ·+αv−d < d+1. The number
of such monomials is Qv

(

v
d

)

and so ℓ(R/J [Q]) ≤ Qv
(

v
d

)

.

Note that as J is generated by a regular sequence, ℓ(R/J [Q]) = Qdℓ(R/J) and
we conclude that

ℓ(R/J) = ℓ(R/J [Q])/Qd ≤ Qv−d

(

v

d

)

.

�

Remark 3.2. The next family of examples shows that the bound in Theorem 3.1 is
asymptotically sharp.

Let F be a field of prime characteristic p, let n ≥ 2, and let S be F[x1, . . . , xn].
Let m = (x1, . . . , xn)S, and let E denote the injective hull of the residue field of
Sm.
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Define f =
∑n

i=1 x
p
1 . . . x

p
i−1xix

p
i+1 . . . x

p
n and h = x1 . . . xn−1. We claim that f

is square-free: if this is not the case write f = rαs where r is irreducible of positive
degree, and α ≥ 2. Let ∂ denote the partial derivative with respect to xn. Note
that ∂f = hp and so

hp = αrα−1(∂r)s + rα(∂s) = rα−1 (α(∂r)s + r(∂s)) .

We deduce that r divides h, but this would imply that x2
i divides all terms of f for

some 1 ≤ i ≤ n− 1, which is false. We conclude that S/fS is reduced.
Let R be the localization of S/fS at m. We compute next the HSL number η

of R using the method described in sections 4 and 5 in [Kat08]. It is not hard to
show that Hn−1

m (R) ∼= annE f where E = Hn
m(S), and that, after identifying these,

the natural Frobenius action on annE f is given by fp−1T where T is the natural
Frobenius action on E.

To find the HSL number η of Hn−1
m (R) we readily compute I1(f) (cf. [Kat08,

Proposition 5.4]) to be the ideal generated by {x1 . . . xi−1xi+1 . . . xn | 1 ≤ i ≤ n}
and

I2(f
p+1) = I1 (fI1(f))

=

n
∑

i=1

I1
(

i−1
∑

j=1

xp+1
1 . . . xp+1

j−1x
2
jx

p+1
j+1 . . . x

p+1
i−1 x

p
i x

p+1
i+1 . . . xp+1

n

+ xp+1
1 . . . xp+1

i−1xix
p+1
i+1 . . . xp+1

n

+
n
∑

j=i+1

xp+1
1 . . . xp+1

i−1 x
p
i x

p+1
i+1 . . . xp+1

j−1x
2
jx

p+1
j+1 . . . x

p+1
n

)

= I1(f)

and we deduce that η = 1.
We now compute

Γn,p :=
deg f

(

n
n−1

)

pη
=

(n− 1)p+ 1

np
.

We have limn→∞ Γn,p = 1 and limp→∞ Γn,p = (n − 1)/n, so we can find values of
Γn,p arbitrarily close to 1.

4. Examples

The injectivity of the natural Frobenius action on the top local cohomology
Hd

m(R) does not imply e(R) ≤
(

v
d

)

as shown by the following example.

Example 4.1. Let S = Z/2Z[x, y, u, v], let m be its ideal generated by the vari-
ables, define I = (v, x) ∩ (u, x) ∩ (v, y) ∩ (u, y) ∩ (y, x) ∩ (v, u) ∩ (y − u, x − v) =
(xv(y − u), yu(x− v), yuv(y − u), xuv(x− v)), and let R = S/I: this is a reduced
2-dimensional ring.

We compute the following graded S-free resolution of I

0 // S(−6)
B

// S4(−5)
A
// S2(−3)⊕ S2(−4) // I // 0
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where

A =









u(x− v) yu 0 0
0 0 xv v(y − u)
0 −x 0 v − x

u− y 0 −y 0









, B =









y
v − x
u− y
x









and note that R has projective dimension 3, hence depth 1 and so it is not Cohen-
Macaulay. Also, we can read the Hilbert series of R from its graded resolution and
we obtain

1− 2t3 − 2t4 + 4t5 − t6

(1− t)4
=

1 + 2t+ 3t2 + 2t3 − t4

(1 − t2)

and so the multiplicity of R is 1 + 2 + 3 + 2 − 1 = 7 exceeding
(

4
2

)

= 6 (cf. [HH11,
§6.1.1].)

Note that R is not F -injective, but the natural Frobenius action on the top local
cohomology module is injective.

From the proof of Theorem 1.1, we can see that if a minimal reduction of the
maximal ideal in an F -injective local ring R is Frobenius closed then the bound
e(R) ≤

(

v
d

)

will hold. Hence we may ask whether minimal reductions would be
Frobenius-closed in such rings (cf. Theorem 6.5 and Problem 3 in [QS17]). However,
the following example shows this not to be the case.

Example 4.2. Let S = Z/2Z[x, y, u, v, w], let m be its ideal generated by the
variables and let I1 = (x, y)∩(x+y, u+w, v+w), I2 = (u, v, w)∩(x, u, v)∩(y, u, v) =
(u, v, xyw), and I = I1 ∩ I2. Fedder’s Criterion [Fed83, Proposition 1.7] shows that
S/I1, S/I2 and S/(I1 + I2) are F -pure, and [QS17, Theorem 5.6] implies that S/I
is F-injective. Also, S/I is almost Cohen-Macaulay: it is 3-dimensional and its
localization at m has depth 2.

Its not hard to check that the ideal J generated by the images in S/I of w, y +
v, x+ u is a minimal reduction. However JF 6= J : while v2 /∈ J , we have

v4 = xyw2 + v2(y + v)2 + yvw(x + y) + (v + w)(y2v + xyw),

hence v2 ∈ JF \ J .

5. Bounds in Characteristic zero

Throughout this sectionK will denote a field of characteristic zero, T = K[x1, . . . , xn],
R will denote the finitely generated K-algebra R = T/I for some ideal I ⊆ T , and
m = (x1, . . . , xn)R; d and v will denote the dimension and embedding dimension,
respectively, of Rm. We also choose y = y1, . . . , yd ∈ m whose images in Rm form a
minimal reduction of mRm.

We may, and do assume that the only maximal ideal containing y is m. Other-
wise, if m1, . . . ,mt are all the maximal ideals distinct from m which contain y, we
can pick f ∈ (m1 ∩ · · ·∩mt)\m, and now the only maximal ideal containing y in Rf

is mRf . We may now replaceR with R′ = K[x1, . . . , xn, xn+1]/I+〈xn+1f−1〉 ∼= Rf

and since Rm = (Rf )m we are not affecting any local issues.
The main tool used in this section descent techniques described in [HH06]. We

start by introducing a flavour of it useful for our purposes.

Definition 5.1. By descent objects we mean

(1) a finitely generated K-algebra R as above,
(2) a finite set of finitely generated T -modules,
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(3) a finite set of T linear maps between T -modules in (2),
(4) a finite set of finite complexes involving maps in (3),

By descent data for these descent objects we mean

(a) A finitely generated Z-subalgebra A of K, TA = A[x1, . . . , xn], IA ⊆ TA

such that with RA = TA/IA
• RA ⊆ R induces an isomorphism RA ⊗A K ∼= R⊗A K = R, and
• RA is A-free.

(b) For each M in (2), a finitely generated free A-submodule MA ⊆ M such
that this inclusion induces an isomorphism MA ⊗A K ∼= M ⊗A K = M .

(c) For every φ : M → N in (3) an A linear map φA : MA → NA such that
• φA ⊗ 1 : MA ⊗A K → NA ⊗A K is the map φ, and
• Imφ, Kerφ and Cokerφ are A-free.

(d) For every homological complex

C• = . . .
∂i+2
−−−→ Ci+1

∂i+1
−−−→ Ci

∂i−→ . . .

in (4), an homological complex

CA• = . . .
(∂i+2)A
−−−−−→ (Ci+1)A

(∂i+1)A
−−−−−→ (Ci)A

(∂i)
−−→ . . .

such that Hi(CA ⊗A K) = Hi(CA)⊗A K. For every cohomological complex
in (4), a similar corresponding contruction.

Descent data exist: see [HH06, Chapter 2].
Notice that for any maximal ideal p ⊂ A, the fiber κ(p) = A/p is a finite field.

Given any property P of rings of prime characteristic, we say that R as in the
definition above as dense P type if there exists descent data (A,RA) and such that
for all maximal ideals p ⊂ A the fiber RA ⊗A κ(p) has property P.

Notice also that for any complex C of free A modules where the kernels and
cokernels of all maps are A-free (as in Definition 5.1(c) and (d)), Hi(C⊗A κ(p)) =
Hi(C)⊗A κ(p).

The main result in this section is the following theorem.

Theorem 5.2. If Rm is Cohen-Macaulay on the punctured spectrum and has dense

F -injective type, then e(Rm) ≤
(

v
d

)

.

Lemma 5.3. There exists descent data (A,RA) for R with the following properties.

(a) y1, . . . , yd ∈ RA,

(b) for all maximal ideals p ⊂ A the images of y1, . . . , yd in Rκ(p) are a minimal

reduction of mRκ(p),

(c) if Rm is Cohen-Macaulay on its punctured spectrum, so is Rκ(p) for all

maximal ideals p ⊂ A.
(d) if Rm is unmixed, so is Rp for all maximal ideals p ⊂ A.

Proof. Start with some descent data (A,RA) where A contains all K-coefficients
among a set of generators g1, . . . , gµ of I, IA is the ideal of A[x1, . . . , xn] generated
by g1, . . . , gµ and RA = A[x1, . . . , xn]/IA. Let x denote (x1, . . . , xn). For (a)
write yi = Qi(x1, . . . , xn) + I for all 1 ≤ i ≤ d and extend A to include all the
K-coefficients in Q1, . . . , Qd.

Assume that ms+1 ⊆ yms for some s. Write each monomial of degree s+1 in the
form r1(x)Q1(x)+· · ·+rd(x)Qd(x)+a(x) where r1, . . . , rd are polynomials of degrees
at least s and a(x) ∈ I; enlarge A to include all the K-coefficients of r1, . . . , rd, a.
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With this enlarged A we have (xRA)
s+1 ⊆ (yRA)(xRA)

s and tensoring with any
κ(p) gives (xRκ(p))

s+1 ⊆ (yRκ(p))(xRκ(p))
s.

If Rm is Cohen-Macaulay on its punctured spectrum, then we can find a lo-
calization of R at one element whose only point at which it can fail to be non-
Cohen-Macaulay is m. After adding a new variable to R as at the beginning of this
section, we may assume that the non-Cohen-Macaulay locus of R is contained in
{m}. The hypothesis in (c) is now equivalent to the existence of a k ≥ 1 such that

mk ExtiT (R, T ) = 0 for all ht I < i ≤ n. Let F be a free T -resolution of R. Include
m, F and C = Hom(F, T ) in the descent objects. Now, with the corresponding
descent data, FA is a TA-free resolution of RA. Localize A at one element, if neces-
sary, so that mk

A ExtiTA
(RA, TA) is A-free for all ht I < i ≤ n. Fix any ht I < i ≤ n;

we have

ExtiTA
(RA, TA)⊗A K = Hi(Hom(FA, TA))⊗A K = Hi(CA)⊗A K = Hi(C)

and hence mk
A ExtiTA

(RA, TA) ⊗A K = 0 so mk
A ExtiTA

(RA, TA) = 0. Now for any

maximal ideal p ⊂ A, mk
κ(p) Ext

i
Tκ(p)

(Rκ(p), Tκ(p)) = 0, and hence Rκ(p) is Cohen-

Macaulay on its punctured spectrum.
The last statement is [HH06, Theorem 2.3.9].

�

Proof of Theorem 5.2. Using [BH93, Theorem 4.6.4] we write e(Rm) = χ(y;Rm),
and using the fact that R was constructed so that m is the only maximal ideal

containing y, we deduce that e(Rm) = χ(y;R) =
∑d

i=0(−1)iℓR Hi(y, R). We add
to the descent objects in Lemma 5.3 the Koszul complex K•(y;R) and extend the
descent data in Lemma 5.3 to cater for these.

For all 0 ≤ i ≤ d we have Hi(y;R) ∼= Hi(y;RA) ⊗A K and ℓ (Hi(y;R)) =
rankHi(y;RA).

Pick any maximal ideal p ⊂ A. We have Hi(y;RA)⊗A κ(p) ∼= Hi(y;Rκ(p)).
Note that that Hi(y;Rκ(p)) is only supported at mRκ(p). Otherwise, we can

find an x ∈ mRκ(p) such that 0 6= Hi(y;Rκ(p))x ∼= Hi(y;RA)x ⊗A κ(p) , hence
Hi(y;RA)x 6= 0 and (Hi(y;RA) ⊗A K)x ∼= Hi(y;R)x = 0, contradicting the fact
that SuppHi(y;R) ⊆ {m}.

Now

e((Rκ(p))m) = χ(y; (Rκ(p))m) = χ(y;Rκ(p))

=

d
∑

i=0

(−1)iℓR Hi(y, Rκ(p))

=

d
∑

i=0

(−1)i rankHi(y, RA)

and so Theorem 1.1 implies that e(Rm) = e((Rκ(p))m) ≤
(

v
d

)

.
�

Remark 5.4. In [Sch09] it is conjectured that being a K-algebra with dense F -
injective type is equivalent to being a Du Bois singularity. Recently, the multiplicity
of Cohen-Macaulay Du Bois singularities has been bounded by

(

v
d

)

(see [Shi17]) and
hence the results of this section provide further evidence for the conjecture above.
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