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The elliptic potential Korteweg-de Vries lattice system is a multi-component exten-
sion of the lattice potential Korteweg-de Vries equation, whose soliton solutions are
associated with an elliptic Cauchy kernel (i.e., a Cauchy kernel on the torus). In this
paper we generalize the class of solutions by allowing the spectral parameter to be
a full matrix obeying a matrix version of the equation of the elliptic curve, and for
the Cauchy matrix to be a solution of a Sylvester type matrix equation subject to this
matrix elliptic curve equation. The construction involves solving the matrix elliptic
curve equation by using Toeplitz matrix techniques, and analysing the solution of
the Sylvester equation in terms of Jordan normal forms. Furthermore, we consider
the continuum limit system associated with the elliptic potential Korteweg-de Vries
system, and analyse the dynamics of the soliton solutions, which reveals some new
features of the elliptic system in comparison to the non-elliptic case. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4977477]

l. INTRODUCTION

The elliptic lattice potential Korteweg-de Vries KAV (elpKdV) system is a two-parameter exten-
sion of the lattice potential KdV equation which arises naturally by generalising the relevant Cauchy
kernel, underlying the solutions structure, to a Cauchy kernel on the torus, i.e., the one where the
spectral parameter takes values on an elliptic curve. This leads to the following multi-component
lattice system:'

@+b+u-)a-b+ia-m=d>-b*+gG-9G -9, (1.1a)
G- )@ — ) =[(a+ufs — (b +usTs - [(a—1)5 - (b—0)5]s, (1.1b)
G=3)@ —w)=[(a—T)s+ (b +T)515 - [(a+ 75 + (b - W)s]5, (1.1¢)
(a+u—%)(a—'ﬁ+%):a2—R(s§), (1.1d)
(b +u-— %)(b s %) = b% — R(s5). (1.1e)

This is a coupled set of partial difference equations for dependent variables u = uy, 1, § = Sy m, W = Wi
for discrete variables, where the accents denote shifts, e.g. (1.4) and where a, b are parameters associ-
ated with those lattice shifts. A related continuous elliptic system is the elliptic potential Korteweg-de
Vries KdV (epKdV) system

248y 28k
51 = 45,y + 65, [R(s%) — A2 — 225 _ 2oy (1.2a)
S S
6
Ar = 4A e — 6A2A, + 6AR(s%) — %(R(sz))x, (1.2b)

with A = —u + % derived in the same paper. Here R(x) is associated with the elliptic curve
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1
Y =R(x) =~ + 3e; + gx, (1.3)
X

where e, g € C are moduli of the elliptic curve. In Equation (1.1) we use the conventional tilde-hat
notations to express shifts with respect to discrete variables, e.g.,

uiun,ma uiurwl,m’ uiun,erl, uiun+l,m+l- (14)

The direct linearisation approach used in Ref. 1 leads to a description in terms of an infinite order
matrix U, from which closed form equations for the entries of U are derived yielding nonlinear lattice
equations (see Refs. 1-4). A special class of soliton type solutions was presented in terms of elliptic
Cauchy matrices.

In the present paper, we will derive a novel class of solutions of the above two elliptic systems
using a generalization of the Cauchy matrix approach in terms of spectral parameters which are
full matrices, and where the Cauchy kernel is a solution of a Sylvester type matrix equation. The
scalar Cauchy matrix approach was successfully applied in Refs. 5 and 6 to derive integrable lattice
equations and to analyse their underlying structures. Subsequently, the generalized Cauchy matrix
approach, involving solutions of Sylvester type matrix equations, was used to generate a far more
general class of solutions for those same systems.”-® The latter is the approach we adopt in the current
paper in the case of elliptic systems (1.1) and (1.2).

The Cauchy matrix approach is purely an algebraic procedure which enables us to obtain var-
ious integrable equations, their explicit soliton solutions, and their Lax pairs. In the Cauchy matrix
approach, the Sylvester equation

AX -XB=C (1.5)
can be viewed as a starting point.”® The matrix X is a dressed Cauchy matrix (see the factorization
(3.13a)) and is used to introduce 7-function.>’

In the present paper we start from the following Sylvester equation:

kM + Mk =rc” — gK 're"K7!, (1.6)
where r=(ry,1,..., rN)T, c=(c1,c2,..., CN)T, and k, K € Cy « y obey the matrix relation
K*=K +3el + gK~', kK =Kk, (1.7

in which 7 is the N X N unit matrix. Based on the above Sylvester equation, the dispersion relations
for the elpKdV system are defined by

(al — k)r=(al +kyr, (bI —k)r= (bl +k)r, (1.8)
and for the epKdV system by
ro=kr, r;= 4k3r, cf =cTk, c,T =471, (1.9)

In Sec. II, we will focus on system (1.7) as a full matrix equation governed by an elliptic curve
(1.3). In Sec. III, we will concentrate on the Sylvester equation (1.6) and the scalar functions N2
defined in (3.23). Explicit solution M of (1.6) will be given, distinguishing between the cases where k
is either diagonal or of Jordan block form, as well as on their combinations. Solutions of the elpKdV
and epKdV systems are consequently obtained, in terms of a generic element SU+) composed in an
infinite order matrix S. The entries S satisfy some recurrence relations which can be viewed as
discrete equations of SU/) defined in Z x Z and which will play a crucial role in deriving the continuous
epKdV system. In Secs. IV and V we then derive the elpKdV system and epKdV system together
with their Lax pairs, respectively. Some analysis of the dynamics of the solutions is presented in
Sec. VI, which illustrates the novel aspects of the solutions. In Sec. VII we discuss continuum limits
of the elpKdV system, and draw some conclusions in Sec. VIII. In Appendix A we list properties of
lower triangular Toeplitz matrices which play important roles in our paper.

Il. POINTS ON THE ELLIPTIC CURVE: PARAMETRIZATION AND SELECTION
A. Scalar case

Consider the elliptic curve
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1 g
2 _ )= S
k —R(K)—K+361+K 2.1
which is the elliptic curve (1.3). The discrete plane wave factor is defined as
a+ ki "b+ k,‘ m 0
= - ) 2.2
P (a—ki)(b—k,») Pi 22)

where p? is a phase factor and k; together with K; obeys the elliptic curve (2.1), i.e.,

k?:K,»+3e1+% i=1,2,...,N. 2.3)
i

In the case of classical soliton solutions (see Refs. 6 and 9), {k;} play the role of wave numbers,
which should be distinct so that they can represent different solitons. Since k; and K; are coupled
through the elliptic curve (2.3) (say, both k; and —k; correspond to the same K;), we consequently
require that they can identify each other, i.e.,

kl'#kj < K #K;. 2.4

Note that for the arbitrary two points (k;,K;) and (k;,K;) on the elliptic curve (2.1) we always have
the relation
KiKj—g

(ki + kj) (ki — kj) = (K; — K}) TKJ

(2.5)

This means that if we take
(k; + kj)(K,I{J -2 %0, 2.6)
then (2.4) is guaranteed. Equation (2.6) is the criteria that we select points from the elliptic curve
(2.1). Consequently, in (2.6) k; # 0.
The elliptic curve (2.1) can be parameterized using Weierstrass’s elliptic function @(«) as follows
(cf. Ref. 1):

9’ (k)
K=¢pk)-e, k=——""—, (2.7a)
¥ 2(9() — e1)
e1=p(w), g=(er —ex)er —e3), (2.7v)
where e; = p(w + w’), e3 = p(w’), and w and w’ are respectively the half periods of ¢(«x).
Under the parametrization (2.7), for the points on the curve (2.1) we have
9’ (k)
Ki=p(ki) —e1, ki=—""—. (2.8)
P B 0tk — en)
Then the criteria (2.6) can alternatively be described through the following requirements for «;:
KeD' =D\ {0,w, v, w+w'}, (2.9a)
(p(ki) —e(p(kj) —e) #g, (2.9b)
Ki +Kj# 0, (2.9¢)

fori,j=1,2,...,N, where D is a fundamental period parallelogram ABCD as described in Fig. 1.
We note that here and henceforth when we talk about «; + «; we always mean that it is the remainder
of the Euclidean division of «; + «; by the periodic lattice, i.e., ; + x; mod(2w, 2w’). In fact, 0 is
the pole of p(x) and thus we require k; #0 to avoid singularities. Besides, k; cannot be zero as a
consequence of k; + k; # 0. In light of Liouville’s theorems (cf. Ref. 10), since ¢’(«) is a third-order
elliptic function in the period parallelogram D ¢’(«) only has 3 zeros which are w, w’, and w + w’.
To avoid breaking the one-to-one correspondence of k; and K ;, we require «; ¢ {w, w’,w + w’}. Thus
we have (2.9a). (2.9b) is from the requirement K;K; # g. For (2.9¢), we can prove that under (2.9a)
and (2.9b) the following holds:

K,'+Kj=() <:>k,'+kj=0. (2.10)
In fact, since p(«) is even and g’ (k) is odd, from the parametrization (2.8), we immediately find that
if k; + k; =0 then k; + k; = 0. On the other hand, under (2.9b), from the factorization (2.5), if k; + k;
=0 and (2.9b) holds, there must be K; = K;, which means «; = «; in D in light of Liouville’s theorems
(cf. Ref. 10). The case k; = k; is impossible because this case yields k; = k; = 0 due to k; + k; = 0 but
k; =0 requires p’(x;) = 0 which is impossible in D’. Thus, k; = —k; is the only choice, i.e., k; + k; = 0.
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—w+w w W+ w
Ap » D

FIG. 1. Fundamental period parallelogram D.

B. Matrix system (1.7)

Let us come to the matrix relation (1.7). Although at first glance (1.7) suggests an interpretation
of this matrix relation as a matrix version of an elliptic curve, it just represents the coordination of a
collection of points on the given elliptic curve (2.1).

To understand this, let us consider a similarity transformation

k=TkT™', K,=TKT', (2.11)

where T serves as the transform matrix. Obviously, under the above similarity transformation, (1.7)
is formally invariant

ki>=K, +3el +gK,"", k\K,=K k. (2.12)
Thus, in the following we only need to consider the relation
I‘2=K+3ell+gK‘1, 'K =KT, (2.13)
where I is the canonical form of k.
When
I' =Diag(ky, ko, . . ., ky), (2.14a)
K is taken as
K =Diag(K, K>, ..., Ky), (2.14b)

where (k;,K ;) are the points on (2.1), i.e., satisfying (2.3). k; is the eigenvalue set of k. Here we require
that each k; # 0 and kl.2 # k? for i #j. Under such a requirement one can see that the criteria (2.6) are
satisfied in light of the factorization (2.5).

It is interesting to consider the case that I' is a Nth order Jordan block

ki 0O0---00
1k 0---00

r=|01k--00] g o (2.15)
000---1k

In this case, k; is the only eigenvalue of k with algebraic multiplicity N (and geometric multiplicity
1). In terms of the parametrization (2.7) we need « to satisfy

k1 €D\ {0, w, 0" 0w+ W'}, p(k1)#+g+er. (2.16)

To find K that corresponds to the Jordan block (2.15), we will make use of properties of lower
triangular Toeplitz matrices (LTT). For more details about LTT matrices please see Appendix A.
According to Proposition A.1, for the Jordan block (2.15), when I'K = KT there must be Ke TV
where TV ], which is commutative, denotes the set composed of all Nth order LTT matrices. By taking
derivatives with respect to k of the elliptic curve (2.1) at the point (k1,K{) where K| = K(k;) and
K(k) is viewed as an implicit function of k determined by the curve (2.1), we find (for i > j)

jl‘a,{ K2 =jl,a,{1<(k) +3e16j0 + S0 (atk=k). (2.17)

i1
JUEK(K)
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The Lh.s., the first term and third term on the r.h.s., respectively, correspond to the elements of the
LTT matrices generated (see Definition 1 in Appendix A) by f(k) = k2, K(k) and 1/K (k) at k = k.
This means that for the Jordan block case (2.15) if we take K = TWI[K (k;)] (for this notation see
Definition 1 in Appendix A) then the relation (2.13) holds.

lll. THE SYLVESTER EQUATION AND INFINITE MATRIX STRUCTURE

In this section we will first investigate solutions of the Sylvester equation (1.6) and derive an
explicit expression of the solution M. Then, with the help of some special matrices we will investigate
recurrence relations of scalar function SU+ (defined in (3.23)) and properties of the infinite matrix S
composed of S/,

A. Solvability of (1.6)

For the solution of the Sylvester equation (1.5), there is the following well known result.!!

Proposition 3.1. Denote the eigenvalue sets of A and B by E(A) and E(B), respectively. For the
knownA, B, and C, the Sylvester equation (1.5) has a unique solution M ifand only if E(A) N E(B) = @.

Based on this proposition, we find the following.

Proposition 3.2. Consider the Sylvester equation (1.6) where the matrices k and K satisfy
Ek)N E(-k) =2, (3.1a)
EGKHNEK) =0, (3.1b)
and the matrix relation (1.7). Then, the “dual” matrix equation
KM - MK =krc” —rck (3.2)
holds.

Proof. Here we note that condition (3.1a) is necessary to guarantee the solvability of Equation
(1.6) in light of Proposition 3.1. Then, left multiplying k and (1.6) yields

K*M + kMk =k(re” — gK're"K™). (3.32)
By simple algebraic substitution, Equation (3.3a) can be written as
KM —ME?> = —rc"k + kre” + gK 're "K'k — gkK ™ 'r¢ "K' (3.3b)
Applying (1.7) in (3.3b), we get
gK"(KM — MK — kre” + re"k)K™' =KM — MK — krc” +rc'k, (3.4)
which can be rewritten as a Sylvester equation
gK'W -WK=0, W=KM - MK —krc" +rc"k. (3.5)
Based on Proposition 3.1 and noting that &K HNEK)=win (3.1b), Equation (3.5) has a unique
solution W =0, which means (3.2) holds. |

Here, we note that condition (3.1) is obvious because it is actually the criteria (2.6) for selecting
points from the elliptic curve (2.1). We also note that we cannot derive (1.6) from (3.2). In fact, we
start from (3.2), replace K using (1.7), and we get

KM - MK* — g(K~'M - MK ") =krc" - re'k.
In the meantime, from (3.2) we also have

K'M-MK'=-K'"krc"K™' + K 're" kK"
Manipulating these two equations leads to

kY —Yk=0, Y=kM + Mk —rc¢” + gK~'r¢"K™".
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Obviously, Y =0 is a solution to the above equation but it is not unique. This means (1.6) and (3.2)
are not equivalent. (1.6) is more general while (3.2) is a by-product of the former. In the following
discussion it is sufficient that we only consider (1.6).
B. Solution to the Sylvester equation (1.6)
1. Canonical form of (1.6)
Using the similarity transformation (2.11) and denoting
M =TMT', r=Tr, ¢f =c"T7", (3.6)

it follows from (1.6) that
Mlkl +k1M1 =r C{ - gKl_lrlclTK_l,

which takes the same form as (1.6). This means that when we solve the Sylvester equation (1.6) we
only need to consider the following canonical form:

MT +TM =rc” — gK 'r¢" K7, (3.7a)
together with (2.13), where
r:(rl’rz""9rN)T’ c:(cl’cz""?cN)T’ (3'7b)

and we suppose that I is the canonical form of k.
2. Solutions to the matrix system (2.13)
Here we list the solutions using the notations given in Appendix B.

Proposition 3.3. The matrix system (2.13) satisfies the following three cases of solutions:

(1) Diagonal case:

=Tk, K=TY(K}). (3.8)
where

kP =Kj+3e1+gK', j=1,2,...,N. (3.9)

(2) Jordan block case:
=Tk, K=TN[K(K)]. (3.10)

(3) Generic case:

r=ri, (3.11a)
K =Diag(CY{K, TN [K (kyy D), - - o, T™ K Gy, s 5-1) D)) (3.11b)

3. Solutions to (3.7a)

Now let us come to the solutions to the Sylvester equation (3.7a).

Case 1. T =TY (k).
Solution to (3.7a) is given by

1 - g/(KiK))
N1 AN i
M =FG, ({k},)H = (—ki Ay r,cj)NxN, (3.12a)
where
F =Diag(ry,73,...,ry), H=Diag(cy,cz,...,cn). (3.12b)

Case 2. T =T"™(ky).
This is also referred to as the Jordan block case. In this case, I' and K take the form of (3.10).
To find solution M of equation (3.7a), we factorize

M =FGH, (3.13a)
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where

F=TM{r)}), H=HM({c}]), (3.13b)
and G is a N X N unknown matrix. Note that r and ¢ can be expressed through F and H as
r=Fe;, c=Hey, (3.14)
where e; = e,V is defined in (B2b). Then, the Equation (3.7a) is rewritten as
FGHT +TFGH=Fe el H-gK 'Fe el HK™'. (3.15)
Further, from proposition A.4, one has
FGT"H + FTGH=F e, el H— gFK "¢, e’ K" H, (3.16)
and then .
GI" +TG=ejel —gK'e;el K. (3.17)
To solve (3.17), we set
G=(G1,Gy,...,Gy) (3.18)
with column vectors {G;}. (3.17) is expanded to the following equation set:
(kI +T)Gy =€ — KiAl, (3.192)
1
(ki +T)Gjy1 + Gj=—= (6‘}(l X A, (=1,2,...,N-1), (3.19b)
J!
where K| = K(k;) and
A= Toa=— o' L G=12,...N 3.19
1_(a17a2’--'aaN)’ aj_m k K_l’ (]_ 9Ly ooy ) ( C)
The above equation set is solved by
y_lg[N](a)Lz—Zk. (-1) 1 i
L w LS Mk AL (=1,2,--- . N). 3.20
Gi= == Z —i O TNk AL =12 ) (3.20)
The matrix G is symmetric.
Case 3.T = F[C]‘;V].
In this case, we still suppose the factorization (3.13a), where
F =Diag (T ({1}, T (b 1), T A G IV ), (3.21a)
H =Diag (T (e 1), H™ (e 177, - BN A D00 L)), (321b)
G is a symmetric matrix with block structure
G=G"=(G)),,, (3.21c)
and each G;; is a N; X N; matrix. Clearly,
G111 =Gy (k). (3.22a)
G1;=(G11,Gi2,...,Giy), (1<j<s), (3.22b)
Gij=(Gi,Gp,...,Gi), (1<i<j<ys), (3.22¢)
with
L= 1)1 i 1 |
- 1 [N{] AN [N{] NalNi]
=(-1) Z 507w AR e e,
k=kn, +1
o I, e (By)
7Y
i
D" o 1 Vi1 TV 1 Vil
g 9 @) " TV 1,
mZZI (l - m)' ( K K(k))|k:kNl+(j D / K(k) |k:kN1+(i71) !
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for 1 <i<j<s, where a;= W, Bij = kny+i-1) + kn,+(-1), and k and K (k) satisfy the elliptic

curve (2.1), i.e., k2 = K2(k) + 3e; + g/K (k).

C. Infinite matrix S

In the Cauchy matrix approach a generic element S+ plays a crucial role. Such entries SU+/)
compose an infinite order matrix S and they satisfy some recurrence relations which are used in
deriving nonlinear equations as well as expressing solutions of the obtained equations.

Referring to the Sylvester equation (1.6) and the matrix relation (1.7) and using the elements
(M,k,K,r,c} in (1.6) and (1.7), we introduce an co x co matrix S = (S™)) ., i,j € Z, where the
elements SU+) are defined as (cf. Ref. 1)

S = T KI(I + M) 'K'r, (3.23a)
§CHL2D — T Ki([ + M) 'kK'r, (3.23b)
S@ID = o Kik(1 + M) 'K'r, (3.23¢)
SQHL2D _ T Kik(I + M) 'kK'r. (3.23d)

1. Recurrence relations of S(})
For these elements (3.23) we present the following relations.
Proposition 3.4. For the scalar functions S/ defined in (3.23) with {M, K , k,r, ¢} satisfying the

Sylvester equation (1.6) and the matrix relation (1.7), we have the following relations:

s—1

S(i,]'+2s) — S(i+2s,]') _ Z(S(Zs—Zl—l,j)S(i,Zl) _ S(Z.Y—ZZ—ZJ)S(i,21+1))’ (3243)

=0

N
S(iJ—ZS) — S(i—ZSJ) + Z(S(—ZS+2I—IJ)S(i,—21) _ S(21—25—2J)S(i,—21+1)), (324b)

=1

where s=1,2,---. In particular, when s = 1, one has

S§Ei+2) = gi+2y) _ (1) g.0) 4 S(OJ)S(I'J)’ (3.25a)
S§G=2) = ¢(=29) 4 ¢(=1)gl.=2) _ ¢(=2) gli:=1) (3.25b)

Proof. First, from the Sylvester equation (1.6) we have the following relation:
s—1
M - (-1)’Mk’ = Z (1Y e — gK'reTKOE, (s=1,2,..)). (3.26)
j=0
In fact, the Sylvester equation (1.6) itself is the case when s = 1 of (3.26), while (3.3b) is the case
when s = 2. Making use of mathematical inductive approach we can reach (3.26). Similarly, from
(3.2) one has a parallel result
s—1

K°M - MK® = Z K7 Y kre” - re" K, (3.27a)
j=0
or
S . .
MK~ —K*M =Y K7 Dre? —re'l)K7, (s=1,2,...). (3.27b)
j=1

Now let us prove the relation (3.24a). We introduce the auxiliary vectors

u® = +M)'K'r, u®V =+ M) 'kK'r, i€Z. (3.28)

From this we immediately have
Ku® + KSMu®) = Ks*iy, (3.29a)
Ku®*D + KSMu@+) = kK. (3.29b)
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Replacing K*M using the relation (3.27a), one finds

s—1
d + MK u® = K5+ — Z K ere” - reTk)K'u@, (3.30a)
=0
s—1
(I + MOK* u®*V = kK*+ip — Z K7V kre” = re"l)K'u V., (3.30b)
=0

These relations, left-multiplied by ¢/ K/(I + M)™!, yield

s—1

S(Zi,2j+2s) — S(2i+2s,2j) _ Z( S(2s—21—1,2j) S(2i,21) _ S(2s—2]—2,2j) S(2i,21+1))

=0

s—1
S(2i+1,2j+2s) — S(2i+2s+1,2j) _ Z(S(ZS—ZZ—1,2j)S(2i+1,21) _ S(2s—21—2,2j)S(2i+1,21+1))

1=0
and left-multiplied by ¢” K’k(I + M)™", yield

s—1
S(Zi,2j+2s+1) — S(2i+2s,2j+1) _ Z(S(ZS—ZZ—1,2j+1)S(2i,21) _ S(2s—2l—2,2j+1)S(2i,2l+1))

=0
s—1
S(21+1,2]+2s+1) — S(21+2s+l,2/+1) _ Z(S(ZS—ZFI,2)+I)S(21+1,21) _ S(2s—2l—2,2}+l)S(21+1,21+l)).
=0

The above four equations are merged into the relation (3.24a).
The relation (3.24b) can be proved in a similar procedure, in which we use the following
counterpart of (3.30):

s
(I + MOK*u'® = K~*ir + Z KD kre” - re")K 0@, (3.31a)
=1

K S Dere” — reTk)K 0@, (3.31b)
1

(I + MOK~*u®*D = kK ~*r +
[

s

with s=1,2,.... We note that (3.25) are corresponding to the algebraic relations (2.13) in
Ref. 1. O

2. Invariance and symmetry property of S(i-i)

In Secs. II B and III B A we have shown that the matrix relation (1.7) and the Sylvester equation
(1.6) preserve invariance formally in terms of the similarity transformation (2.11) and notations
(3.6). In following we will see that S defined in (3.23) are the same as those defined with
{c1,r1,k,K{,M,}. Besides, S¢+/) satisfy symmetry property S = §U-D),

Proposition 3.5. The matrix S (or the element S('))) preserves invariance under the similarity
transformation (2.11) and notations (3.6).

Proof. Using (2.11) and (3.6) one can rewrite (3.23) and find

S@R2) = T KJI d+M)'Kir, (3.32a)
SR = T Kjl(l + M) kK, (3.32b)
S = T Kjlk1(1 +M)'Kir, (3.32¢)
S@HLAD - T Kjikl(l + M) kK, (3.32d)
which means S/ preserve invariance formally. =

In addition, we have the following symmetry property.
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Proposition 3.6. Suppose that M, K, k,r, c satisfy the Sylvester equation (1.6) together with the
matrix system (1.7) in which E(k) N E(-k) =@ and E(gK™") N E(K) = @. Then the scalar elements
S(t1) defined by (3.23) satisfy the symmetry property

S = g0 (3.33)
i.e., the infinite matrix S is symmetric.

Proof. Based on the invariance of S+/) presented in proposition 3.5, we only need to consider the
proof when k is in its canonical form, i.e., k = I‘%V]({kj }/1\’), k= I‘BN](kl ), and k = F[CI;V]. Corresponding
to these three cases, M is given respectively in the three cases in Sec. III B 2. As an example let us
consider the case k = I’BN](kl)e TN We note that from Sec. II B K€ T as well. Let us look at the
scalar function @2+ defined in (3.23c). We have

S(Zi,2j+l) — (S(Zi,2j+1))T
=T &Y @ +M"Y " &) e (3.34)

Making use of the fact that M =FGH, r=Fel™', ¢=He!', G=G", FeT™, He T, and
Proposition A.3, we find from (3.34) that

$Ci2h = M FT (kY (1 + HGFT)™ (Kik)" He!M!
= M) & FT(1 + HGFT)” HEK ke!™
=™ &\ T FT) + G]_leke[lN |
= M) &) FH + 6 Kkel!
= (™" &) H(I + FGH) ' FK/ke!™!
= (™) HK'(I + FGH)™'K/kFel)
=c" K'(I + FGH) 'K’kr

— §2j+1.20)

In a similar way we can prove SU+) = SU-) for arbitrary i, /. For the cases of k=T11({k;}Y) and

k= I’[GN], we can also prove the symmetric property and for the later case we need to use Proposition
A4 m|

Hereafter we always require that {M, K, k,r, c} satisfy the assumption of Proposition 3.6, under
which we proceed with further discussions.

IV. THE ELLIPTIC LATTICE POTENTIAL KdV SYSTEM

In this section we derive the elpKdV system together with its Lax pair using the Cauchy matrix
approach. In this approach SU+) play elementary roles. Since the elpKdV system can be viewed as
an elliptic extension of the lattice potential KdV equation, we use the same dispersion relation and
with the help of the Sylvester equation we can first derive a set of recurrence relations of S/, Then
the elpKdV system can be derived as closed forms.

A. Discrete dispersion relation and recurrence relations
Now let us impose discrete dispersion relation on r as follows:
(al —kyr=(al + k), (bl —k)r=(I +k)r, a,b¢&(+k), 4.1

while we take ¢ to be a constant vector.
By applying a similar procedure as done in Ref. 8§ to the Sylvester equation (1.6), matrix system
(1.7), and the dispersion relation (4.1), one can derive the following shift relations of M:
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(al —k)M = (al + kM, (4.2a)
(bI — k)M = (bI + k)M, (4.2b)
and
M(al + k) — (al + kM =F¢" — gK~'F¢"K™!, (4.3a)
(al —k)M —M(al —k)=rc" — gK 'r¢" K, (4.3b)
MOI +k) — (b + k)M =7c¢” — gK™'7c"K™!, (4.3¢)
(bl —k)M - M I —k)=rc” — gK're" K. (4.3d)

These relations lead to the following results.

Proposition 4.1. Under the assumption of Proposition 3.6 and the dispersion relation (4.1), the
scalar functions S defined by (3.23) satisfy the following recurrence relations:

a§(2i,2j) _ §(2i,2j+l) — aS(Zi,Zj) + S(2i+1,2j) _ :§(2i’0)S(0’2j) + g§(2i’_2)S(_2’2j), (44&)
aS(Zi,Zj) + S(2i,2j+1) =a§(2i,2j) _ §(2i+1,2j) + S(2i,0)'§(0,2j) _ gS(Zi’_2)§(_2’2j), (44b)
b§(2i,2j) _ §(2i,2j+1) — bS(Zi,Zj) + S(2i+1,2j) _ g(Zi,O)S(O,Zj) + g’S\(Zz‘;Z)S(fZ,Zj)’ (44C)
bS(2i,2j) + S(Zi,2j+1) — b§(2i,2j) _ §(2i+1,2j) + S(2i’0):§(0’2j) _ gS(Zi’_2)§(_2’2j), (44d)

aS2it1.2) _ §Qi+12j+1) _ o ¢Qi+1.2) | ¢2i+2.2) _ §2i+1.0) ¢(0.2))

+ gS(Zi—2,2j) + g§(2i+1,—2) S22 4 34,5202 (4.4¢)
aS@i+12) | gQit12j+1) _ jSQi+1.2) _ GRi+2.2)  gQRi+1.0)(02))

_ gS@im22) _ gQCit12) g(-22) _ 3, S2i2), (4.4f)
pS@it12) _ GQi+1.2j+1) _ pei+12)) | gQi+22)) _ GQi+1.0)g(0.2)

4 gS(Zi—Z,Zj) + g§(2i+1,—2) §(-22) 4 3 el S(Zi,Zj), (4.4¢9)
pSQi+12) | qRI+12j+1) _ peQitl2)) | GRi+2.2) | ¢Ri+1.0)G(0.2)

_ g§(2i—2,2j) _ g§(2i+1,—2) §(=22) _ 3 61§(2i,2j)' (4.4h)

The proof of this proposition is similar to the one for theorem 2 in Ref. 8. Here we skip the
details. We also note that these relations correspond to the discrete matrix Riccati type of relations
(2.12) in Ref. 1.

B. Elliptic lattice equations

To obtain elliptic lattice equations, we introduce scalar functions (cf. Ref. 1)

u=S00 =520 p-gC2"2 -1 _gCLO =1 4 §E2D, (4.5)
It then follows from (4.4) that

a(u—T1)=—(SOD + SOy _ o5 + ui, (4.6a)

ath —h)y=—S""2 4+ SV _ ohh + 55, (4.6b)

a(s =7%) =gﬁs +Ww—v — us, (4.6¢)

a(s —s)=ghs +w — v — us, (4.6d)

a =) =SC"Y + 3ers + uv + guh + gs(ST2D 4§20y, (4.6¢)

aw -0)=S""D + 3¢5+ + gﬁz +g5(82 D 4 5(_2’_1)), (4.6f)

a(w - 0)=S"Y 4+ 3eys + uw + ghw — s(SOD + SOy, (4.69)

a(w — ) =S + 3¢5+ uw + ghw —5(SOV + SOy, (4.6h)
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where we have made use of the symmetric property S¢-) = SU-) and the relation (3.25b) with
@,))=(0,-2), ie.,
SO~ _ ¢(=2,-2) | ¢(=1.-2)g(0.-2) _ ¢(=2,-2)g(0~1) _ p,), 4 ¢¢(=2=1)

One more relation obtainable from (3.25b) is
sSCMD =1 —pw, (4.61)

by taking (i, j) = (0, 1). The shift relations with respect to {5, } can be obtained by interchanging the
relations {a,~ } with {6, } in (4.6).

With these relations in hand, we can combine them, eliminate S oD g (_1’_2), h and v in order to
obtain the closed form of elliptic lattice equations of the variables u, s, and w, (cf. Ref. 1)

(a+b+u-wa-b+a-w=a>-b*+gG -G —s), (4.72)
G-5)@ —b)=[(a+us—b+u5]5—[a-15—-(b-w5]s, (4.7b)
G- —-w)=[(a-T)s+ b +W5]15 = [(a+7)s + (b —T)s]5, (4.7¢)
(a+u- %)(a—ﬂ+ %)=a2 — R(s3), (4.7d)
(b+u- %)(b—m %):b2 — R(s3), (4.7¢)
where |
v =R(x) = —+ 3e) + gx. (4.8)

Clearly, the system (4.7) is an elliptic generalization of the IpKdV equation. If g =0, (4.7a) decouples
and becomes the standard lattice potential KdV equation.
Furthermore, solutions to the elpKdV system (4.7) can be expressed in the explicit structure

u=S0=c" 1 +M)'r, (4.92)
s=820 =T (1 + M) 'K, (4.9b)
h=8S22D=c"K'd + M)"'K'r, (4.9¢)
v=1-S"0=1 " T +M) " "kK'r, (4.9d)
w=1+82V=1+c"kd + M)"'K'r. (4.9¢)

We only need to solve for r in (4.1) with k taking the three cases in (B1). Explicit forms of r are given
in Appendix C.
C. Lax pair for the elpKdV system (4.9)
Rewriting (3.28) results in
Kr=I +Mu®, (4.10a)
kK'r=I + Mu®>*Y, jez, (4.10b)
then we perform a tilde shift to (4.10a) and multiply the result by (al — k) to give
Kial +kr=1 + M)l - ka® + (re” — gK're" K Ha®?, 4.11)

where we also make use of the relation kK = Kk, the dispersion relation (4.1), the shift relation (4.2a),
and the Sylvester equation (1.6). (4.11) is further transformed to

(al - Ka® = au® + y@+H _ 5200 | o52i=2),(-2) (4.12)
Taking i = 0 leads to
(al =k =(a - wu® +u® + K (wu® - su), (4.13)
which is obtained by replacing u~? with
u™? =K (wu® - suV). (4.14)
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In a similar way, from (4.10b) we have
(al - ka" =K + gpwK Hu® + 3ey + gss + a(u —0) — un)u'® + (a + u — gwsK HuV, (4.15)

where
u? =Ku® - §OD{O 4 1y (4.16)

Clearly, under the similarity transformation (2.11), Equations (4.13) and (4.15) are formally
invariant if we define u(lo) =Tu"), ul =Tu'. This means that we can directly consider that k is in its
canonical form and K is consequently defined by (1.7). Thus, the first row of k will be (k,0,0,...,0),
while the first rows of K and K~! have to be (K,0,0,...,0)and (1/K,0,0,...,0) respectively, where
(k, K) obeys the elliptic curve (2.1).

Let us denote the first element of #® by (u(?), and the first element of u' by (u'),, and introduce
the vector o
¢=((" )1). (4.17)

(u(l))l

Then, from (4.13) and (4.15) and with a replaced by b and ~ by ~ we obtain the following discrete
linear system:

(a— ko= LK), (4.182)
(b= k)d=MK)p, (4.18b)
where
a7+ E5w 1- 85
L(K)= B K g K, (4.19)
K+3e+gss+a(u—u)—uu+1?ww a+u—Ews

which is the same as in Ref. 1, and M(K) is the (b,”) counterpart of L(K). The point (k, K) obeys the
elliptic curve (2.1) and here they play the roles of spectral parameters. The compatibility condition

LM =ML (4.20)
yields the whole elpKdV system (4.7) with the exception of the Equation (4.7¢).

V. THE ELLIPTIC POTENTIAL KdV SYSTEM

In this section we derive a continuous elliptic potential KdV system. The procedure is similar to
the one for the KdV system in Ref. 7. This is a continuous version of the Cauchy matrix approach,
where the recurrence relations of SU+) (see (2.3) in Ref. 7 and (3.25) in this paper) play key roles.
A. Evolution of U

We assume that M, r,c are functions of (x, #) while k is still a non-trivial constant matrix. The
dispersion relation is now defined through the evolution of r and ¢ as follows:

re=kr, c, =ch, (5.1a)
ro=4k3r, ¢, =47 e. (5.1b)

Taking the derivative of the Sylvester equation (1.6) with respect to x and making use of (5.1a) we
have

KM, + M. k=r.c" + rc){ - gK_lrchK_1 - gK_lrc){K_1
=kre” +rc"k — gK 'kre "K' — gK'reTkK !,
i.e.,
kM, —re” + gK 're" K™Y + M, —re? + gK 're’ K Yk =0,
where we have made use of the relation kK = Kk. Using Proposition 3.1, this yields

M, =rc” — gK 're"K7!, (5.2)
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ie.,
M, =kM + Mk, (5.3)
if we use the Sylvester equation (1.6). In a similar way, for the time evolution of M, we have
M, =4(>M + ME>). (5.4)

B. Evolution of S{/:/)

With the evolution formulas (5.1)—(5.4), we can derive the evolution of SU). We make use of
the auxiliary vectors u” defined in (3.28), i.e.,

I + Mu® =K'r, (5.52)
I + MHu®*VD =kK'r. (5.5b)
By using the auxiliary vectors u®, S+ are expressed as
S@i20) — T Kiy @), (5.62)
§Qi+1.2) _ T Kju(z”l), (5.6b)
§Q@i2+D) o T Kifeyy 2D, (5.60)
§Ci+127+1) _ (T Kifeyy i1 (5.6d)

Taking x-derivative on (5.5a) we have
Mu® +d +Mu® =K'r, = K'kr, (5.7)
and further, by substitution of (5.2), we have
d + M =K'kr — (re” - gK're" K~ u®, (5.8)
which indicates the evolution of #*” in x-direction
ll;(czi) — @D _ Q0L 0) 4 6 g(2i2)(-2) (5.92)
Similarly we can derive the evolution of 1D in x-direction,
u}((2i+1) = 24D _ §RIHLOLO) 4 6 qQI1=D (D) 4 3, 12D 4 gy (20-2) (5.9b)
and consequently the evolution of ) in ¢-direction
u?) = 4[gu D (S0 1 3015272 4 ¢Sy 4 oD @O 4 300D 4 quY)
—uO($@2) 30,5210 4 ggCi2)y L g1 _ oy (DRI |, Cit3)
+3e1u®*) 4 gu®D _ QOGP 4 30,40 4 gDy, (5.10a)
u§2i+1) = 4[gu D (SCHLO) 4 30, §QH1D) 4 o QR gy (~DgQRIH1=D) | Qi)
—uO(SCH12) 4 30, §CHLO) 4 ogQRI+1=2)) 4 (96% +20u® + Pu
+6e1gu?? + 6e,u®*? — §EHLO D 1 304 4 gy
+ 5@ 4 o@D @O 4 36,572 4 Y], (5.10b)
These evolutions of #® can be transformed into the evolution of S+,
S§2i,2j) — §Qi+12) | ¢Qi2j+]) _ ¢(2i0)5(0.2) | gS(2i’72) S(—Z,Zj)’ (5.11a)
S)((Zi,2j+1) = SQI2D) | 30, §Q12) 4 gR12J=D) _ QL0 GO2)+1) | gQi+12j+1)
+gS@mDSRIHD), (5.11b)
S§2i+1’2j+1) = §Qi+1.2j+2) 4 3 el S§Qi+12) gS(2i+1,2j—2) _ §Qi+1.0)g02+1) | ¢(2i+2.2j+1)

+gS(2i+l,—2)S(—2,2j+1) + 3¢, 52D 4 gS(Zi—2,2j+l)’ (5.11¢)
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and
S§2iy2j) —4] gS(—2,2j)(S(2i,O) +3e; §@i-2) gS(Zi,—4)) 4 gS(Zi,—Z)(S(O,Zj) + 3¢, §(=2.2))
T ¢S4 _ 5O (§@D) | 3, S0 4 o5CiDy 4 20D g(12)
_ gSCIA QI | §Qi32)) 4 34 Qi1 | ogCim12)) _ §Ci0)(5C.2)
130150 4 g§(22) 4 SCIAHD) | 30, SCIAHD 4 (gCI2A=D], (5.12a)
S _ 4 o522 (S | 30, §202) 4 og@id)) | (0D (502j+1)
30, SCRUD 4 gAY | gO02i+1(§CID) 4 30, 520 4 o5Cir2))
1 SRDGULD _ o124 gl . Qi34+ 4 34 RI+1244D)
1 gSCITI2HD) | gRi0(§2 | 3, SO 4 o5 (22j41)) | §Qi2jw)
+ 615D 1 (962 +2)SAY) 4 6, gS@UD) 4 252D (5.12b)
SEHLYUD _ 4og(-224D(SQHL0) 4 34 GOIH1D) | ogOIF1~4)) | o gOI+1-2)(GO2+D)
T30, SCRUD | gg(-42i Dy | 0241 (gQI12) | 34 GRITLO) | g(2it1.2))
1 QLD GUZD _ o124 D gQit1l) | Qi 2j+1) 4 6o G224+
161 SCII 4 (952 1 2g)SEHIA) | oy gSCIHIA) 4 G250 2~
_ §@ILOY(GR2D) | 34 GO | g2y GRit1j+4)
+(9ef +2g)SPHD 1 6oy gSPEAHD 4 g2gRImAHHDY, (5.12¢)
It is unnecessary to write S"% and S®*"¥ due to the symmetry property S¢) = SU-). One can
repeatedly use (5.11) and easily get higher-order x-derivatives of SU) by means of Mathematica,

amongst other computer applications.
These derivatives of S+ bring the following epKdV system:!

U = Uy + 6u§ - 6gs)2(, (5.13a)
St = Syxx + OUy Sy — 6gSyhy, (5.13b)
By = N + 657 — 6gh2, (5.13¢)
U = Upyx + OO Uy + 6ngS/(;1’72), (5.13d)
Wy = Weer + 65:5CY — 6gw,hy, (5.13¢)

where u, v, s, w, h are as defined in (4.5) or (4.9), and from (5.11a) we have
1
§C-1-2) E(hx + 52— gh?), (5.14a)
1
SO = S+ u? — gs?). (5.14b)

To achieve the derivation of (5.13), one needs to perform long and tedious iterations in which
the recurrence relations (3.25) are successively used. Taking the first equation (5.13a) as an example,
we substitute the expressions of u;, Uy, Uy, s, and obtain

%(u, = Uy — 6u)2( + 6gs)2C)

= 25OV [§OH _ 12502 4 (221 4 O~y
+ g[-SOD(5O0(] 4 5172 4 @) | §O-D5010))
_ 502 4 gO-D(] 4 gDy _ (-1 g0-2))
_§102 |, 00gD) _ g2 4 ¢B.0)

This equation vanishes in light of the recurrence relations (3.25) with (i,j)=(0,-2) and (0, 1).
Equations (5.13b)—(5.13e) can rigorously be derived in a similar manner.
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In Ref. 1, the relation
A=-u+ = (5.15)
is introduced, through which the epKdV system (5.13) yielded the following coupled equation, (i.e.
(1.2)):

2A 2
512 A5pe + 65, [R(s2) — A2 — 2250 2w

—1, (5.16a)
A;=4A 0 — 6A%A, + 6AR(s%) — 6—”(R(f))x, (5.16b)
S

with the elliptic curve R(x) given in (1.3). Since this coupled system admits a continuous Lax pairl
(also see Sec. V C) we conclude that it is integrable.

C. Lax pair
Let us consider (5.9) with i =0,
u;O) —u® i © 4 gsu(_2), (5.17a)
(1) — g0y, gwu( 2 4 3eiu . (5.17b)

After replacing u=?, u?, and S'0 with (4.14), (4.16), and (5.14b) respectively, we have
1 =u® —uu© + gsK " (wu® - su®), (5.18a)
ulV = (K + g K Yu® + Bey —uy — i + gsHu® + ul — gswK Hu. (5.18b)

Similarly to the discrete case, we consider k to be in its canonical form and then from the first rows
of (5.18a) and (5.18b) we find the linear form

—u+ £sw 1-£4? (5.19)
, .19a
fx = K+3e+gs® —u* —u+ fwu— Lws ¢

where ¢ is defined in (4.17). In a similar way from (5.10) we can find the time evolution of ¢, which
is formulated as

S(O 2 Uy 8 (1- Uw)%‘ + vew USy — SUy
¢ = (S(l b g0 ¢ - (l—vw)%—w(li#) (1 - ow)% — v 0, (5.19b)
where
1
S0 = zsﬁ’l) +uSOY _ o5, (5.20)

and SOV is given by (5.14b).
(5.19) can be viewed as a Lax pair of the system (5.13), which can also be derived from the direct
linearization approach.! The compatibility property gives equations (5.13a), (5.13b), and (5.13e).

VI. DYNAMICS OF SOLUTIONS

In the section, we investigate dynamics of two-soliton solutions for epKdV system (5.13) by
taking the solution u as an example. One will find that what we illustrate in the following is the
derivative of u with respect to x since the system (5.13) is a potential system.

Soliton solutions of u are given by (4.9) with (3.12), (C1), and (C5). For one-soliton solution, u

is written as
2k, e2(k1x+4k13r)
Ulss = 2 3o (6.1)
2k1 + (1 _ g/K1 )62(k1x+4k1 1)
Here we note that it is possible to get real solitons if we have real-valued @(«1). This can be done by
taking real invariants g, and g3 and real or pure imaginary «; (cf. Ref. 10). Hereafter, we set U = u,
and the expression for U is
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0.04

(b)

FIG. 2. The one-soliton solution given by (6.2) for e = 1, e = 1.5 (which consequently determine the invariants g, = 19,
g3 =—15 and then the Weierstrass elliptic g-function) and «; = —1.1 (which indicates the values of k1,K,e1,g by (2.7)). (a)
Shape and motion. (b) Soliton wave at ¢ = 0.

3
8k13K14€2(k1x+4k1 1)
Uiss =

> (6.2)
[2k1K12 + (_g + K12)e2(k1x+4k13t)]2

which is depicted in Fig. 2. From Fig. 2, we can see that this soliton is identified by the amplitude
and the top trace (i.e., the straight line on (x, f)-plane on which U takes maximum value) clearly,
and after some calculations we get the amplitude

ki*Ki?
Amp= ———. 6.3)
—-g+ K,
and the top trace

1
x(t) = =4k ’t + —1In

2k K>
T ( (6.4)

g+ K]z‘.

Obviously, the soliton of U is a single-direction wave with the velocity —4k;? and the amplitude can
be negative when —g + K> <0.
Next, let us look at the 2-soliton solution. The 2-soliton solution for U is written as

U= (Jf) , (6.52)

where
[ =20k + k)[2ki koK P K22 (ky + ko) + 22 + (K2 Ko (ky — ko)? — g(ki°Ky?
+ka?K>?) = kiko(Ky 2 — 4K, Ky + K»2))e? 61782, (6.5b)
g =2k Ko (k1 + k2)*(g — K1H)e*' = 2k K1 (ki + ko)’ (g — Ko?)e™
+4kika K 2 Ko (ky + ko) + (8% + K1)k — ko) — g((ky + k2)* (K + K2)?
+2kika(K1* — 4K Ky + Ko PE ) g =kx + 4kt + €0, i=1,2, (6.5¢)

and U is depicted in Fig. 3. One can see that the amplitudes of the two solitons are changed after
interaction. This can be demonstrated by analyzing asymptotic behaviors of the two-soliton solution
by a similar procedure as in Ref. 12. For convenience we call the two solitons k-soliton and k;-soliton,
respectively. Then we rewrite the two-soliton solution (6.5) in terms of the following coordinates:

(X, =x + 4kt 1), (6.6)
which gives

U= (g_ll) (6.72)
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L
-20

(b)

FIG. 3. Two-soliton interactions given by (6.5) for e; = 1,e; = 1.5, k; =—1.1,k0 =—1 and gl(o) :fé()) =0. (a) Shape and
motion. (b) Amplitude-change interaction of two solitons, in which the shape at ¢ = —4 is denoted by blue dashed line and the
shape at r = 4 is denoted by the red solid line.

where

Fi = 20k + ko) [2kika K1 Ko (ky + ko) (@1X1 4 2ei=thnde®n) 4 (g 202 (k) — ky)?
— gk Ky = kaK2)? + kika(K) = K)2))eXbii-shathi=kediy (6.7b)
Gi = ~2k:K>*(g = K1)y + ko)X — 2k K}k + ko) (g — K)o Hhiraiare
+4kika K\ Ko (ky + ko) + (87 + KTK2 D) (ky — ko)?
— gl + ko)’ (K1? + K2) = 8ghiko K Ko~ S hor bl b 2ioX, (6.7¢)

where we have taken §(10) = §§O) =0 without loss of generality. Noting that if we suppose |k1| > |kz|
and keep X to be constant together with ¢ going to infinity, we find that there is only k;-soliton left
along the line X| = constant and also find how the k;-soliton is asymptotically identified by its top
trace and amplitude, for both # — +co.

Let us present the detailed results. When kp > 0, t —» +coork, <0, t — —co,i.e.,sgn[ky]-t — 400,

the solution (6.7) becomes

2k 2k X +4k;31)
U= )
2k + 2 Xi+dh’0(] — g /K %)
8ki3K.4 8k, 3 1+2k1 X,
_ 1 Rie - (6.8a)
[2k1K)? + (=g + K ?)e2aXi k0]
and when sgn[k;] - t = —co (6.7) becomes
F
U=—, 6.9
G (6.92)
2
Fy=8k*Ki* (k1 + ko)’ [g(ki Ky + ka(K1 = 2K2)) + Ki(—k1 + k)Kp*] X1, (6.9b)
Gy =[-2Ki K *(K1 + K2)*(8 — K2°) + [(87 + K1 K2*)(K1 — Ka)?
- g((K1* + K2P)(Ki? + Ko?) + 2K KoKy — 4K Ky + Kp*)]e? 1 2, (6.9¢)
One can also rewrite the two-soliton solution (6.5) in terms of the coordinates
(X2 =x + 4k;%1,1), (6.10)

and do a similar asymptotic analysis for the k-soliton. We summarise the above analysis and reach
the following theorem about how the two-soliton waves interact with each other.
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Theorem 1. The asymptotic behaviour is described as follows. Suppose that |ky| > |kz| in (6.7).
Then, when sgnlk;] - t — +oo, the k;-soliton asymptotically follows

2k K,
top trace : x(f) = —4k; 2t + —1 |1—12| (6.112)
-g+Ki
) kK2
amplitude : Amp=———, (6.11b)
g+ K,
and when sgnlk;] - t = —oo, it asymptotically follows
2ki K12 (ki + ka)*(g — K»?
top trace : x(t) = =4k %t + — 1 ‘ 1Kkt k) (s = 5 )| (6.12a)
2k Q+2k1k2(K1 + K )
ki 2[gK 1 (ky + ky) — 2k Ky + K K2(ky — k)]
amplitude : Amp=— 17 [gK1 (ki + ka) 8222 1K5 (ky — k)] . (6.12b)
(& - K30
When sgn[k;] - t = —oo, the kz-soliton asymptotically follows
1| 2kkK?
top trace : x(f) = —4kr’t + — In|——— 6.13a
p ()= —4hkat + 5 |_g+K22| (6.13a)
ko K»?
amplitude : Amp=——— (6.13b)
-8+ K>
and when sgnlki] - t = +oo, it asymptotically follows
2ka K12 (ky + ko) (g — K12
top trace : x(t) = =4k %t + — 1 ‘ 2K + ko) (g 21 )| (6.14a)
2ky Q+2k1k2(K1 + K> )
ko2 [gKo (ki + ko) — 2gki Ky + K12 Ko (ky — k)T
amplitude : Amp = — 2 [gKa (ki + ko) — 2gki1 Ky + K1"Ka(ky — k1)] ’ (6.14b)

(g-KDQ

with Q = g2 (k; —k2)? = g[(K;? + K2?) (k; + k> )2 8k]k2K1K2 ]+ K12K22(k1 — k2)?. The phase shift
lnl(k1+k2) (g— Klz)(g KZ )l
0+2kika (K> +K2?)

Jfor the kj(j = 1,2)-soliton after interaction is — 5

Vil. STRAIGHT CONTINUUM LIMITS

The skew continuum limit of the elpKdV system (4.7) was considered in Ref. 1 where the authors
studied initial value problems of the system. Such a limit is performed by introducing the skew-change
of variables (n,m) > (N'=n + m, m).

Let us consider the straight continuum limit, where we first take

m— o0, b— oo, While%=7—70~0(l), (7.1)
with 7y being a constant. We define
U=ty = Up(7), =S =185p(T), W =Wy =2 Wy(T). (7.2)

Then, applying the Taylor expansions into (4.7) at 7, the leading term (in terms of 1/b) of each
equation yields the following semi-discrete equations:

O (U + u)=2a(i — u) — (7 — u)> + g(3 — 5)°, (7.32)
3:(s3)=G — s)(a5 + as — W + w) + us” + us”> — s3(u + ), (7.3b)
(a+u- %)(a T+ %) = a® — R(s5), (7.3¢)
O (u + %) - %)2 —R(s), (7.3d)

in which both (4.7b) and (4.7¢) yield (7.3b) in the continuum limit. Here we note that this semi-
discrete system can be viewed as an elliptic Bicklund transformation of the epKdV system (5.13).
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One natural question is whether the elpKdV system (1.1) can be rederived from this elliptic Backlund
transformation as a superposition formula. This will be considered elsewhere. Here we also point out
that the non-elliptic limit (7.3a) can perhaps be viewed as an elliptic version of the dressing chain
given by Veselov and Shabat in Ref. 13.

For the full limit of (7.3), first we take

n— oo, a— oo, while 1 =§~0(a2) 7.4)
a

and then introduce continuous variables x and ¢,

3

=7+4+¢, t=——, 7.5
x=1+¢§ a2 (7.5)
with £ as an auxiliary variable. Then, in the coordinates (x,t) both (7.3c) and (7.3d) yield
2
(i+2) +(u-2) =R, (7.6)
S x N

(7.3a) yields (5.13a) and (7.3b) gives (5.13b). For this to be possible, we need to make use of the
relation sy, = 2(gsh, —usy + wy), which is obtained as a continuous limit of the summation of (21_.80,)
and (4.6d).

If we employ the transformation A = —u + % in the Equations (7.3b) and (7.3c), it turns out that

8:(s5) = (5 — 5)(a@5 + as — A5 + As) + us® + us® — s5(u + %), (7.7a)
(a+u—-A-u)a-u+A+u)=a* - R(s3). (7.7b)

The continuum limit of (7.7) gives the coupled system (5.16), where we use the relation u, = %(R(sz) -
A% — A,), which is simply (7.6) written in terms of A and u, derived from (7.3d).

VIIl. CONCLUSIONS

In this paper a new class of solutions of the elliptic KdV systems (both the discrete (1.1) and
the continuous (1.2)) has been uncovered. We made use of Sylvester-type equation with elliptic
ingredient. Solutions can be classified by the canonical form of k, which are much richer than pure
solitons. A typical feature of two soliton solutions is the amplitude change after interaction.

A Cauchy matrix dressed by dispersion relations usually satisfies a Sylvester equation. Starting
from the Sylvester equation and dispersion relations, we find that not only integrable equations can
be derived but also their solutions and Lax pairs can be constructed. The Cauchy matrix approach is
particularly powerful in the study of discrete integrable systems (see Refs. 6 and 8), as well as con-
tinuous systems.” Dressed Cauchy matrices also play key roles in the so-called operator method, 41"
trace method, 20 etc.

There are two ways elliptic curves can play a role in integrable systems: either as elliptic type
solutions (i.e., solutions expressible in terms of elliptic functions) or as elliptic deformation of the
equations themselves. In either way, the study of the elliptic case is often richer than the rational
and trigonometric/hyperbolic case, and reveals many new features of the models in question, thus
leading to new insights into the true nature of those integrable systems.?'~?® In this paper, we have
shown that the Cauchy matrix approach works for the study of some elliptic integrable systems, i.e.,
some equations in these systems are formulated with an elliptic curve. Starting with the Sylvester
equation (1.6), we derived the discrete as well as continuous elliptic KdV systems. Apart from finding
and illustrating the solutions, we also obtained Lax representations. With regard to the solutions, the
discrete plane wave factor (C2) and continuous one (C5b) are defined with the wave number k; which
together with K; obeys the elliptic curve (1.3). For the Lax pairs (4.18) and (5.19), (k,K) plays the
role of spectral parameters which also obeys the elliptic curve.
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APPENDIX A: LOWER TRIANGULAR TOEPLITZ MATRICES
Here we collect some properties of Lower triangular Toeplitz (LTT) matrices.
A Nth order LTT matrix is a matrix of the following form:

ag 0 0 ---00
ay aj 0O ---00
..-00

(g} =| @ @ @ (AD)
an an-1 an-2 - a2 ai/y
Let
TN = (1™ ({a; )}, (A2)

then we have AB=BA, VA,BE‘J'[N ], ie., TV is a commutative set with respect to matrix
multiplication. Particularly, the subset

TV = {Fe TN | det(F) # 0} (A3)

is an abelian group.
Obviously, the Jordan block matrix

a 0 0 0 O
1 0 0 O

FEN](CI)Z 0 1 a 0 0 (A4)
o 0 0 --- 1 a

is a LTT matrix, and one can verify the following.
Proposition A.1. IfA € Cyxy and FBN](a)A =A I‘[JN] (a), then there must be A € TN,

If a; € C, then the LTT matrix (A1) can be generated by certain functions. Suppose that f(k) is an
analytic function. Using Taylor coefficients

O B kys j=1.2....,N (AS)

aj= —
TG-D!
we can generate a LTT matrix.

Definition 1. The matrix (Al) with (A5) is called a LTT matrix generated by f(k) at k = ko,
denoted by TN f(ko)], and f (k) is called the generating function.

In light of this definition, the Jordan block (A4) is generated by f (k) = k at k = a, and the unit matrix 1
is generated by f(k) = 1. On the other hand, for any LTT matrix (A1) with g; € C, it can be generated
by the polynomial
N
atk)= ) ajk —koy™' (A6)
J=1
with {aj} as coefficients. Next, by [f ()ko™1 we denote a set of functions (equivalence class) in
which all the functions have the same (N — 1)th order Taylor polynomial at k = k¢ as f(k) has. Say,
f(k) ~ g(k) if they have the same (N — 1)th order Taylor polynomial at k = ko. Thus, the LTT matrix

(A1) can be generated by any f(k) € [a(k)]l[{](:’ 1. With such correspondence, we have the following.

Proposition A.2. If A = TW[f (ky)] and B = T™N[g(ko)), then
C =AB =T f(ko)g(ko)], (A7)
i.e., AB is a LTT matrix generated by f(k)g(k) at ko. As a result, we have

[ [Tt =™ ko))
J=1 J=1
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and .,
(TN ko)) = T™N[1/f (ko))
if f(ko) #0.

Proof. We only need to prove (A7). Suppose
A=y, B=0pyyy> €= (Cijlyyy-
Then we have (with k = kq)

lJ
{(,_,), CNEY

b (,_—j)'al (k). l>]
0, i<j’ =

0, i< ]
and (with k = kg)

N
:Z (l az Yf(k) )' 87 gk)
_Z (i— l)lll Ay - algk) (i2))
i—j

Y Z 7 (Ftoghy, (i =)),

I=i—j
and ¢; = 0 when i <j. Thus, (A7) is proved.
In addition to the LTT matrices, we define the following skew triangular Hankel matrix:

by - by by_1 by
by ---by_1 by 0
HM (b)) = by --- by 0 0

by 00 0/,

The following property holds.”

Proposition A.3. Let

Then we have

(1) H=HT, vH T
(2) HA=HAT =ATH, VA e T vH ¢ TN,

It can be extended to the following generic case.

Proposition A.4. Let
9““ = (Diag(T) ({ar 1Y), TN ({ar 1Y), T™M ({az 1), -, T™M {ag Y )),

5™ = (Diag@Y (b1 1V, HN (b2 ;1) HN (b3 ;)2 - -, HN ({1 V))),

where 0 <N; <N forj=0,1,...,N andzjs.leij. Then we have

(1) AB=BA, YA,Bec g
2) H=HT, vHed"™
(3) HA=(HA) =ATH, VA e 5™ vH G

(A8)

(A9)

(A10a)
(A10b)



033504-23 Sun, Zhang, and Nijhoff J. Math. Phys. 58, 033504 (2017)

APPENDIX B: LIST OF NOTATIONS

Here we list some notations used in the paper.

(k1Y) = Diag(ki, ko, - -+ k), (k7 # k7, ki #0), (Bla)
kk 0 O --- 0 O
1 &k 0 -+ 0 O

gy=| 0 1 ko 0 0| (B1b)
0 0 0 - 1 Kk

T = Diag (T ({1, TN oy, ), T ey 2), - T iy 6210)), (Blc)

where Zf':] N;=N. The subscripts p, ;, and ¢ correspond to the cases of I" being diagonal, being of
Jordan block and generic canonical form, respectively. Besides,

N-th order vector : e™'=(1,1,1,...,1)7, (B2a)
N-th order vector : e[]N] =(1,0,0,..., O)T, (B2b)
T
1 -1 1 (-DN!
LNl = (2 =
N-th order vector : g (a)= (a’ TN ) s (B2c)
. 1 - g/(KiK;)
N X N matrix : G%V'({kj}]]\') =(Gijlyxy: Gij= Tk] (B2d)
i Tk
APPENDIX C: EXPLICIT FORMS OF r AND ¢
Here we list out the explicit forms of r and ¢ satisfying (4.1) and (5.1), respectively.
1. Solution to (4.1)
(1) When I'=T'V({%;}Y), we have
r=r () = (ris oy )T, with ri = (C1)
where
a+ ki " b +ki " 0
i=(—2 ) C2
Iy (a_ki) (b—k,») P (C2)
and p! is a constant.
(2 When I =T'V(), we have
o
r=r =) with = (C3)
where p; is defined in (C2).
(3) WhenT' =T, we have
rp (k1)
™ ey, o)
r=| ) | (C4)

7
N
"[J v +5-19)

where r[DN‘]({kj}llv‘) and rEN"](kj) are defined as in (C1) and (C3), respectively.
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2. Solution to (5.1)
(1) When I =T ({k;}Y) we have r=riY({,;}Y), which is given in the form of (C1) and

e=cpl i) =(cr,c2,...,en)", with ¢ =73, (C5a)
but here
pi=e%, &=kix+4k3t + &Y, with constant £ (C5b)

(2) When I'=I'"(k), we have r =r'" k1), which is given in the form of (C3) and
c=cMk)=(cr,ca,.. e, with e =ry 1, (C6)

where p; is defined in (C5b).
(3) WhenI'= l"gv] we have r, which is given in the form of (C4) and

ep (k1)
My, e1)

c= CBNz](kNl +2) > (C7)

"
C[J Dk, +(s=1))

where c%vl]({kj}llv 1 and cBN i ](kj) are defined as in (C5a) and (C6), respectively.
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