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Running head: Estimating Reoperation Risk After Knee Replacement 
 
 
ABSTRACT 

Tools that provide personalized risk prediction of the outcomes after surgical procedures help 

patients to make preference-based decisions amongst the available treatment options. 

However, it is unclear which modeling approach provides the most accurate risk estimation. 

We constructed and compared several parametric and non-parametric models for predicting 

prosthesis survivorship after knee replacement surgery for osteoarthritis. We used 430,455 

patient-procedure episodes between April 2003 and September 2015 from the National Joint 

Registry for England, Wales, Northern Ireland and the Isle of Man. The flexible parametric 

survival and random survival forest models most accurately captured the observed probability 

of remaining event-free. The concordance index for the flexible parametric model was the 

highest (0.705; 95% confidence interval: 0.702, 0.707) for total knee replacement, 0.639 (95% 

confidence interval: 0.634, 0.643) for unicondylar knee replacement and 0.589 (95% 

confidence interval: 0.586, 0.592) for patellofemoral replacement.  The observed-to-predicted 

ratios for both the flexible parametric and the random survival forest approaches indicated 

that models tended to underestimate the risks for most risk groups.  Our results show that the 

flexible parametric model has a better overall performance compared to other tested 

parametric methods, and better discrimination compared to the random survival forest 

approach.  

 

Keywords: knee replacement, revision surgery, time-to-event analysis, random survival 

forest, flexible parametric survival model, parametric survival model, calibration, 

discrimination 
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Abbreviations: AIC, Akaike Information Criterion; BMI, Body Mass Index; Concordance 

Index (C index); FPM, Flexible Parametric Model; NJR, National Joint Registry for England, 

Wales, Northern Ireland and the Isle of Man; PFR, Patellofemoral Replacement; RSF, 

Random Survival Forest; TKR, Total Knee Replacement; UKR, Unicondylar Knee 

Replacement. 

 

Shared decision-making between a patient and their doctor is fundamental to good clinical 

practice (1, 2), and improves patient knowledge about medical treatments and their associated 

benefits and risks (3). Decision aids fill the gap between population-level data and its 

application to the patients’ individual circumstances to better inform patients making choices 

about healthcare interventions (4-6). The use of decision aids in controlled settings enhances 

patient participation in the process, improves their knowledge and satisfaction, and reduces 

decisional conflict (1, 7-9). Patient engagement through shared decision-making reduces 

inequalities in health between patient groups and benefits healthcare economies through 

improved clinical outcomes and better resource utilization (10).  

Osteoarthritis is the most prevalent musculoskeletal disease and is a leading cause of chronic 

pain and disability worldwide (11-13). In the UK alone, nine million people currently seek 

treatment for osteoarthritis with a total indirect cost to the economy of £14.8 billion per 

annum (14, 15). Each year almost 100,000 individuals undergo knee replacement surgery in 

England and Wales (16), with a direct cost of £546 million for the inpatient stay alone (14) .  

The National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (NJR) 

(17)  was established in 2003 to collect audit data on all total hip and knee replacement 

surgery in these regions, for which it has a completeness rate of 97% (18).  
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Evidence-based decision-making in the setting of joint replacement surgery, where such 

decisions are preference-sensitive (6, 19), enable the patient to arrive at an informed choice 

amongst several alternative treatments (5). The development of a personalized decision aid in 

this setting requires the generation of a time-to-event model that incorporates individual 

characteristics, prosthesis choice and other fixed and modifiable risk factors. The choice of 

such models is potentially large, and includes semi-parametric Cox models, parametric 

survival models, flexible parametric survival models (FPM), and random survival forests 

(RSF). These models can be adapted to provide an estimate of the absolute risk of the 

outcome of interest for each individual. We used the NJR dataset to assess the performance of 

these methods for individual prediction of the risk of prosthesis revision over an 8-year 

interval after knee replacement. 

MATERIALS AND METHODS 

Study population 

Our base dataset was 787,106 knee replacements carried out in England and Wales between 

April 2003 and September 2015. We excluded procedures where osteoarthritis was not the 

only indication for surgery (29,918), patients with a body mass index (BMI) of below 15 or 

above 55 kg/m2  (2,485), patients aged younger than 30 or older than 100 years (262), and 

those with an American Society of Anesthesiologists grade 4 or 5 (2,782) indicating severe 

comorbidities.  We conducted a complete case analysis and excluded procedures with missing 

data on any of the study covariates, namely: BMI (316,828 missing), knee replacement 

procedures  (10,648 missing) and chemical and mechanical thromboprophylaxis (1,589 

missing). This resulted in 430,455 cases with complete information. 

Separate models were constructed for each of the procedures being considered: total knee 

replacement (TKR), unicondylar knee replacement (UKR), or patellofemoral replacement 
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(PFR), due to differences in survival performance characteristics of the different prosthesis 

categories (20). 

 

Outcome and covariates 

 

The outcome of interest in our time-to-event models was time to first revision surgery. We 

linked primary knee replacement procedures to revision procedures recorded in the NJR using 

a unique patient identifier and side (left or right knee). Patient death with a non-revised 

prosthesis was considered as censored. Analysis covariates included age, BMI, sex, American 

Society of Anesthesiologists grade, chemical and mechanical thromboprophylaxis, and 

operation type (unilateral/ same-day bilateral) based on their known association with 

prosthesis revision (21-23). The revision of each side of both simultaneous and sequential 

bilateral procedures was considered independently, with separate time-to-events for each side.  

Sequential bilateral procedures performed on different dates were considered as independent 

unilateral operations. Previous research has shown that ignoring the potential dependence 

between procedures in the same patient does not lead to bias (24). 

 

Modeling approaches 

 

In standard parametric methods a distribution for time-to-event data is assumed where the 

unknown parameters are inferred using the maximum likelihood estimation. Here, we 

considered exponential, Weibull and log-logistic distributions. The exponential distribution is 

defined by a single scale parameter and assumes a constant hazard over time.  The Weibull 

distribution is a two-parameter distribution with scale and shape parameters producing 

increasing (shape parameter > 1) and decreasing (shape parameter < 1) monotonic hazard 
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 6 

functions (25). The Weibull and exponential models are proportional hazards models.  The two-

parameter log-logistic model is a proportional odds model that can produce a decreasing 

monotonic (shape parameter ≤ 1) or unimodal hazard function (shape parameter > 1) depending 

on the shape parameter (26). 

If the estimation of the time-to-event distribution itself is not required the semi-parametric Cox 

model can be used to estimate the effect of covariates on the baseline hazard function.  The Cox 

model assumes proportional hazards and can be fitted by maximizing a partial likelihood 

function (27, 28). 

The standard parametric models explained above place specific constraints on the shape of the 

hazard function.  The FPM offers an alternative approach such that restrictions on the shape of 

the hazard function are relaxed (29). In this approach the baseline cumulative hazard or odds 

function is modeled as a flexible function of log time using restricted cubic splines. Restricted 

cubic splines are piecewise third-order polynomials that are smoothly joined together at break 

points or knots (30). The complexity of the baseline distribution is determined by the number 

and position of knots in the spline function. Optimal placement of knots is not essential, thus a 

simple centile-based approach can be adopted (30).  The model is fitted with either a 

proportional hazards or odds assumption using maximum likelihood estimation. 

The RSF algorithm (31) is a machine learning tool for modeling time-to-event data and is an 

extension of random forest classifiers and regressors introduced by Breiman (32). The RSF is 

a distribution-free method and its tree-based architecture can take possible interaction effects 

into account through hierarchical splitting. The RSF approach also accounts for nonlinearity 

by dichotomizing continuous variables at split points (31). In RSF B bootstraps are drawn 

from the original dataset and each bootstrap sample is used as a root node to grow a survival 

tree. A subset of covariates is randomly selected at each node of the tree. The node is then 

split into two left and right daughter nodes using a covariate that gives the maximum survival 
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difference between daughter nodes. This can be done through a measure of separation such as 

the log-rank test (33-35). For continuous covariates splits over all possible values are 

considered and an optimal cut-off is then chosen. The tree is grown until each terminal node 

contains at least a pre-specified number of unique cases. For every tree the cumulative hazard 

function for each terminal node can be calculated using the Nelson-Aalen estimator (36, 37). 

This gives a series of estimators that correspond to different terminal nodes that define the 

cumulative hazard function for the tree.  The estimated tree’s hazard function for an 

individual is the Nelson-Aalen estimator for the individual’s terminal node and an average 

cumulative hazard function is calculated across all trees in the random forest. It is 

recommended that between 64 and 128 trees are used to achieve a balance between model 

performance, processing time and memory usage (38). 

 
Overall model performance  
 
 
We used the Akaike information criterion (AIC), a measure that compromises between 

goodness-of-fit and model complexity (39), to provide an overall measure of the performance 

of the parametric models.  We also compared model predictions by averaging the time-to-

event estimates for individuals at each time point and comparing to the population-based 

estimation (Kaplan-Meier). 

 

Model validation 
 
 
We applied repeated m-fold cross-validation to measure the performance of candidate models 

overall predictive value, discrimination ability and calibration (40). In m-fold cross-

validation, the dataset is randomly assigned into m partitions of approximately equal size. The 

model is then constructed m times using m-1 of the partitions and tested on the remaining part 

of the data. The m test results are then averaged to compute an overall performance measure. 
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This ensures that all available data is used for training and testing the models. In repeated 

cross-validation the above procedure is performed several times. This reduces the variation of 

the m-fold cross-validation due to the random partitioning (41) and also allows the 

computation of confidence intervals for performance measures. 

Overall validation performance. We evaluated the overall performance of models using the 

time-dependent Brier score, a commonly used tool in clinical outcomes analysis (42).  The 

Brier score is a proper score function that evaluates the accuracy of probabilistic forecasts, 

and is calculated as the weighted average of squared distances between the observed outcome 

and predicted probability of that outcome at fixed time points (43). The weights are 

introduced to incorporate information from censored data and calculated using a model for 

either marginal or conditional censoring distribution. Time-dependent Brier scores can be 

integrated over time to provide a summary measure of overall performance. The nearer the 

Brier score is to zero for a set of predictions, the better the predictions match the observed 

outcomes. 

Discrimination. We evaluated the discrimination capability of our models using an extension 

of Harrell’s concordance index (C index) (44). The Harrell’s C index is the proportion of pairs 

of subjects in which the one with the shorter time-to-event is associated with a higher 

predicted risk. This ignores pairs where the shorter time-to-event are censored to produce a 

result that depends on the censoring distribution. This is addressed by introducing a weighted 

C index, where the weights are similar to that of the Brier score (45). 

Calibration. The models were further validated using a calibration process. Calibration is 

used to test the agreement between the predicted risks and the observed risks for different risk 

groups. These risk groups can be formed by dividing the predicted risk into quantiles. The 

observed risk for each group can be then computed using Kaplan-Meier method within that 

risk group (46). 
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Statistical analysis 

 

We implemented different time-to-event models for each of the TKR, UKR and PFR 

procedures with the same set of covariates. We performed a complete case analysis assuming 

that data were missing at random, and only used cases with complete data on the covariates of 

interest.  In parametric models a linear combination of the covariate vector is used to form the 

risk score. We also investigated non-linear associations of age and BMI with the outcome 

using first-degree and second-degree fractional polynomials (47). The number of unknown 

parameters in the baseline hazard function depends on the chosen model: one for the 

exponential model and two for Weibull and log-logistic models. For the FPMs we used AIC 

values as guidance for selection of the scale, proportional hazards or odds, and the number of 

knots as proposed by Royston and Parmar (29).  In the RSF approach each random forest was 

computed using 100 bootstraps samples and the log-rank splitting rule.  

The parametric models, estimated by maximum likelihood, were compared using AIC values. 

We also compared average (over individuals) prediction of each model with Kaplan-Meier 

estimates.  

We then selected the models which could capture the overall survival pattern and further 

evaluated them using 50 repeats of five-fold cross-validation by comparing the Brier score, C 

index and calibration plot. We also performed our evaluation using 50 repeats of stratified 

five-fold cross-validation (48) where each fold contains the same proportion of revised and 

unrevised cases as in the original data.   

The statistical analyses were carried out using R (randomForestSRC (49), survival (50, 51), 

flexsurv (52) and pec (53) packages). 

 

RESULTS 
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Baseline characteristics of the complete dataset are given in Table 1.   

For the FPMs we used proportional hazards scale with three interior knots for TKR and UKR 

models, and one interior knot for the PFR model.  For TKR and UKR models the internal 

knots are placed at quartiles of the log uncensored survival times which results in five 

parameters in the baseline hazard function. For the PFR model the internal knot is placed at 

the median of the log uncensored survival times, giving three parameters in the baseline 

hazard function.  Partial dependence analysis based on predictions from RSF (54) suggested 

non-linear associations between age and BMI and the outcome. We further analyze these 

associations with the FPM using fractional polynomial fitting (47).  The results are shown in 

Web Table 1 where only powers with the largest deviance differences are reported. The 

results show that the reduction in deviance is not significant (P value of 5%) compared to the 

case where untransformed variables were used.  

In RSF age and BMI were always selected for splits but other results for other variables were 

less stable. Mechanical prophylaxis, chemical prophylaxis and American Society of 

Anesthesiologists grade were moderately selected for splitting nodes, while gender and 

operation type were selected in a small fraction of the resamples.  

The three parametric proportional-hazards models, log-logistic model and the semi-parametric 

Cox model for TKR are presented in Table 2 (UKR and PFR are shown in Web Table 2 and 

Web Table 3).  The hazard ratios from the parametric proportional-hazards models were in 

close agreement to the Cox semi-parametric model. Note, the hazard ratio estimates of the 

FPM approach are closer to that of the Cox model compared to other proportional-hazards 

models. This is expected as the Cox model and the FPM should give unbiased hazard ratios 

whereas the hazard ratios conditional on a specific parametric model could be biased if the 

distribution is mis-specified.  The odds ratios of the log-logistic model also showed a 

consistent behavior with respect to hazard ratios.  
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Overall performance  

 

The AIC values, degrees of freedom and deviances (twice the negative likelihood) for the 

parametric models are shown in Table 3, where the FPM is preferred (lowest value) by the 

AIC. The RSF is not included in Table 2 and Table 3 as it is a non-parametric approach and is 

not fitted via the maximum likelihood algorithm and hence, AIC cannot be calculated.  

The averaged predicted survival curves over all individuals along with the observed (Kaplan-

Meier) curve over time are plotted in Figure 1. The results show that the FPM and the RSF 

method capture the observed probabilities of remaining event-free accurately. The averaged 

hazard curves for the parametric models are also given in Figure 2, showing that the FPM can 

capture the increase and decrease of the hazard rate in the early and the later stages after 

primary surgery. This may explain its lower AIC values compared to the other parametric 

models. Figure 1 also suggests that there is insufficient information after year eight, thus only 

data up to this timepoint was used in subsequent analyses.   

 

Repeated m-fold cross-validation 

Only the FPM and RSF approach were considered for further comparison given their 

performance in the previous analysis. The integrated Brier score of the FPM and the RSF at 5 

and 8 years are shown in Table 4. FPM and RSF yielded almost identical integrated Brier 

scores. 

The C index of the FPM and the RSF at 8 years are presented in Table 5. The FPM model has 

a higher C index across all procedures, with the greatest contrast versus the RSF models being 

for TKR, followed by UKR. 

Calibration was assessed by dividing the data into deciles of predicted risk of experiencing 

prosthesis revision within eight years. Calibration plots were then constructed (Figure 3) to 
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compare observed and average predicted risks for each decile. The absolute probabilities of 

prosthesis revision along with observed-to-predicted ratios of each decile for different models 

are also presented in Table 6.  

The observed-to-predicted ratios indicate that the models tended to underestimate the risk in 

majority of cases. This underestimation may suggest that additional factors associated with 

revision are absent from the dataset. However, the observation that RSF both underestimates 

the risks in the low-risk groups and overestimates the risk in the highest risk decile suggests 

an over-fitting bias despite the ensemble averaging over all trees.  

We present additional analyses using 50 repeats of stratified five-fold cross-validation in Web 

Table 4 and Web Table 5 where the results are similar to those in this section. 

 

DISCUSSION 

 

Here we presented a comparative evaluation of alternative survivorship models for knee 

replacement using the world’s largest knee replacement clinical dataset. A variety of 

performance metrics were used to evaluate the generated models. The flexible parametric 

survival model outperformed other methods although its predictive ability was, at best, 

modest. The FPM and RSF gave identical integrated Brier scores, however, FPM had a higher 

C index. The observed-to-predicted ratios indicated that both models tended to underestimate 

the risks in majority of risk groups. 

Brier scores close to zero indicate that models are able to calculate underlying risks by 

usefully extracting information from data. The C index uses individual predicted probabilities 

to distinguish unrevised from revised cases and our results of C index show that the models 

are capable of providing meaningful individual predictions, with a range from 0.59 to 0.71 

depending on the model chosen.  

O
R
IG

IN
A
L
 U

N
E
D

IT
E
D

 M
A
N

U
S
C
R
IP

T
 

Downloaded from https://academic.oup.com/aje/advance-article-abstract/doi/10.1093/aje/kwy121/5035681
by guest
on 11 June 2018



 13 

The main disadvantage of parametric methods is that the assumed underlying distribution 

may be misspecified. The FPM incorporates a parametric distribution with flexible 

complexity to minimize the problem of model misspecification. However, there is no 

theoretical basis for the number and locations of the knots for the estimation of the baseline 

scale (30).  Other popular flexible methods include piecewise exponential models (55), 

Bayesian survival models (56) and alternative spline based approaches (57). The RSF 

algorithm does not make any modeling assumptions and can handle non-linear effects and 

interactions. However, categorization using data-dependent splits gives a sub-optimal 

representation of a continuous variable (58), and the optimal setting of tuning parameters such 

as the number of trees, the splitting rule and the number of randomly selected variables for 

each node split may also represent challenges with this method. Alternative machine learning 

techniques in modeling time-to-event data are Survival-SVM (59) and other ensemble 

schemes such as boosting methods (60).  

We carried out a complete case analysis assuming that data were missing at random and thus 

only used patients with complete data on the covariates of interest. Approximately 41.8% of 

data were excluded, mostly due to missing BMI data (40.2%). We consider that this is 

unlikely to affect the results of our comparative study, but could be addressed using multiple 

imputation techniques (61, 62). However, results from previous studies using imputed BMI 

have produced almost identical results to selective complete case analysis (23). The 

constructed models do not consider the competing risk of death, thus possibly biasing 

estimates of the prosthesis revision probability. These models can be further extended to 

accommodate competing risks in the calculation of the absolute risk for each individual (63, 

64). Here we assumed a proportional-hazards spline model where time-dependent effects 

were not considered. This may also have caused bias in the risk estimates (65) of  prosthesis 

revision. The flexible model can be further extended for possible improvement in fit by 
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adding interactions between covariates and the effect of time (29).  Finally, an external 

validation to assess the generalizability and transportability of the model among different 

populations is required (66).  

We created different algorithms to model time-to-event for the three knee replacement 

procedures as the demographic characteristics of the patient populations undergoing each, 

whilst overlapping, are distinct and our aim was to model individual time-to-event estimates 

based on real-world data. However, the observed differences in revision events between the 

procedure types raises the separate question of whether this differential revision rate is a 

function of the procedure, the prosthesis, the patient, or a combination of these. One approach 

to model this would be to select random datasets from the overlapping variable characteristics 

within the cohorts and to estimate a joint model with indicator variables for the different 

procedures. An alternate modeling approach such as propensity score matching might also be 

employed. However, with both approaches the residual challenge of unobserved confounding 

would remain (67).  

Our findings indicate that predictive algorithms based upon the largest current knee 

replacement and surgical outcomes dataset have a modest ability to predict individual survival 

performance. Further variables not captured within routinely collected clinical audit datasets, 

such as time between prosthesis insertion and diagnosis of failure rather than time to revision 

surgery, and the development of novel algorithm methodologies may enhance predictive 

ability in the future. However, use of current data-driven point estimates of prosthesis 

performance despite modest discriminatory ability may still be sufficient to help inform 

preference-based decision-making, although clinical trials of their implementation will be 

required to confirm their utility.  
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FIGURE LEGEND 

 

Figure 1. Observed and predicted  probabilities of remaining event-free from different models 

and for A) Total Knee Replacement, B) Unicondylar Knee Replacement and C) 

Patellofemoral Replacement using data from the National Joint Registry for England, Wales, 

Northern Ireland and the Isle of Man (between April 2003 and September 2015). Predicted 

probabilities of remaining event-free are obtained from different models including 

exponential model, Weibull model, log-logistic model, flexible parametric model (FPM) and 
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random survival forest (RFS). The Observed probability of remaining event-free is obtained 

from the Kaplan-Meier estimator.  

 

Figure 2. Hazard estimates for different parametric models and for A) Total Knee 

Replacement, B) Unicondylar Knee Replacement and C) Patellofemoral Replacement using 

data from the National Joint Registry for England, Wales, Northern Ireland and the Isle of 

Man (between April 2003 and September 2015).  

 

 

Figure 3. Calibration plots of prosthesis revision showing predicted risks (black bars) and 

observed risks (white bars) for different risk groups.  (A, D) Total Knee Replacement, (B, E) 

Unicondylar Knee Replacement and (C, F) Patellofemoral Replacement. Top and bottom 

panels show the results for flexible parametric model and random survival forest respectively. 

Results obtained using data from the National Joint Registry for England, Wales, Northern 

Ireland and the Isle of Man (between April 2003 and September 2015).   
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Table 1.  Baseline Characteristics of the Complete Dataset. The Data is From the National Joint 
Registry for England, Wales, Northern Ireland and the Isle of Man (Between April 2003 and 
September 2015). 
 TKR UKR PFR 
Characteristic No. % PTIR No. % PTIR No. % PTIR 
Outcome 

 
    

  
  

  
  

 Unrevised 381,322 98.4 
 

36,009 95.5 
 

4937 93.1 
  Revised 6,137 1.6 

 
1,684 4.5 

 
366 6.9 

 Age, years 70.2 (9.1)a 0.45 64.0 (9.7)a 1.25 59.6 (11.4)a 1.90 
BMI b 70.2 (9.1)a 0.45 30.1 (5.0)a 1.25 29.5 (5.3)a 1.90 
Gender 

          Female 221,178 57.1 0.41 17,542 46.5 1.30 4,148 78.2 1.73 
 Male 166,281 42.9 0.50 20,151 53.5 1.21 1,155 21.8 2.53 
ASA Physical Status 

          P1 39,075 10.1 0.49 8,179 21.7 1.32 1,378 26 1.80 
 P2 286,693 74.0 0.44 26,432 70.1 1.22 3,503 66.1 1.95 
 P3 61,691 15.9 0.49 3,082 8.2 1.37 422 8.0 1.82 
Chemical Prophylaxis 

          None  23,418 6.0 0.43 2,863 7.6 1.31 407 7.7 2.18 
 Aspirin only  27,996 7.2 0.42 4,407 11.7 1.16 745 14.0 1.63 
 LMWH± Aspirin  248,124 64.0 0.45 21,518 57.1 1.29 2,949 55.6 2.05 
 Other/Other Combinations 87,921 22.7 0.47 8,905 23.6 1.19 1,202 22.7 1.52 
Mechanical Prophylaxisc 

          None 23,418 6.0 0.47 1,273 3.4 1.68 249 4.7 2.75 
 Active 84,589 21.8 0.46 8,476 22.5 1.17 1,234 23.3 1.45 
 Passive 125,239 32.3 0.44 11,820 31.4 1.22 1,488 28.1 2.31 
 Both 148,761 38.4 0.45 15,775 41.9 1.27 2,231 42.1 1.76 
 Other/Other Combinations 5,452 1.4 0.35 349 0.9 1.63 101 1.9 1.14 
Operation Type 

          Unilateral 381,650 98.5 0.45 35,542 94.3 1.29 4,791 90.3 2.02 
 Simultaneous Bilateral 5,809 1.5 0.31 2,151 5.7 0.75 512 9.7 0.80 

Abbreviations: ASA, American Society of Anesthesiologists; BMI, Body Mass Index; PFR, 
Patellofemoral Replacement; PTIR, Patient-Time Incident Rate; SD, Standard Deviation; TKR, Total 
Knee Replacement; UKR, Unicondylar Knee Replacement. 
a Values are expressed as mean (standard deviation). 
b Weight (kg)/height (m)2 . 
c In Mechanical Prophylaxis , Active includes foot pump and calf compression whereas Passive is 
ThromboEmbolic Disease (TED) stockings. 
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Table 2. Parametric and Semi-parametric Cox Models of Prosthesis Survivorship for Total Knee Replacement Using Data From the National 
Joint Registry for England, Wales, Northern Ireland and the Isle of Man (Between April 2003 and September 2015). 
 

 
Exponential Model Weibull Model FPM Cox Model Log-logistic Model 

Characteristic HR 95% CI HR 95% CI HR 95% CI HR 95% CI OR 95% CI 
Age, years 0.955 0.953, 0.958 0.953 0.950, 0.956 0.955  0.953,0.958 0.955 0.953, 0.958 0.953 0.950, 0.956 
BMI a 1.009 1.004, 1.014 1.009  1.004, 1.014 1.008 1.003, 1.013 1.008 1.003, 1.013 1.009 1.004, 1.014 
Gender 

           Female 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 
 Male 1.211  1.151, 1.274 1.222 1.158, 1.289 1.207 1.148, 1.270 1.207 1.148, 1.270 1.224  1.160, 1.291 
ASA Physical Status 

           P2 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 
 P1 0.925   0.854, 1.003 0.924 0.849, 1.005 0.932  0.860, 1.010 0.932 0.860, 1.010 0.923  0.848, 1.005 
 P3 1.229  1.146, 1.319 1.240 1.152, 1.335 1.225  1.142, 1.314 1.224  1.141, 1.312 1.242  1.154, 1.338 
Chemical Prophylaxis 

           LMWH± Aspirin 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 
 Aspirin Only  0.931 0.851, 1.018 0.938 0.854, 1.030 0.979 0.895, 1.071 0.980  0.896, 1.072 0.939 0.855, 1.033 
 None 0.969 0.884, 1.063 0.982  0.891, 1.081 1.028 0.938, 1.128 1.029 0.938, 1.128 0.983 0.891, 1.083 
 Other/Other Combinations  1.034  0.966, 1.106 1.020  0.950, 1.096 0.969 0.905, 1.037 0.963  0.900, 1.030 1.018  0.948, 1.094 
Mechanical Prophylaxisb 

           Both 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 
 Active 0.993 0.927, 1.06 0.991  0.921, 1.065 0.982  0.917, 1.053 0.982  0.917, 1.053 0.990 0.921, 1.065 
 Passive 0.973 0.916, 1.034 0.974  0.914, 1.038 0.979 0.921, 1.041 0.981 0.923, 1.042 0.974  0.914, 1.039 
 None 1.017 0.924, 1.120 1.030 0.931, 1.139 1.068  0.938, 1.128 1.068 0.969, 1.176 1.031 0.931, 1.142 
 Other/Other Combinations 0.784 0.613, 1.004 0.776 0.600, 1.006 0.797  0.623, 1.020 0.797 0.622, 1.020 0.774 0.598, 1.004 
Operation Type 

           Unilateral 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 1.000 Referent 
 Simultaneous Bilateral 0.602  0.480, 0.756 0.589  0.464, 0.748 0.610  0.486, 0.765 0.609 0.486, 0.764 0.587 0.463, 0.746 

 
Abbreviations: ASA, American Society of Anesthesiologists; BMI, Body Mass Index; CI, Confidence Interval; FPM, Flexible Parametric Model; 
HR, Hazard Ratio; OR, Odds Ratio. 
a Weight (kg)/height (m)2 . 
b In Mechanical Prophylaxis , Active includes foot pump and calf compression whereas Passive is ThromboEmbolic Disease (TED) stockings. 
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Table 3. Model Fit Statistics for Different Parametric Models Using Data From the National 
Joint Registry for England, Wales, Northern Ireland and the Isle of Man (Between April 
2003 and September 2015). 
 
  TKR UKR PFR 
Model DF Dev AIC DF Dev AIC DF Dev AIC 
Exponential Model 14 77,276 77,304 14 17,929 17,957 14 3,547 3,575 
Weibull Model 15 77,258 77,288 15 17,926 17,956 15 3,535 3,565 
Log-logistic Model 15 77,251 77,281 15 17,922 17,952 15 3,531 3,561 
FPM 18 76,606 76,642 18 17,829 17,865 16 3,505 3,537 

 
Abbreviations: AIC, Akaike Information Criterion; Dev, Deviance; DF, Degree of Freedom; 
FPM, Flexible Parametric Model; PFR, Patellofemoral Replacement; TKR, Total Knee 
Replacement; UKR, Unicondylar Knee Replacement. 
 
 
Table 4. Results of Integrated Brier Score Using Data From the National Joint Registry for 
England, Wales, Northern Ireland and the Isle of Man (Between April 2003 and September 
2015). 
 

 
Integrated Brier Score 

Model and Procedure t=5  years 95% CI t=8 years 95% CI 
FPM 

     TKR 0.014 0.014, 0.014 0.020 0.020, 0.020 
 UKR 0.036 0.036, 0.036 0.052 0.052, 0.052 
 PFR 0.058 0.058, 0.059 0.074 0.073, 0.075 
RSF 

  TKR 0.015 0.015, 0.015 0.020 0.020, 0.020 
 UKR 0.037 0.037, 0.037 0.052 0.052, 0.052 
 PFR 0.059 0.059, 0.059 0.073 0.072, 0.074 

 
Abbreviations: CI, Confidence Interval; FPM, Flexible Parametric Model; PFR, 
Patellofemoral Replacement; RSF, Random Survival Forest; TKR, Total Knee Replacement; 
UKR, Unicondylar Knee Replacement. 
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Table 5. Results of C Index at 8 Years Using Data From the National Joint Registry for 
England, 
Wales, Northern Ireland and the Isle of Man (Between April 2003 and September 2015). 
 

 
TKR UKR PFR 

Model C index 95% CI C index 95% CI C index 95% CI 
FPM 0.705 0.702, 0.707 0.639 0.634, 0.643 0.589 0.586, 0.592 
RSF 0.660 0.655, 0.666 0.616 0.610, 0.621 0.579 0.575, 0.582 

 
Abbreviations: C Index, Concordance Index; CI, Confidence Interval; FPM, Flexible 
Parametric 
Model; PFR, Patellofemoral Replacement; RSF, Random Survival Forest; TKR, Total Knee 
Replacement; UKR, Unicondylar Knee Replacement.
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Table 6. Observed Versus Predicted Risks of Prosthesis Revision for Different Risk Groups Using Data From the National Joint Registry for 
England, Wales, Northern Ireland and the Isle of Man (Between April 2003 and September 2015). 
 
Model and 
Risk Group 

TKR UKR PFR 
 Predicted 

Probability, 
mean (SD)a 

Ratio of 
Observed to 
Predicted 

 Predicted 
Probability, 
mean (SD)  

Ratio of 
Observed to 
Predicted 

 Predicted 
Probability, 
mean (SD) 

Ratio of 
Observed to 
Predicted 

FPM 
            1 1.47 (0.0006) 1.16 5.33 (0.0106) 1.32 5.67 (0.0581) 1.28 

2 1.89 (0.0005) 1.04 6.79 (0.0073) 1.18 8.83 (0.0483) 1.37 
3 2.19 (0.0005) 1.00 7.67 (0.0070) 0.96 10.47 (0.0511) 1.05 
4 2.48 (0.0005) 0.84 8.41 (0.0065) 1.02 11.77 (0.0453) 1.05 
5 2.79 (0.0005) 0.97 9.11 (0.0055) 1.16 13.02 (0.0409) 1.01 
6 3.14 (0.0006) 1.24 9.85 (0.0066) 1.14 14.35 (0.0436) 0.98 
7 3.53 (0.0005) 1.12 10.70 (0.0077) 0.92 15.84 (0.0406) 1.04 
8 4.04 (0.0008) 1.16 11.72 (0.0081) 1.34 17.67 (0.0562) 1.01 
9 4.77 (0.0008) 1.36 13.1 (0.0116) 1.13 20.18 (0.0701) 0.92 
10 6.71 (0.0017) 1.44 16.41 (0.0245) 1.16 25.99 (0.1186) 0.98 
RSF 

            1 0.64 (0.0041) 3.13 4.00 (0.0325) 1.84 6.70 (0.1375) 1.25 
2 1.16 (0.0056) 1.97 5.71 (0.0272) 1.38 9.05 (0.1053) 1.22 
3 1.59 (0.0071) 1.56 6.82 (0.0243) 1.18 10.59 (0.1141) 1.11 
4 2.02 (0.0087) 1.35 7.84 (0.0265) 1.13 11.96 (0.1249) 1.09 
5 2.49 (0.0116) 1.28 8.88 (0.0253) 1.13 13.26 (0.1231) 1.02 
6 3.03 (0.0123) 1.13 10.01 (0.0287) 1.19 14.62 (0.1146) 1.00 
7 3.68 (0.0131) 1.04 11.23 (0.0358) 1.23 16.09 (0.1194) 1.03 
8 4.56 (0.0168) 1.03 12.64 (0.0420) 1.13 17.72 (0.1517) 1.00 
9 5.93 (0.0271) 1.05 14.52 (0.0470) 0.88 19.69 (0.1695) 1.05 
10 9.83 (0.0745) 0.87 19.09 (0.0700) 0.90 23.20 (0.2855) 0.90 

 
Abbreviations: FPM, Flexible Parametric Model; PFR, Patellofemoral Replacement; RSF, Random Survival Forest; SD, Standard Deviation; 
TKR, Total Knee Replacement; UKR, Unicondylar Knee Replacement. 
a Predicted probabilities (%) are expressed as mean (standard deviation). 
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