
This is a repository copy of Assessing multilingual multimodal image description: Studies 
of native speaker preferences and translator choices.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/132085/

Version: Accepted Version

Article:

Frank, S., Elliott, D. and Specia, L. orcid.org/0000-0002-5495-3128 (2018) Assessing 
multilingual multimodal image description: Studies of native speaker preferences and 
translator choices. Natural Language Engineering, 24 (3). pp. 393-413. ISSN 1351-3249 

https://doi.org/10.1017/S1351324918000074

This article has been published in a revised form in Natural Language Engineering 
[https://doi.org/10.1017/S1351324918000074]. This version is free to view and download 
for private research and study only. Not for re-distribution, re-sale or use in derivative 
works. © Cambridge University Press 2018.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Natural Language Engineering 1 (1): 1–19. Printed in the United Kingdom

c© 2017 Cambridge University Press

1

Assessing multilingual multimodal image

description: Studies of native speaker preferences

and translator choices

Stella Frank
Centre for Language Evolution

University of Edinburgh, UK

Desmond Elliott
Institute of Language, Cognition and Computation

University of Edinburgh, UK

Lucia Specia
Department of Computer Science

University of Sheffield, UK

( Received Deadline: November 30th)

Abstract

Two studies on multilingual multimodal image description provide empirical evidence
towards two hypotheses at the core of the task: (i) whether target language speakers pre-
fer descriptions generated directly in their native language, as compared to descriptions
translated from a different language; (ii) the role of the image in human translation of de-
scriptions. These results provide guidance for future work in multimodal natural language
processing by firstly showing that on the whole, translations are not distinguished from
native language descriptions, and secondly delineating and quantifying the information
gained from the image during the human translation task.

1 Introduction

Multimodal natural language processing (NLP) combines linguistic and non-

linguistic modalities with the goal of grounding language in non-linguistic con-

text, such as the visual context provided by an image. Modelling language in a

grounded environment is important because it reflects how humans acquire, under-

stand, and use language, namely, contextualised within a multimodal environment.

Multimodal NLP research covers a broad range of topics, including image–sentence

retrieval based on learning shared multimodal spaces (Hodosh et al., 2013), natural

language generation from images and video (Bernardi et al., 2016), question answer-

ing given multimodal visual context (Antol et al., 2015), modelling the linguistic
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attributes of images (Silberer and Lapata, 2014), and grounding the meaning of

words in visual context (Lazaridou et al., 2015). Multimodality can also improve

the performance of models for more traditional NLP problems, such as prepositional

phrase attachment (Berzak et al., 2015) and co-reference resolution (Ramanathan

et al., 2014).

The prototypical multimodal NLP task is image description1 generation, which

will be the focus of this paper. However, we are interested in image description from

a multilingual perspective, specifically in a translation or transfer setting. This is

an example of multilingual multimodal NLP, which broadly covers everything that

involves images or other multimodal resources linked to text in multiple languages.

We assume a situation in which there is a resource-rich ‘source’ language (English)

along with a ‘target’ language with fewer resources, but a need for image descrip-

tions. There are (at least) two possible approaches to solving this need: Firstly, we

could collect new multimodal data in the target language to train a monolingual

target language image description system; secondly, we could translate English de-

scriptions (either existing or machine generated) into the target language. For the

first approach, we may want to also use the available English multimodal data,

making the multimodal system multilingual, or rather crosslingual; for the second

approach, we may want to take the image on which the description is based into

account while collecting the translation, making the translation process multimodal.

These two approaches lead to different types of generated descriptions, which will

serve different purposes. For example, when generating alt-text for stock photos

online, it will be more important to generate descriptions that are appropriate for

the user and context, without closely following the original language descriptions;

this reflects the crosslingual multimodal scenario, in which the source language

plays only a supporting role. On the other hand, when translating a manual with

illustrations, staying faithful to the original text is crucial. In this case, the image

can provide essential disambiguating information to the translator, leading to better

translations. Prior work in multimodal NLP has shown the benefit of including

multimodal inputs in a variety of visually-centered linguistic domains, such as user-

generated captions on social media sites (Ordonez et al., 2011), product descriptions

on e-commerce sites, and captioned images from newswire (Ramisa et al., 2017;

Hollink et al., 2016) and historical newspaper corpora (Elliott and Kleppe, 2016).

In the crosslingual scenario, a more flexible relationship between texts in dif-

ferent languages allows for language or culture specific discrepancies between the

texts. Different cultures may interpret the same image differently, which will be

reflected in how they describe the image. Automatically generated descriptions will

need to accommodate these differences where they are important for understand-

1 We use the term image description in contrast to captions deliberately: we define de-
scriptions as sentences that are solely and literally about an image, whereas captions
are sentences associated with, but not necessarily descriptions of, an image. Descrip-
tions datasets are usually gathered intentionally (as with the dataset used in this pa-
per), e.g. using crowdsourcing, whereas captions are harvested from naturally appearing
sources. Contrast the descriptions in Figure 1 with captions seen in newspapers or on
social media, which usually include background information not depicted in the image.
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ing. Differences often arise from shared cultural knowledge that may be unknown or

less salient in a different language. For example, “tailgating” (elaborate picnicking

around the back of a vehicle, usually associated with a sports event) is a popular

activity in the U.S.A. that is obscure to German and Dutch speakers (van Mil-

tenburg et al., 2017). A description of an image depicting tailgating thus needs to

be phrased differently depending on the audience, which varies with language.

The two scenarios outlined above have been codified as a multimodal translation

task and a description generation task, respectively, as part of the Multimodal Ma-

chine Translation shared task held at the Conference for Machine Translation in

2016 and 2017 (Specia et al., 2016; Elliott et al., 2017). The two tasks use differ-

ent training data: the multimodal translation task is based on images with parallel

translations of descriptions, while in the crosslingual image description task, the

training data consists of images with independently authored descriptions in mul-

tiple languages. Evaluation also proceeds differently, since multimodal translation

is evaluated as translation, based on the faithfulness of the target language de-

scription to the source language description, while crosslingual image description is

evaluated based on the similarity of the generated description to multiple reference

target-language descriptions, collected independently.

In this paper we re-evaluate and test the assumptions, outlined above, behind the

multimodal translation and description generation tasks. First, we assess whether

the division into two separate tasks, one based on flexible description generation

in the crosslingual scenario and one focussed on literal translations, is actually

necessary for the image description setting: do they result in measurably different

descriptions? In particular, do target language speakers prefer descriptions cre-

ated in their own language over translations from a different language? Note that

the human-generated target language descriptions constitute an upper bound, in

terms of quality: automatically generated descriptions based on source- and target-

language training data, in the form of either translations or independent descrip-

tions, are expected to perform less well. If, for example, German speakers do not

differentiate between German descriptions and translations into German, this has

important implications for multilingual multimodal NLP in the crosslingual, non-

translation, setting.

Second, we examine the role of visual information in multimodal translation.

Again, we take an approach based on human performance, but here we study

how human translators use images during translation. Professional translators first

translate image descriptions without seeing the image, then do post-editing to trans-

form the ‘image-blind’ translation into an ‘image-aware’ translation. This enables us

to quantify the difference that the image makes to translation, as well as to develop

a classification of frequent error types arising in text-only, image-blind translation.

The remainder of this paper is structured as follows: we first outline the current

state of multilingual multimodal NLP and describe available datasets and evalua-

tion, in Section 2, with a focus on the above-mentioned shared task on multimodal

translation. In Section 3, we present the human evaluation study comparing de-

scriptions and translations. The multimodal translation study, comparing text-only

and image-aware translation, is in Section 4. We conclude with a discussion of the



4 S. Frank, D. Elliott and L. Specia

A brown dog is running after

the black dog.

Ein brauner Hund rennt dem

schwarzen Hund hinterher.

(a) Multilinguality by translation.

A brown dog is running after

the black dog.

Ein schwarzer und ein brauner

Hund rennen auf steinigem Bo-

den aufeinander zu.

(b) Multilinguality by description.

Fig. 1: Multilingual annotations resulting from (a) a deliberate translation process

from an “original” language into a new language, or (b) independently collecting

annotations for the image in a new language.

implications of our findings and recommendations for future work on multimodal

NLP, with an emphasis on resource design and evaluation methods.

2 Background

The availability of resources plays a critical role in the development and evaluation

of computational models for multilingual multimodal image description. However,

resources that are both multilingual and multimodal do not occurr naturally, un-

like (unimodal) parallel texts, which can be found in parliamentary proceedings, or

(monolingual) newswire captioned images. We review existing multilingual multi-

modal resources collected through crowdsourcing and professional translation. We

also discuss evaluation methods for state-of-the-art multimodal translation models,

which have to date mainly involved automatic metrics.

2.1 Multilingual Multimodal Resources

We define a multimodal resource as a collection of multimedia artefacts paired with

textual annotations. Multimedia artefacts include photographs, videos, diagrams,

line sketches, sound recordings, and video games, inter alia, while the textual anno-

tations can range from single words, e.g. tags or keywords, to sentences, paragraphs,

or entire documents. Given these definitions, examples of multimodal resources in-

clude datasets of tagged images, e.g. the COREL 5K dataset (Duygulu et al., 2002);

images paired with crowdsourced descriptions, e.g. the Flickr30K dataset (Young
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Images Sentences Languages

Translation datasets

Multi30K 31,014 31,014 English, German, French

Flickr8K-CN 8,018 40,090 English, Chinese

DECOCO 1,000 1,000 English, German

Multi30K-2017 1,000 1,000 English, German, French

AmbiguousCOCO 461 461 English, German, French

Description datasets

STAIR-Captions 164,062 820,310 English, Japanese

Multi30K 31,014 155,070 English, German

YJ Captions 26k 26,500 131,740 English, Japanese

Flickr8K-CN 8,018 40,090 English, Chinese

Tasviret 8,018 24,054 English, Turkish

DutchDescription 2,014 10,070 English, Dutch

Table 1: Summary statistics of multilingual image description datasets.

et al., 2014); and videos paired with crowdsourced descriptions, e.g. the Microsoft

Research Video Description corpus (Chen and Dolan, 2011). In this paper, we are

primarily interested in multilingual multimodal resources, which are datasets that

consist of multimedia artefacts with textual annotations in more than one language.

The multilinguality of the textual annotations can take two forms: (i) it can arise

as a process of translating annotations from one language into another language,

or (ii) it can arise from creating textual annotations independently of those in the

other language(s), given the multimedia artefact (see Figure 1). We will refer to

these processes as Translation and Description throughout the rest of the paper,

and we will study multilinguality that arises from both of these processes.

One of the earliest multilingual multimodal resources is the Microsoft Research

Video Description corpus (Chen and Dolan, 2011), which consists of short YouTube

videos with crowdsourced descriptions. The descriptions were not limited to English,

and thus cover a broad range of languages. However, two-thirds of the descriptions

are in English, and we are unaware of any work using the non-English descriptions.

More recently, there has been increased efforts to create multilingual image de-

scription datasets. These datasets consist of images paired with literal descriptions

in multiple languages, created either by translation or independent description.

Such resources currently exist with annotations in German (Elliott et al., 2016;

Hitschler et al., 2016; Rajendran et al., 2016), Turkish (Unal et al., 2016), Chi-

nese (Li et al., 2016), Japanese (Miyazaki and Shimizu, 2016; Yoshikawa et al.,

2017), Dutch (van Miltenburg et al., 2017), and French (Elliott et al., 2017). Ta-

ble 1 presents an overview of multilingual image description datasets. We observe

that the datasets with multilingual annotations created by translation are an order

of magnitude smaller than those created independently of each other. This is, in

part, due to the expense of translation compared to crowdsourcing independent de-



6 S. Frank, D. Elliott and L. Specia

Sentences Types Tokens Avg. length

Task 1: Translations

English
31,014

11,420 357,172 11.9

German 19,397 333,833 11.1

Task 2: Descriptions

English
155,070

22,815 1,841,159 12.3

German 46,138 1,434,998 9.6

Table 2: Corpus-level statistics of Multi30K dataset.

scriptions in each language. For example, the 31,014 translations in the Multi30K

Translations data cost e23,000 to collect, whereas the 155,070 descriptions in the

Descriptions data cost only $10,000 (Elliott et al., 2016).

The Multi30K dataset is the most commonly used multilingual image descrip-

tion dataset; it consists of images described in English, German, and French (Elliott

et al., 2016; Elliott et al., 2017). This resource is derived from the Flickr30K dataset

of images originally described in English (Young et al., 2014). The multilingual an-

notations exist in two forms: a translation corpus of parallel texts, and a corpus of

independently collected descriptions.2 For the translation corpus, one sentence (of

five) was chosen for professional translation in a way that ensured that the final

dataset was a combination of short, medium, and long sentences. The professional

translations were created without the images, resulting in ‘image-blind’ translation

data. We examine the consequences of this method of collecting multilingual an-

notations in Section 4. The second corpus consists of crowd-sourced descriptions

gathered via Crowdflower3 where each worker produced an independent description

of the image. Table 2 presents an overview of the data available for each task.

An alternative approach to creating multilingual multimodal datasets is to create

a parallel text using an off-the-shelf machine translation system. This approach

also does not use the image to construct the input data. The Flickr8K-CN dataset

contains translations of the English sentences into Mandarin using the Google4

and Baidu5 online translation systems (Li et al., 2016). There was no attempt

to create human-quality Chinese translations of the English source data, e.g. by

post-editing (possibly also with the image). The Flickr8K-CN dataset also contains

crowdsourced descriptions created independently of the English originals.

2.2 Evaluating Multilingual Multimodal Models

Multimodal machine translation (MMT) has been the subject of two large-scale

Shared Task evaluations at the Conference on Machine Translation (Specia et al.,

2 The French data consists of translations only.
3 http://www.crowdflower.com
4 http://translate.google.com
5 http://translate.baidu.com/
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Fig. 2: An example of a direct assessment interface for multimodal translation.

Human judges signify their assessment for the candidate translation, given the

source text and the corresponding image, using a fine-grained sliding-bar interface.

2016; Elliott et al., 2017), which we refer to as MMT16 and MMT17. These shared

tasks have focused on generating descriptions of images in non-English languages,

by either translating parallel text or crosslingual description using independently

collected sentences. At these shared tasks, and throughout the literature, multi-

modal translation is usually evaluated using text-based similarity metrics, e.g. the

BLEU (Papineni et al., 2002) and Meteor scores (Denkowski and Lavie, 2014).

However, these metrics are known to be problematic for machine translation and

image description evaluation (Elliott and Keller, 2014; Kilickaya et al., 2017). More

recently, multimodal translation has been evaluated using human direct assess-

ment (Graham et al., 2015), in which humans express a judgement about the

quality of a translation, given the source language description and image (Elliott

et al., 2017). Figure 2 shows an example of the direct assessment interface for

English→French MMT.

Human evaluation is extremely important for evaluating MMT models: In the

MMT shared task, initial results based on automated metrics suggested that in-

corporating images into the translation process did not significantly outperform a

text-only baseline (Specia et al., 2016). However, the use of human evaluation has

confirmed that visual context does improve translation quality compared to text-

only baselines (Elliott et al., 2017). In this paper, we study the human perspective

of sentences that describe images in a multilingual corpus. In particular, we fo-

cus on two related issues: (i) do people have a preference for sentences translated

from a different language or sentences written independently by speakers of their

language? And (ii) what is the role of the image in translation and what types of

disambiguation does it facilitate?
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Fig. 3: The Crowdflower interface used to collect ratings of how well a sentence

describes the given image. Participants are required to express a rating on a seven-

point scale from “very badly” (“sehr schlecht”) to “very good” (“sehr gut”).

3 Quality Assessment of Native Language Descriptions vs. Translations

In this section we investigate whether, for the purposes of image description, there

is any significant difference in quality between descriptions crowdsourced directly

in the target language and translations into the target language.

This inquiry can inform decisions about resource creation and data collection

for multilingual multimodal NLP. There are practical advantages to using transla-

tions from an existing dataset in another language. Professional translations require

less quality control, compared to crowdsourcing new descriptions. This is especially

valuable if the researchers do not speak the target language. The cost of collecting

a single translation can be comparable to multiple crowdsourced descriptions, if ag-

gressive quality control is necessary. Crowdsourcing can also be difficult for smaller

languages with few workers on crowdsourcing platforms. Furthermore, if we find

that human translation is adequate for image description, machine translation may

soon also be of sufficiently high quality to automatically create descriptions in a

new language. The Flickr8K-CN dataset was created by machine translating the

original English descriptions into Mandarin (Li et al., 2016), but its quality has not

yet been rigorously compared to human translations.

However, descriptions sourced directly in the target language may have the advan-

tage of being more culturally appropriate than translation (van Miltenburg et al.,

2017). Different languages tend to align with different cultures and different shared

bodies of knowledge, which may have different ways of “carving up the world”: these

differences are reflected in what people focus on when describing the same image.

The domain of sports offers clear examples of differences in cultural knowledge

between the US (the source of the English descriptions in the Flickr30K dataset

used for translation) and Germany, since different sports are culturally important

in these countries. For instance, a description of people playing softball is likely to

be confusing to a German speaker who may not know that there is a distinction be-
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tween baseball and softball (or even that a sport named softball exists); conversely,

a German speaker may describe an image depicting a soccer event in more detail

than the average American would (and vice-versa for American football). Similar

examples of what is considered shared knowledge (and thus appropriate to use in

an image description) can be found in many other domains: famous buildings and

other locations, traditional food and dress, celebrities, among many others. These

are concrete entities and objects that are often depicted in images and a description

that does not name a culturally recognisable object is jarring. For example, if an

image of the Notre Dame in Paris does not mention the cathedral but only the auto-

mobiles on the nearby street (as found in the MS COCO dataset), then this would

be an inappropriate description from the perspective of a French speaker (Elliott

and Kleppe, 2016)).

In this study reported in this section, we asked German crowdworkers to rate

how well a given sentence (which was either a translation from English or a de-

scription originally written in German) described an image, using a seven-point

Likert scale. We then examined whether there is any consistent and significant dif-

ference between the ratings given to descriptions versus translations. If cultural

differences are widespread in the images, descriptions would presumably be pre-

ferred over translations. However, if such differences are rare, there will be no clear

difference between translations and descriptions. Moreover, if the translations are

higher quality than the crowdsourced descriptions, we may even find a preference

for the translations.

3.1 Materials and Procedure

The items for the study were taken from the WMT16 shared task test set, which is

based on Multi30K. We chose 100 images at random; each image had an associated

translation into German and five German descriptions (see Section 2.1 for more

details). The translations were image-aware, that is, the translator was able to see

the image while translating. We picked the description that was closest in length

(counted in words) to the translation. A preliminary study had shown that length

was a strong confounding factor when assessing translation quality. On average, the

translations were still longer than the description, due to a handful of extremely

long outliers (means: 11.2 vs. 10.1 words; medians: 11 vs. 10 words).

The data was collected in sets of five items, featuring four real items and one

control item. Figure 3 presents the crowdsourcing interface used to collect a single

item. The controls (“test questions”) were descriptions applied to the wrong image,

manually inspected to make sure that they did not match. Participants who did

not give these items a score of ‘1’ were automatically rejected. The order of the

items was randomised across pages, as well as on each page.

We collected 10 ratings per image-sentence pair from German crowdworkers on

the Crowdflower platform. Participation was restricted to those who had a Crowd-

flower language qualification for German and were at least Level 3 Crowdflower
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workers.6 17 workers did not pass the test questions; we removed a further three

participants who gave all items a rating of ‘1’. In total, 49 workers contributed

to the final dataset, which consisted of 1,968 ratings. Each worker contributed an

average of 40 ratings (max: 128, min: 4). Workers were paid $0.03 per item and the

total cost of collecting the data was $90.36 at a rate of $6.53/hour.

3.2 Results

Overall, the ratings were very skewed towards the higher end of the scale. Two

thirds of the items were rated 7, the highest rating, with a mean rating of 6.5

(SD = 0.95). This is to be expected, since these are human-generated descriptions:

these results can also function as an oracle upper-bound for systems evaluation.

A Wilcoxon-Mann-Whitney test showed that the ratings given to descriptions

(M = 6.57, SD = 0.85) were significantly higher than those given to translations

(M = 6.37, SD = 1.02): p = 2.08e -06 (U = 529970, one-sided test). However, the

effect size is very small, 2.4e -05, as measured by the Hodges-Lehmann Estimator,

which captures the median difference in samples of descriptions and translations.

This means that, while on average the descriptions will receive higher ratings than

the translations, the median difference between the two is negligible, and so for

practical purposes the two sentence types will receive equivalent ratings.

We were interested in whether other factors, particularly length, played a role

in how participants rated the quality of an item. Note that descriptions were on

average shorter, but were rated slightly better than translations. Did this mean that

descriptions were overcoming a length disadvantage, or was length not an important

factor for description quality?

We fit an ordinal regression model with mixed effects using the ordinal package

in R. This model7 had the rating (1–7) as the ordinal outcome variable, while

the type of sentence (description or translation) and the length in words were fixed

effect predictors with additional random effects for participant and item (intercepts

only). The random effects capture the tendency for participants and items to have

differing baseline ratings (e.g. a particular crowdworker may consistently rate items

higher than other crowdworkers).

The estimated coefficients for the fixed effects are shown in Table 3. After control-

ling for subject and item effects, only the length coefficient is significantly different

from zero, while the type of sentence is not. Likelihood ratio tests gave equiva-

lent results, indicating that length is a significant predictor of rating (controlling

for type), while adding type does not improve predictive power (controlling for

length).

It is interesting to note here that these results seemingly contradict our earlier

results from a Wilcoxon-Mann-Whitney test, in which on average descriptions were

rated higher, while translations were on average longer: here we find that longer

sentences will be rated higher, caeteris paribus, and the type of sentence does not

6 This corresponds to the most trusted workers on the platform, at the time of writing.
7 In R notation: clmm(rating ∼ type + length + (1|participant) + (1|item))
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Predictor Estimate SE Wald’s Z p-value

type 0.197 0.299 0.66 0.51

length 0.072 0.029 2.48 0.013

Table 3: Summary of estimated values for the fixed effects in the ordinal regression

model. The reference value for the ‘type’ predictor is description, so the estimate

represents the increase in rating when going from description to translation. For

‘length’ the estimator represents the increase in rating gained when increasing sen-

tence length by one word. The p-values are calculated using the Wald test, with

the null-hypothesis that the value of the predictor is zero.

change this preference. This apparent contradiction can be resolved by noting the

random effects structure included in the ordinal regression model. The random

effects are a significant (both statistically and in magnitude) contributor to the

goodness of fit of the full model (compared against a model with the same fixed

effects but no random effects, χ2(df = 2) = 821.5, p < 2.2e -16). They allow the

mixed effects model to control for high between-subject (SD = 2.5) and between-

item (SD = 1.3) variation. Given that the data is crowdsourced, capturing and

controlling for subject (crowdworker) variability is essential.

To return to the original question: we conclude that, for the images we tested,

there was no consistent difference between the target-language descriptions and

the translations from English. Other factors, specifically sentence length, are more

important. The implications of this result are two-fold. Firstly, when building new

multilingual image description resources, translating existing resources into a new

language will most likely result in equally good descriptions as collecting new de-

scriptions. Secondly, automatic multilingual image description generation can pos-

sibly rely on (machine) translation as a strategy, training on parallel text, rather

than using comparable (but not parallel) sets of descriptions of the same image in

multiple languages.

We note some caveats about the generalisability of these results. For one, English

and German are relatively linguistically and culturally similar, likely providing a

more straightforward translation path than for more distant language pairs. The

Flickr images for the most part have a Western perspective shared by both Ameri-

cans and Germans. For other domains and language pairs where the images are less

familiar (or familiar for different reasons) to one or the other language or culture, it

will likely remain important to go beyond translation to more flexible re-describing

in the target language.

4 Multimodality in Translation of Image Descriptions

Having established that translations can function as replacements for image de-

scriptions, we now turn to the question of how important the images themselves

are for the translation process. The multimodal translation task is based on the

assumption that translations — particularly translations of image descriptions and
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Sentences Post-edited (PE) Distance Original-PE

Validation set 1,014 6.11% 0.173

Test set 1,000 13.8% 0.157

Table 4: Percentage of translations post-edited and TER edit distance between their

original and post-edited versions for the MMT16 validation and test sets.

other ‘visual’ language — will improve if humans or models take the image into

account. In this section we aim to confirm this assumption and moreover quantify

how adding accompanying images changes translations. To do so, we took text-only,

image-blind, translations and then collected post-edits from a translator who can

see the images. Post-edits capture the difference between a text-only translation and

translation with the image supplied; if we collected separate translations (with and

without images) there could be many spurious differences due to human translator

decisions that are not necessarily related to presence or absence of the image.

4.1 Image-Aware Corrections

We used the test and validation sets from the MMT16 Shared Task, which had been

translated without access to the image. We employed one professional translator

to post-edit the original human translations, this time having access to the image

along with the source text and the original translation. The post-editor was asked

to fix only words that were deemed incorrect in the initial translation and to avoid

any changes due to preferences or style.

Table 4 shows the percentage of sentences that were post-edited when a translator

was presented with their corresponding image, as well as the average TER edit

distance between the original translation and its post-edited version (calculated over

post-edited sentences only). The TER (Translation Error Rate) edit distance is an

adaptation of the Levenshtein minimum edit distance that includes word reordering

as an operation: words or sequences of words can be reordered and this counts as

a single edit operation. We computed this edit distance using the TERCOM tool8.

The reasons behind the differences between the test and validation sets are not

entirely clear. These datasets had been translated by the same translator, and they

were post-edited by a different translator, who fixed both the validation and test

sets. We can only hypothesise that the differences are due to specific features of

the two original Flickr30K datasets. Based on the feedback received from the post-

editor, the test set was perceived to contain more errors and inaccuracies in the

original English descriptions as well as the translations.

In order to confirm whether or not the edits can be attributed to the presence of

the images, and to further analyse which additional information the image brings in

those cases, we manually checked all edits and categorised them into six categories:

8 http://www.cs.umd.edu/~snover/tercom/
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Category % Validation % Test

Lexical ambiguity 37.7 27.5

Conjunction ambiguity 1.7 2.2

Gender ambiguity 3.3 7.3

English description inaccurate 36.1 28.0

Original translation too literal 11.5 10.0

Original translation inaccurate 9.7 25.0

Table 5: Distribution of human post-edits in the MMT16 validation and test sets.

1. Lexical ambiguity: the edit corrects lexical choices which were the result of

ambiguity/vagueness in the source text.

2. Conjunction ambiguity: qualifiers in conjoined noun phrases were at-

tatched incorrectly.

3. Gender ambiguity: (natural) gender was not marked in English but needed

to be marked in German; the edit corrects mistaken gender assignments.

4. English description inaccurate: the edit corrects errors due to incorrect

or overly vague descriptions.

5. Original translation too literal: the edit improves the fluency or style of

translation, even though its meaning was not incorrect.

6. Original translation inaccurate: other translation errors.

Figures 4 and 5 show examples of the post-edit corrections made for categories

1–5. Categories 1–3 are particularly important as they represent clear cases of

ambiguity, where the image was critical to generate the correct translation. (There

may be other potential instances of these categories in the dataset where the human

translator used their best judgement to “guess” the correct sense and translation,

lacking the information that the image would have provided.) Category 4 is an

artefact of the Flickr30K dataset, but it also shows how images can help recover

from inaccuracies in the original descriptions. Incorrect descriptions are a common

problem with user generated content, such as the descriptions in the Flickr30K

dataset. Category 5 covers cases where the original translation was correct but

could be improved, which in some cases was made possible or facilitated by the

presence of the corresponding image. Finally, category 6 covers all other cases where

the original translation (without image) was not correct for reasons other than

the absence of the image. These cases often happened because the translator was

misled by their intuitions based on previous descriptions in the dataset and made

incorrect assumptions about what should be the correct translation. This category

also includes a few instances of typos and grammar mistakes.

The changes made by human translator when faced with the images correspond-

ing to the English description tended to be very localised. The overall proportion

of words edited was very low (2.2% in the test set, 1% in the validation set).
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En: A child wearing a red coat and cap is holding a large

chunk of snow.

De: Ein Kind in einem roten Mantel und einer Mütze hält

einen großen Haufen Schnee.

PE: Ein Kind mit roter Jacke und Mütze hält ein großes

Stück Schnee.

(a) Conjunction ambiguity

En: Three children in football uniforms of two different

teams are playing football on a football field.

De: Drei Kinder in Fußballtrikots zweier verschiedener

Mannschaften spielen Fußball auf einem Fußballplatz.

PE: Drei Kinder in Footballtrikots zweier ver-

schiedener Mannschaften spielen Football auf einem

Footballplatz.

(b) Lexical ambiguity

En: A man in a blue coat grabbing a young boy’s shoulder.

De: Ein Mann in einem blauen Mantel hält einen Jungen

an der Schulter.

PE: Ein Mann in einer blauen Jacke hält einen Jungen an

der Schulter.

(c) Lexical ambiguity

Fig. 4: Examples of conjunction ambiguity and lexical ambiguity post-edits where

the image was necessary for correct human translation.

4.2 Multimodal MT Systems Performance on Updated Dataset

The MMT16 shared task on multimodal MT was evaluated against text-only trans-

lations in the test set: we now consider whether using the image-aware translations

for evaluation would change the results of the submitted systems. In particular, it

is possible that the rankings might change, showing that some systems are better

at translating descriptions where seeing the image makes a critical difference to the

final translation — one might, for example, now expect the multimodal systems to

outrank text-only systems.

We compared the overall performance of the participating systems in the MMT16

shared task, on both the original test set and the post-edited test set, using Me-

teor (Denkowski and Lavie, 2014), the official metric for the MMT16 shared task.

We note that the overall small percentage of edits performed by humans is un-

likely to make a significant impact in terms of automatic evaluation. The MT

system output remained exactly the same, i.e. no re-training or fine-tuning (us-
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En: A baseball player in a black shirt just tagged a player

in a white shirt.

De: Ein Baseballspieler in einem schwarzen Shirt fängt

einen Spieler in einem weißen Shirt.

PE: Eine Baseballspielerin in einem schwarzen Shirt fängt

eine Spielerin in einem weißen Shirt.

(a) Gender ambiguity

En: The workers are surrounding a hole with a bucket.

De: Die Arbeiter decken ein Loch mit einem Eimer ab.

PE: Die Arbeiter stehen um ein Loch mit einem Eimer herum.

(b) English description inaccurate

En: A young man in a blue shirt grinds a rail on a skate-

board in an urban area.

De: Ein junger Mann in einem blauen Shirt rutscht in einer

städtischen Gegend über ein Geländer.

PE: Ein junger Mann in einem blauen Shirt fährt in einer

städtischen Gegend über ein Geländer.

(c) Original translation too literal

Fig. 5: Examples of gender ambiguity, inaccurate English description, and too literal

translations post-edits where the image was necessary for correct human transla-

tion.

ing the post-edited development set) was performed; only the gold-standard data

was (marginally) different due to the post-edits.

Table 6 shows the relative difference in system performance when evaluated us-

ing the post-edited references as compared to the original ranking (Specia et al.,

2016). The differences between performance on the two test sets are nonexistent or

marginal and do not lead to any changes in the overall ranking of the systems. Ac-

cording to the original shared task results, there is no significant difference between

systems that use visual cues and systems that do not use such cues; this remains

the case when using image-aware translations for evaluation.

Overall, the performance of most systems slightly decreased when evaluated with

the post-edited references. This probably indicates that systems are mimicking

strong biases in the training data, such as the use of male gender in German for

any type of unmarked noun in English. When these biases are fixed in the reference

test data, the performance of these systems naturally drops. It has recently been
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System ID ∆ Meteor

•LIUM 1 MosesNMTRnnLMSent2Vec C -0.2

•LIUM 1 MosesNMTRnnLMSent2VecVGGFC7 C -0.2

•*SHEF 1 en-de-Moses-rerank C -0.1

1 en-de-Moses C -0.1

CMU 1 MNMT+RERANK U -0.1

HUCL 1 RROLAPMBen2de C -0.2

CMU 1 MNMT C -0.1

DCU 1 min-risk-baseline C 0.0

LIUM 1 TextNMT C -0.1

DCU 1 min-risk-multimodal C -0.2

CUNI 1 MMS2S-1 C -0.1

DCU-UVA 1 doubleattn C 0.1

LIUMCVC 1 MultimodalNMT C 0.1

DCU-UVA 1 imgattninit C -0.1

IBM-IITM-Montreal-NYU 1 NeuralTranslation U 0.0

UPC 1 SIMPLE-BIRNN-DEMB C 0.0

IBM-IITM-Montreal-NYU 1 NeuralTranslation C 0.0

1 GroundedTranslation C 0.0

Table 6: Difference in Meteor results for the MMT16 English–German task between

using the original, image-unaware references, and the image-aware post-edited ref-

erences. A negative difference indicates that the original references, i.e. the image-

blind text-only translations, led to higher Meteor scores. The baseline systems are

underlined. The winning submissions are indicated by a •. Submissions marked

with a * are not significantly different from the text-only baseline (1 Moses C).

shown that models can amplify these types of gender biases in multi-label object

classification and visual semantic role labelling (Zhao et al., 2017). Object classifi-

cation models constitute the basis for the image models used in many multimodal

translation systems. In our case, these biases likely were made even stronger be-

cause the training data was translated based on the source descriptions only, rather

than on the source descriptions and images.

4.3 Translator Perception of the Importance of Images

The post-editing results showed that the presence or absence of the relevant image

affects description translation; here we ask to what extent translators rely on the

image while translating.

We compare the two test sets used for evaluation for the MMT17 shared task:

firstly, the official MMT17 test set of 1,000 descriptions of Flickr images in the

same domain as those in the Multi30K dataset, and secondly, a new set of de-

scriptions created to contain ambiguous verbs which ideally required the image

for disambiguation during translation. For this second test set, which we refer to
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En: A man on a motorcycle is passing

another vehicle.

De: Ein Mann auf einem Motorrad

fährt an einem anderen Fahrzeug vor-

bei.

Fr: Un homme sur une moto dépasse

un autre véhicule.

En: A red train is passing over the wa-

ter on a bridge

De: Ein roter Zug fährt auf einer

Brücke über das Wasser

Fr: Un train rouge traverse l’eau sur

un pont.

Fig. 6: Two senses of the English verb “to pass” in their visual contexts, with

the original English and the translations into German and French, taken from the

Ambiguous COCO dataset. The verb and its translations are underlined.

as Ambiguous COCO, 461 additional descriptions were selected from the VerSe

dataset (Gella et al., 2016), These contain a selection of 56 ambiguous verbs from

VerSe appearing in descriptions of MSCOCO images, e.g. stir, pull, serve, with

1–3 instances per sense per verb. The number of instances per verb varies from 3

(e.g. shake, carry) to 26 (reach). We refer the reader to (Elliott et al., 2017) for

more details about the dataset.

Both the MMT17 and Ambiguous COCO datasets were translated by the same

professional translator in an image-aware setting. In both cases, we asked the trans-

lator performing the task to select, after each description was translated, whether

or not the image was perceived as “needed” in the translation for whatever reason,

e.g. to help disambiguate words or better understand the source description in any

way. For example, consider the images of the English verb “to pass” from the Am-

biguous COCO dataset shown in Figure 6. In the German translations, the source

language verb did not require disambiguation (both German translations use the

verb “fährt”), whereas in the French translations, the verb was disambiguated into

“dépasse” and “traverse”, respectively.

For the WMT17 dataset from Flickr, the image was explicitly judged as needed

in 20% of the descriptions, while for the Ambiguous COCO dataset, in 49% of the

descriptions. Although a control group was not used to test whether the translations

would have been different without the images in this dataset, this large proportion

shows that – if nothing else – having access to images makes the translator perceive

the translation process as easier, and that English verb ambiguity seems to often

transfer into translation ambiguities that can be resolved with the help of the image.
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The results in this section have shown that language with a visual context such as

image descriptions benefits from image-aware translations, as demonstrated both

by translation post-editing and the translator’s subjective perception of how much

they relied on the images. If human translators, who are professionals at using

background knowledge and context to arrive at the correct translations of ambigu-

ous short texts, can improve their translations with the aid of images, automatic

translation systems should also be able to benefit.

5 Conclusion

This paper examined two of the assumptions underpinning work on crosslingual

image description and multimodal machine translation, namely, that native lan-

guage descriptions (or generated descriptions that are closer to native language

descriptions) are preferable to translations, and that the image is important for

the translation of language with a visual context such as image descriptions. We

performed a human evaluation experiment to assess the former and a post-editing

procedure plus error analysis to assess the latter.

We found that on the whole these assumptions do not entirely hold: a statistical

analysis failed to show meaningful differences between the ratings for translations

versus native language descriptions, and the post-edit rate from image-blind to

image-aware translations was quite low. However, even though these results may

seem to imply that simple methods such as text-only translation can often lead to

reasonable outcomes, there remain cases where access to the image is essential for

translation and where image descriptions should be not simply be translated.

We note that our findings are based on human generated descriptions and trans-

lations. Humans use their background knowledge to make sense of short contexts

and often correctly guess the right, or at least acceptable, translations of ambiguous

source texts. This task is certainly much more complex for computational systems,

which may result in multimodality playing a bigger role in machine translation. Hu-

man translators are moreover able to adapt descriptions to make them appropriate

for a target language and culture. Therefore, a comparison between translations

and native language descriptions generated by automatic systems would likely lead

to different results.

Our findings are also contingent on the procedure used for collecting the original

images and descriptions, which resulted in literal descriptions of fairly straightfor-

ward images. Other visual domains (e.g. instruction manuals) may require more

attention to the image during translation; other kinds of image-related language

data may be harder to translate without the image. Nevertheless, this paper anal-

ysed the standard dataset for multimodal machine translation, so our findings are

intended to inform future work in the field.

A further caveat concerns the language pair used in this work: German and

English are closely related languages and also share significant amounts of cultural

knowledge. Future work should also investigate multilingual image description with

language pairs that are more distantly related both linguistically and culturally.

The studies presented here can be seen as an examination of how to evaluate
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image description: what is an appropriate gold standard to evaluate against? This

is a particularly important question to ask when developing a dataset for a new

language, since the available resources constrain the direction of future research.

The first study indicates that there is no a priori reason to discount (image-aware)

translation as a source of high quality image descriptions. It also means that image

description systems (either based on multimodal MT or crosslinguistic methods)

can use translations as a gold standard in evaluation. It will, however, remain

important to be aware of potential cultural differences, for example by developing

methods for identifying cases in which translation is inappropriate.

The second study is relevant to whether text-only ‘image-blind’ translations are

an appropriate gold standard for evaluating multimodal MT, specifically evaluation

using automatic metrics like BLEU or Meteor. The post-editing resulted in only a

small number of words being changed, albeit often with significant semantic impact.

The minor changes meant that the difference between using text-only and image-

aware reference translations led to only minor differences in system evaluations

using Meteor. Rather than concluding that text-only translations may be used in

evaluation, we take these findings to indicate that automatic metrics should not be

used for multimodal MT, since these metrics are not sufficiently sensitive to the

information provided by the image (i.e. the difference between pre- and post-edited

translations). The difficulties in evaluating multimodal MT are similar to those

faced in evaluating discourse-level MT, where small changes (e.g. pronoun choice)

often have significant semantic consequences. Given the inappropriateness of word-

overlap metrics such as BLEU, the discourse-level MT community has developed

sub-tasks focussed on specific translation problems that require discourse awareness,

such as pronoun prediction (Hardmeier et al., 2015). Attempts in multimodal MT

to create a similar test set of ambiguous instances that require image information,

such as the Ambiguous COCO dataset, are a promising future direction.

The increasing use of images and video online, along with the decreasing domi-

nance of English, will make multilingual multimodal NLP important in the future.

This paper has furthered research in this direction by delineating the contributions

of multimodality in (human) translations and by assessing the different possible

sources of image descriptions. However, the main challenges remain: how should we

represent such visual cues from images (a job that humans can easily do), and how

should such information be used in translation and description models.
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