
This is a repository copy of Semi-Supervised Graph Rewiring with the Dirichlet Principle.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/132055/

Version: Accepted Version

Conference or Workshop Item:
Curado, Manuel, Escolano, Francisco, Lozano, Miguel Angel et al. (1 more author)
(Accepted: 2018) Semi-Supervised Graph Rewiring with the Dirichlet Principle. In: 24th
International Conference on Pattern Recognition, 21-24 Aug 2018. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Semi-supervised Graph Rewiring with

the Dirichlet Principle

Manuel Curado, Francisco Escolano and Miguel A. Lozano

Department of Computer Science and AI

University of Alicante

Alicante, Spain

Email: {mcurado, escolano, malozano}@dccia.ua.es

Edwin R. Hancock

Department of Computer Science

University of York

York, UK

Email: edwin.hancock@york.ac.uk

Abstract—In this paper, we propose the concept of graph
rewiring and we show how to exploit it in an un-supervised setting
so that commute times can be better estimated by state-of-the-art
methods. Our experiments show a significant improvement with
respect to unsupervised graph rewiring.

I. INTRODUCTION

In this paper, we coin the term graph rewiring to denote sev-

eral techniques (e.g. densification, sparsification, compression-

decompression) addressed to process an input graph so that

the subsequent pattern recognition task is better conditioned.

Given G = (V,E), graph densification [1] aims at generating

H = (V,E′) where E′ ⊇ E and the cuts in G are preserved

(or bounded) to some extent in H . This is interesting in graph-

based manifold learning where the input graphs (typically k-

NN or Gaussian) are very sparse. Denser graphs with more

intra-class links and a minimal overhead of inter-class links

are thus better conditioned for clustering and ranking.

On the other hand, graph sparsification [2] works in the

opposite sense: we seek E′ ⊆ E in H , and in particular

|E′| ≪ |E|. This is key in shape simplification, where we

want to have a principled skeleton of an input graph to

boost the efficiency of graph matching or the computation

of graph similarities. Finally, compression-decompression via

the Regularity Lemma [3], [4] is a promising tool for facing

big-data from a graph-based perspective (see recent clustering

experiments in [5]).

A good benchmark to test graph rewiring is the measure-

ment of vertex similarity. It is well known that commute

times (CTs) are reduced to meaningless local measures in

medium-size/large graphs [6]. It has been observed [7] that

this is partially due to the fact that CTij for vertices i and

j is the solution to an optimization problem involving a

p = 2 norm. Namely, the resistance distance Rij =
1

2|E|CTij

comes from Rij , argminY
∑

e∈E re|ye|
p, where p = 2 and

Y = {ye}e∈E is the unit flow from i to j (inject a unit current

at i, extract it at j and observe the flow traced across the

edges e ∈ E). Unit flows have two interesting properties. First,

they are quite scattered along the edges (even in moderate

size graphs), and second, the bulk of their magnitude is in

the neighborhood of both i and j. This is why Nguyen and

Mamitsuka [8] proposed to relax p to the unit. With p < 2

they amplify the global (scattered part) of the flow making it

more comparable to the local part (flow in the neighborhoods

of i and j). Best results are obtained with p = 1. However, this

maybe not enough if the graph is not processed beforehand.

The need of pre-processing the graph is better understood

when one studies the interplay between sparsification and den-

sification. Some state-of-the-art sparsifiers are edge samplers

where the weight/importance of each edge is measured in

terms of the resistance distance[9], [2]. However, how can one

obtain a good sparsification if the resistance measure itself is

prone to both flow scattering and local flow concentration?

Our preliminary results with alpha shapes [10] show that the

construction of the representation may involve well structured

wrong links between parts of the object and the whole. In this

context, alleviating scattering (amplifying the global part of the

flow) is not enough. We must confine undesirable diffusions

(say inter-class edge noise) to the extent of the object’s parts.

This is what graph densification does: it produces/predict

edges mostly within clusters at the cost of some inter-class

diffusion. In addition, graph densification is closely related

with the Regularity Lemma, since the strong version of the

lemma only works for dense graphs. Our recent experiments

show that finding regular partitions and then reconstructing the

graph can be seen as an inter-class noise filter [11]. However,

the input graph has to be dense and/or densified beforehand.

Graph densification was originally posed in terms of Semi-

definite programming (SDP) [1]. Since densification involves

O(n2) variables, where n = |V |, and SDP solvers are polyno-

mial in the number of unknowns, the problem is intractable for

medium-size/large graphs (the range where CTs are meaning-

less). Our experiments [12] also show that the energy function

is too weak to constrain undesirable (inter-class) diffusions

even for small graphs. This motivated the development of

an unsupervised and scalable method for graph densification.

Dirichlet graph densifiers [13] rely on two elements: a) return

random walks and b) a Dirichlet process. Return random walks

are designed to retain the diffusion process inside each cluster

(i.e. with minimal intra-class linkage). The Dirichlet process

drives, in the worst case, on the O(n4) Laplacian associated

with the edges. However, in practice we can obtain good

densifications (from the point of view of CTs estimation) with

Laplacians of order O(αn4) with α ≈ 0.35.

II. CONTRIBUTIONS

In this paper we show that semi-supervised densification

leads to a) boosting the quality of graph densification, and

b) reducing α significantly. In addition, we show that graph

rewiring is beyond the concept of graph densification: good

estimations of CTs can be achieved with actually less dense

graphs. Herein, we show how the Dirichlet principle con-

tributes to an intelligent diffusion. Intelligent diffusion is

illustrated by the experimental evidence showed in the paper.

III. RELATED WORK

This work is closely related to the concept of anchor

graphs [14][15]. Anchor graphs provide a data-to-anchor kNN

structure governed by a set of m ≪ n = |V | representatives

(anchors) typically obtained through K-means clustering, in

O(dmnT + dmn) time where O(dmnT) is due to the T

iterations of the K-means process. These graphs tend to

make out-of-the-sample predictions compatible with those of

Nyström approximations, and in turn their approximated adja-

cency/affinity matrices are ensured to be positive semidefinite.

In [19], the predictive power of non-parametric regression

rooted in the anchors/landmarks ensures a way of constructing

very informative weighted kNN graphs. Since anchor graphs

are bipartite (only data-to-anchor edges exist), this representa-

tion bridges the sparsity of the pattern space because a random

walk traveling from node u to node v must reach one or

more anchors in advance. In other words, for a sufficient

number of anchors it is then possible to find links between

distant regions of the space. This opens a new perspective

for computing meaningful commute distances in large graphs.

It is straightforward to check that the spectral properties

of the approximate weight matrix W = ZΛZT , where

Λ = diag(ZT 1) and Z is the data-to-anchor mapping matrix,

rely on its low-rank. Then, it is possible to compute a re-

duced number of eigenvalue-eigenvector pairs associated with

M = Λ−1/2ZTZΛ−1/2, which has also dimension m×m and

where m is the number of anchors. This leads to a compact

solution for the spectral hashing problem [20] (see [21] for

details). In this way, these eigenvectors-eigenvalues may also

provide a meaningful estimation of the commute distances

between the samples through the spectral expression of this

distance [22]. Our interpretation is that the goodness of the

eigenvalue-eigenvector pairs is a consequence of performing

kernel PCA process over ZZT where the columns of Z act as

kernel functions. This interpretation is consistent with the good

hashing results obtained with anchor graphs [23][21] where the

kernel encoded in the columns of Z is extensively exploited.

Thus, anchor graphs are a good representation, a particular

case of graph densification/graph rewiring. They are appealing

but one needs to find the optimal number and placement of

the anchors. This motivated us to look for a more flexible

representation for conditioning the graphs by rewiring their

edges properly.

IV. SEMI-SUPERVISED DIRICHLET GRAPH REWIRING

Semi-Supervised Graph Rewiring consists of determining

what edges must be asked to the supervisor so that the quality

of the graph is improved. Dirichlet processes ensure that the

resulting graph is more suitable for measuring CTs than the

original graph.

Our approach consists of the following steps:

1) Knn-graph: Given a data set χ = {~x1, ..., ~xn} ⊂ R
d,

we map the ~xi to the vertices V of an undirected

weighted graph G(V,E,W) with Wij = e−||~xi−~xj ||
2/σ2

and (i, j) ∈ E if Wij > 0 and j ∈ Nk(i).
2) Labelled Links: Select a set of potential links L =

{(a, b) ∈ V × V, (a, b) 6∈ E} and set Wab = 1 if

(a, b) ∈ L. Thus, we have E′ = E ∪ L. The set L is

chosen according to: a) priorizing classes c whose edge

density e(c) satisfies e(c) + βc = ē(G), where ē(G) is

the average edge density, and b) setting |L| = βc|c|.
3) Return Random Walk: Given G′ = (V,E′,W) refor-

mulate W in terms of W ′ so that

W ′
ij = max

k
max
∀l 6=k

{pvk(vj |vi)pvl
(vi|vj)} , (1)

where pvk
(vj |vi) =

WikWkj

d(vi)d(vj)
, pvl

(vi|vj) =
WjlWli

d(vj)d(vi)

(go and return probabilities, respectively) and d(.) is the

degree function. Therefore, W ′
ij relies on maximizing

the probability that a random walk goes from i to j

through l and then returns through a different vertex k.

This strategy minimizes the weight of spurious inter-

class links.

4) Edge Selection: Given G′ = (V,E′,W ′), select E′′ ⊂
E, with |E”| ≪ |E| as follows:

a) S = sort(E,W ′
e, descend).

a) S ′ = S ∼ {e ∈ S : W ′
e < δ1} where δ1 is set so

that |S ′| = α|S|.

5) Line Graph Given G′′ = (V,S ′,W ′) construct a the

graph Line = (S ′, LineE , LineW) where

a) The nodes of ei ∈ Line are the edges in S ′.

b) The weight function LineW is defined as follows:

LineW (ea, eb) =

|E”|∑

k=1

pek(eb|ea)pek(ea|eb) , (2)

i.e. we use go and return probabilities.

c) LineE = {(ea, eb) : LineW (ea, eb) > 0}

6) Dirichlet Process: Given the Line graph, we proceed

as follows:

a) SB = sort(S ′, LineW , descend).
b) SB′ = SB ∼ {e ∈ LineE : LineW < δ2} where

δ2 is set so that |SB′| = β|SB|.
c) Consider SB′ as the boundary B (known labels)

of a Dirichlet process driven by the Laplacian

LineL = LineD − LineW . Then, finding an

harmonic function, i.e. a function u(.) satisfying

∇2u = 0 consists of minimizing:

DLine[u] =
1

2
uTLineLu (3)

where u = [uB , uI] and LineL are re-ordered so

that the boundary nodes (edges in Line) come first.

Then, minimizing DLine[u] wrt uI leads to label

of the unknown nodes (edges in Line) uI as the

solutions to the following linear system:

LIuI = −KTuB , (4)

where all the uB are set to the unit, LI is the

sub-Laplacian of LineL concerning the uI nodes,

and K is a |SB′| × |SB′| block of the re-ordered

Laplacian.

7) Relabelling: Since there is a bijection between the nodes

in the line graph and the edges in the original graph,

we relabel the edges in the orginal graph with the

information coming from the Dirichlet process in the

line graph.

V. EXPERIMENTS

Our goal is to increase the number in edges in classes whose

density is lower than the global inter-class density. In [13],

we presented an unsupervised graph densification method that

notably improves the results obtained with kNN. This method

yields better results selecting a high number of edges in the

Laplacian matrix (35%), thus obtaining a densified matrix

with a higher number of edges than the input kNN. However,

these results may be improved by introducing a previous

supervised step to densify the graph, yielding an smaller and

less dense Laplacian. Next, we show the obtained results.

The strategy followed to add intra-class edges is as follows:

(i) The density of each class is obtained individually and it is

compared to the global average intra-class density of all the

classes in the graph. (ii) Edges are added to classes whose

individual density is lower than the global one, until they reach

the global density. These edges are added randomly and their

value is 1. (iii) Our Dirichlet Densification method is applied

to densify/rewire the resulting graph. Finally, we run the robust

method for estimating CTs in the rewired graph. Performance

is measured in terms of Adjusted Rand Index (ARI) of the

affinity matrix associated with the CTs.

Next, we will present a set of experiments consisting of

applying this process to different datasets.

A. Experiment 1: Partial local density: increasing the density

of a single class

The goal of the first experiment is to prove that a previous

densification of the class with the lowest density may improve

the results. We’ll use the NIST dataset, using as a reference the

best kNN obtained in our preliminary experiments (k = 15).

The obtained results are shown in Figure 1. The top-left ele-

ment in the figure displays the densification level (percentage)

for each of the 10 dataset classes, and the dotted horizontal red

line represents the global average density for all the classes.

We can see that class #3 has approximately 3% less density

than the average. We can also see the corresponding kNN

matrix (top-center), and the best densification obtained with

our unsupervised method (top-left), corresponding to use a

35% of the Laplacian matrix, and a 5% of known edges. In

the bottom row we show the results obtained by adding a 3%

of 1-valued edges to class #3 in a previous step, as we can

see in the kNN matrix (bottom-center). Finally, we apply our

method to densify the graph (bottom-right).

In our preliminary unsupervised experiments, an increase

in the number of edges yields a final densified matrix with

a higher number of edges than the original one. However,

adding edges locally in a particular class yields a different

result: the obtained matrix is less dense than the input matrix

(previous to densification). This is due to the fact that, in

principle, the 1-valued edges added in RRW cause that most

of the paths generated within the class go through these

edges, thus reducing the probability of choosing paths that

do not include them. In further steps of the rewiring, when

our method chooses the edges with higher weights in the

line graph, it includes the intra-class edges of this class. This

reduces the inter-class noise and the confusion with other

classes. Concluding, we obtain a better result with a lower

number of edges than the input graph, due to the smart label

selection and the intelligent Dirichlet diffusion.

B. Experiment 2: Increasing global intraclass density

The second experiment consists of studying the effect of

the densification of all the classes with a density lower than

the average one. We use the same dataset than in the previous

experiment, but in this case we increase the density of classes

#3, #4, #5, #6, #8, #9, and #10, by increasing their number

of edges in 2.61%, 0.64%, 0.8%, 2.52%, 0.19%, 0.42% and

1.15% respectively. Thus, there are not classes below the

average density, as we can see in Figure 2 (bottom-left). We

also show in this figure the input graph obtained with this

densification (bottom-center), and the densified graph (bottom-

right), with an adjusted rand index of 82.91% with E′′ = 0.3.

We have obtained an improvement close to 10%.

C. Experiment 3: Analysis of the densification level

In this experiment, we study which is the necessary den-

sification level to improve the best result provided by the

unsupervised method, and if is it possible to use a smaller

Laplacian matrix so that we outperform the unsupervised

method for different datasets.

We define P as a factor that determines how the difference

of density percentage with respect to the average will be

reduced. E.g., defining P = 0.5 (50%) in a class with an

initial density of 4% below the average, means that we will

add edges until the density if 2% below the average.

Next, we analyze the results of the datasets (NIST, COIL

and LOGOS) for different values of P (0.25, 0.33, 0.5 and 1).

Fig. 1. Nist dataset: Increasing local density of class three with a size of laplacian equal to 0.35. The best result of NIST unsupervised is 72.52% and
semisupervised result is 74.92%

Fig. 2. Nist dataset: Increasing local density of all classes with a size of laplacian equal to 0.3. The best result of NIST unsupervised is 72.52% and
semisupervised result is 82.91%

1) NIST: This dataset consist of 10 classes with 100 el-

ements per class, with an average density of 14.7%, and a

median density of 14%. Regarding the local density, 7 of these

10 classes are below the average density.

We analyze different densifications for the indicated P

values and different Laplacian sizes (0.05, 0.1, 0.15, 0.2, 0.25,

0.3 and 0.35), and we obtain the Adjusted Rand Index for

each case. The results are shown in table I, highlighting in

bold all the cases improving the best result yielded by the

unsupervised method (72.52%). In Figure 2 (bottom-right) we

show the best case, with and Adjusted Rand Index of 82.91%

and a densification level of 2.45%, notably lower than the best

result of the unsupervised method (3.79%).

These results show that we may obtain better rewirings with

a smaller Laplacian (see Figure 3). We can see that as we

increase P , and thus the number of edges of the input matrix,

we obtain a less dense result but with lower inter-class noise.

Therefore, the denser the input classes, the more efficient is

the assignment of edges in the densification.

TABLE I
NIST DATASET: ADJUSTED RAND INDEX FOR DIFFERENT PERCENTAGE

OF ADDED EDGES AND SIZE OF LAPLACIAN MATRICES

0.05 0.1 0.15 0.2 0.25 0.3 0.35

P=0.25 71.59 65.9 69.79 71.04 71.98 73.12 73.53

P=0.33 60.55 60.98 69.98 73.69 74.46 73.65 73.16

P=0.5 60.44 70.68 71.33 74.38 74.33 74.74 71.8

P=1 71.59 76.88 78.35 79.96 79.19 82.91 82.38

Fig. 3. NIST dataset: four cases with Laplacian size lower than the
unsupervised case, that also improve their results (72.56%). The results of
Adjusted RI are (left-to-right) 73.12%, 73.69%, 74.38% and 76.88% (in red
in table I)

TABLE II
COIL-20 DATASET: ADJUSTED RAND INDEX FOR DIFFERENT

PERCENTAGE OF ADDED EDGES AND SIZE OF LAPLACIAN MATRICES

0.05 0.1 0.15 0.2 0.25 0.3 0.35

P=0.25 69.47 71.02 72.08 76.59 77.01 76.89 69.18

P=0.33 69.53 77.27 78.28 78.97 77.48 96.44 97.75

P=0.5 76.66 74.64 75.09 80.1 75.66 75.13 98.12

P=1 75.09 75.01 69.22 75.83 74.2 99 99.41

2) COIL: The COIL-20 dataset1 consists of 20 classes with

72 elements per class [24], with an average density of 21.33%,

and a median density of 23.01%. Regarding the local density,

7 of these 20 classes are below the average density.

This dataset has less inter-class noise than the previous one,

and therefore the obtained improvement with the semisuper-

vised method is lower, because the initial density is appro-

priate, as we can see in table II. However, in this dataset

is more difficult to improve the unsupervised method with

smaller Laplacians because of the structure of the graphs: the

first classes are denser than the others. This causes a notable

imbalance. We can see that the median is quite different from

the average. Building a small Laplacian in this scenario implies

to obtain a reduced sample of the original set of edges, in

which the selected edges will be the ones with higher weights,

and these edges mainly correspond to the first classes (with

higher densities). This causes that the other classes are not

correctly densified.

3) LOGO: The LOGO (FlickrLogos-322) consists of 32

classes with 70 elements per class [25], with an average

density of 20.19%, and a median density of 20.53%. Regarding

the local density, 19 of these 32 classes are below the average

density.

The best result obtained with the unsupervised method for

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
2http://www.multimedia-computing.de/flickrlogos/

Fig. 4. COIL-20 dataset: four cases with Laplacian size lower then the
unsupervised case, most of them improving their results (95.44%). The results
of Adjusted RI are (left-to-right) 99%, 98.12%, 96.44% and 77.01%

TABLE III
LOGO DATASET: ADJUSTED RAND INDEX FOR DIFFERENT PERCENTAGE

OF ADDED EDGES AND SIZE OF LAPLACIAN MATRICES

0.05 0.1 0.15 0.2 0.25 0.3 0.35

P=0.25 54.46 61.45 63.64 64.02 64.54 65.34 64.16

P=0.33 58.11 63.36 66.18 66.89 65.97 66.99 66.45

P=0.5 61.15 68.12 69.95 71.2 70.03 69.83 69.82

P=1 66.75 73.79 75.97 76.93 77.45 77.22 77.79

Fig. 5. LOGO dataset: four cases with Laplacian size lower then the
unsupervised case, that also improve its results (62.96%). The results of
Adjusted RI are (left-to-right) 63.64%, 63.36%, 68.12% and 66.75%

this dataset es 62.96%, with is notably improved with the

unsupervised method as we can see in Table III. The best

semisupervised result is obtained with P = 1 and a Laplacian

L = 35%, and its Adjusted Rand Index is 77.79%. In this table

we highlight in bold the cases in which the supervised method

improves the unsupervised one. In some of them a small

Laplacian with L = 10% allows to reach an improvement

of about a 5% (ARI = 67.1%).

D. Experiment 4: Comparison with Anchor Graphs

As we have stated in the introduction, anchor graphs rely

on selecting the number of placement of all the anchors.

Their number m has to be determined empirically, whereas

the placement is given by K-means clustering. In Figure 6-

right we show the evolution of the ARI as we increase the

number of anchors, run K-means, and compute CTs on the

NIST dataset. The optimal performance of anchor graphs is

given for an intermediate number of anchors. However, our

unsupervised method clearly outperforms anchor graphs but

in a reduced interval. When the supervised method proposed

in this paper is applied, we outperform anchor graphs in the

whole spectrum.

A key property of rewired graphs is the fact that their

spectral gap is minimized with respect to that of anchor graphs

(see Figure 6)-left. This is important since local estimations of

commute times are bounded by the inverse of the spectral gap.

Thus, if the spectral gap is close to zero, then local estimations

are unbounded and we are closer to the real commute times.

Fig. 6. Comparison with Anchor Graphs (NIST dataset). Left ARI: vs number
of anchors. Right: ARI vs spectral gaps.

VI. CONCLUSION

In this paper, we have contributed with a semi-supervised

method for rewiring graphs. In this context, graph rewiring ex-

ploits the intelligent labelling driven by the Dirichlet principle

to improve the quality of the input graph. Such improvement

allows us to measure vertex similarities such as Commute

Times in better topological conditions. Our extensive exper-

iments show that rewiring is a more general concept than

densification and also that it often leads to reduce the size of

the Laplacian associated with the line graph to achieve results

comparable to those obtained by the unsupervised version of

the method.

ACKNOWLEDGEMENTS

M. Curado, F. Escolano and M.A. Lozano are funded by

the project TIN2015-69077-P of the Spanish Government.

REFERENCES

[1] M. Hardt, N. Srivastava, and M. Tulsiani, “Graph densification,” in
Innovations in Theoretical Computer Science 2012, Cambridge, MA,

USA, January 8-10, 2012, 2012, pp. 380–392. [Online]. Available:
http://doi.acm.org/10.1145/2090236.2090266

[2] J. D. Batson, D. A. Spielman, N. Srivastava, and S. Teng, “Spectral
sparsification of graphs: theory and algorithms,” Commun. ACM, vol. 56,
no. 8, pp. 87–94, 2013.

[3] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, “The
regularity lemma and its applications in graph theory,” in Theoretical

Aspects of Computer Science, Advanced Lectures (First Summer School

on Theoretical Aspects of Computer Science, Tehran, Iran, July 2000),
2000, pp. 84–112.

[4] A. M. Frieze and R. Kannan, “The regularity lemma and approximation
schemes for dense problems,” in 37th Annual Symposium on Foundations

of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16

October, 1996, 1996, pp. 12–20.
[5] M. Pelillo, I. Elezi, and M. Fiorucci, “Revealing structure in large

graphs: Szemerédi’s regularity lemma and its use in pattern recognition,”
Pattern Recognition Letters, vol. 87, pp. 4–11, 2017.

[6] U. von Luxburg, A. Radl, and M. Hein, “Hitting and commute times
in large random neighborhood graphs,” Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1751–1798, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2638591

[7] M. Alamgir and U. von Luxburg, “Phase transition in the family of
p-resistances,” in Advances in Neural Information Processing Systems

24: 25th Annual Conference on Neural Information Processing Systems

2011. Proceedings of a meeting held 12-14 December 2011, Granada,

Spain., 2011, pp. 379–387.
[8] C. H. Nguyen and H. Mamitsuka, “New resistance distances with global

information on large graphs,” in Proceedings of the 19th International

Conference on Artificial Intelligence and Statistics, AISTATS 2016,

Cadiz, Spain, May 9-11, 2016, 2016, pp. 639–647.

[9] D. A. Spielman and N. Srivastava, “Graph sparsification by effective
resistances,” SIAM J. Comput., vol. 40, no. 6, pp. 1913–1926, 2011.
[Online]. Available: http://dx.doi.org/10.1137/080734029

[10] F. Escolano, M. Curado, S. Biasotti, and E. R. Hancock, “Shape simplifi-
cation through graph sparsification,” in Graph-Based Representations in

Pattern Recognition - 11th IAPR-TC-15 International Workshop, GbRPR

2017, Anacapri, Italy, May 16-18, 2017, Proceedings, 2017, pp. 13–22.
[11] M. Fiorucci, A. Torcinovich, M. Curado, F. Escolano, and M. Pelillo,

“On the interplay between strong regularity and graph densification,” in
Graph-Based Representations in Pattern Recognition - 11th IAPR-TC-

15 International Workshop, GbRPR 2017, Anacapri, Italy, May 16-18,

2017, Proceedings, 2017, pp. 165–174.
[12] F. Escolano, M. Curado, and E. R. Hancock, “Commute times in dense

graphs,” in Structural, Syntactic, and Statistical Pattern Recognition -

Joint IAPR International Workshop, S+SSPR 2016, Mérida, Mexico,

November 29 - December 2, 2016, Proceedings, 2016, pp. 241–251.
[13] F. Escolano, M. Curado, M. A. Lozano, and E. R. Hancock, “Dirichlet

graph densifiers,” in Structural, Syntactic, and Statistical Pattern Recog-

nition - Joint IAPR International Workshop, S+SSPR 2016, Mérida,

Mexico, November 29 - December 2, 2016, Proceedings, 2016, pp. 185–
195.

[14] W. Liu, J. Wang, and S. Chang, “Robust and scalable
graph-based semisupervised learning,” Proceedings of the IEEE,
vol. 100, no. 9, pp. 2624–2638, 2012. [Online]. Available:
http://dx.doi.org/10.1109/JPROC.2012.2197809

[15] W. Liu, J. He, and S. Chang, “Large graph construction for scalable
semi-supervised learning,” in Proceedings of the 27th International

Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,

Israel, 2010, pp. 679–686.
[16] U. von Luxburg and M. Alamgir, “Density estimation from unweighted

k-nearest neighbor graphs: a roadmap,” in Advances in Neural Infor-

mation Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held

December 5-8, 2013, Lake Tahoe, Nevada, United States., 2013, pp.
225–233.

[17] M. Alamgir and U. von Luxburg, “Shortest path distance in random
k-nearest neighbor graphs,” in Proceedings of the 29th International

Conference on Machine Learning, ICML 2012, Edinburgh, Scotland,

UK, June 26 - July 1, 2012, 2012.
[18] U. von Luxburg, A. Radl, and M. Hein, “Getting lost in space: Large

sample analysis of the resistance distance,” in Advances in Neural

Information Processing Systems 23: 24th Annual Conference on Neural

Information Processing Systems 2010. Proceedings of a meeting held

6-9 December 2010, Vancouver, British Columbia, Canada., 2010, pp.
2622–2630.

[19] D. Cai and X. Chen, “Large scale spectral clustering via
landmark-based sparse representation,” IEEE Trans. Cybernetics,
vol. 45, no. 8, pp. 1669–1680, 2015. [Online]. Available:
http://dx.doi.org/10.1109/TCYB.2014.2358564

[20] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in

Neural Information Processing Systems 21, Proceedings of the Twenty-

Second Annual Conference on Neural Information Processing Systems,

Vancouver, British Columbia, Canada, December 8-11, 2008, 2008, pp.
1753–1760.

[21] W. Liu, J. Wang, S. Kumar, and S. Chang, “Hashing with graphs,” in
Proceedings of the 28th International Conference on Machine Learning,

ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, 2011,
pp. 1–8.

[22] H. Qiu and E. R. Hancock, “Clustering and embedding using
commute times,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 11, pp. 1873–1890, 2007. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2007.1103

[23] W. Liu, C. Mu, S. Kumar, and S. Chang, “Discrete graph hashing,”
in Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December

8-13 2014, Montreal, Quebec, Canada, 2014, pp. 3419–3427.
[24] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia

university image library (coil-20),” 1996. [Online]. Available:
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

[25] S. Romberg, L. G. Pueyo, R. Lienhart, and R. van Zwol, “Scalable
logo recognition in real-world images,” in Proceedings of the 1st ACM

International Conference on Multimedia Retrieval, ser. ICMR ’11, 2011.

