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Abstract—This paper adopts simple analytical modelling to investigate the contribution of airgap field harmonics to the torque 

production in some 3-phase, 12-slot/8-pole doubly-salient synchronous reluctance machines (DSRMs) with both conventional and 

mutually-coupled winding configurations. The airgap flux density has been calculated based on the analytically obtained 

magnetomotive force and doubly-salient airgap permeance for both the double layer and single layer DSRMs with different 

winding configurations. Then the contribution of different airgap field harmonics to average torque and torque ripple can be 

investigated and validated by direct finite element analyses. It has been found that in the DSRM, the 10th order harmonic in the 

double layer conventional (DLC), the 4th order harmonic in the double layer mutually-coupled (DLMC), the 7th order harmonic in 

the single layer conventional (SLC) and the 10th order harmonic in the single layer mutually-coupled (SLMC) have the highest 

contribution to positive average torque while with positive influence on torque ripple reduction. However, the 2nd order harmonic 

in the DLC, the 8th order harmonic in the DLMC, the 5th order harmonic in the SLC and the 2nd order harmonic in the SLMC 

machines mainly reduce the average torque.  

 

Index Terms—Airgap field, analytical modelling, doubly salient synchronous reluctance machine, torque.  

 

I. INTRODUCTION 

WICTHED reluctance machines become increasingly 

attractive in various industry sectors like domestic 

appliances, renewable energy, electrical vehicles and hybrid 

electrical vehicles, etc. This is mainly due to the apparent 

merits such as no permanent magnets or field windings on 

the rotors, which lead to low cost, simple and robust 

machine structures, etc. [1] [2] [3] [4]. However, the 

switched reluctance machines exhibit higher levels of 

vibrations and acoustic noise when compared to permanent 

magnet machines and induction machines [5] [6]. This is 

mainly due to their doubly salient structures, which can 

cause abrupt changes in radial force around the airgap. In 

addition, the abrupt change in phase current due to the 

conventional square wave unipolar phase current supply is 

another factor for higher vibration and acoustic noise. In 

addition, with the conventional square wave unipolar 

excitation, special power-converter is often used for 

conventional switched reluctance machines and it to some 

extent limits the foothold of such machines in the market. In 

contrast, with similar magnet-free structures, the 

synchronous reluctance machines can employ the off-the-

shelf 3-phase bridge inverters with sinewave excitation, 

which are also used in synchronous and induction machines 

[7] [8]. However, most synchronous reluctance machines 

have complicated non-salient rotor structures with flux 

barriers inside the rotor iron core which increases the 

difficulty and cost in manufacturing. In order to employ the 

doubly-salient machine structure for simpler manufacturing 

and to use the standard 3-phase inverter for reducing the 

system cost, the SRMs can also adopt the sinewave 

excitation which are in effect doubly-salient synchronous 

reluctance machines (DSRMs).  

Similar to switched reluctance machines, both the 

concentrated and distributed winding can be applied for 

DSRMs, which have significant influence on the 

electromagnetic performances. It is well-established that 

switched reluctance machine with double layer 

conventional winding configuration obtains its best 

electromagnetic performance when it adopts the 

conventional square wave unipolar current with 120 elec. 

deg. conduction [9]. However, the DSRM with double layer 

conventional winding (DLC) cannot have a good 

performance with sinewave excitation since only self-

inductances can contribute to the electromagnetic torque. 

Different from the DLC, the machine with double layer 

mutually-coupled winding (DLMC) can have both self- and 

mutual-inductances since the flux in one phase also links to 

other phases [9] [10] [11]. In addition, the DLMC is less 

sensitive to magnetic saturation due to the less concentrated 

magnetomotive force (MMF) in the stator iron core. As a 

result, it has been found that the DLMC can achieve better 

overload torque capability [7]. Moreover, it is evident in [7] 

[12] that the vibration and acoustic noise can be reduced 

with the DLMC. However, the torque ripple of this machine 

is higher than that with DLC due to the nature of its self- 

and mutual-inductances.  

With sinewave excitation, higher average torque with 

lower torque ripple can be achieved by both single layer 

conventional (SLC) and single layer mutually-coupled 

(SLMC) machines at low current levels, in which the 

winding configurations are similar to their double layer 

counterparts [13]. However, similar to the single layer 

winding structure in the well-established fully-pitched 

winding machine, the two single layer machines are more 

sensitive to magnetic saturation, making them less attractive 

at high phase current than the double layer machines. 

In this paper, in order to investigate the torque production 

mechanism between different winding configurations, both 

the double or single layer machines have been selected for 

quantitative analysis of the airgap field harmonics and their 

contribution to the torque performances (average torque and 

torque ripple). Some simple analytical torque models have 

been developed based on the airgap permeance and 

armature winding MMFs. In order to evaluate the slotting 

effect on the airgap permeance and hence on the airgap field, 
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two main methods can be adopted, which have been well 

established in literature. One is to evaluate a relative 

permenace function on the basis of the conformal 

transformation (considered in this paper), the other 

approach is to use the subdomain models, which might be 

relatively more accurate, but more complicated to use as 

well [14] [15] [16] [17]. In addition, the analytical models 

of the airgap flux density have been developed according to 

the MMF-permeance theory reported in [18] [19] [20] [21]. 

It is worth mentioning that in order to simplify the analyses, 

the permeability of the stator and the rotor iron cores has 

been assumed to be infinite. As a result, the magnetic 

saturation is not considered. In addition, the analytical 

model will be 2D, and hence the end effect is neglected as 

well. 

II. INFLUENCE OF WINDING CONFIGURATION ON MMF 

A. Winding Configurations of Double Layer and Single 

Layer Machines 

In this paper, the 3-phase 12-slot/8-pole DSRMs employ 

both the double/single layer, conventional/mutually-coupled 

winding configurations. To simplify the analysis, all the 

machines have the same dimensions and their design 

parameters are shown in TABLE I. The winding 

configurations and flux distributions of the double layer 

conventional and mutually-coupled (DLC and DLMC) are 

shown in Fig. 1 (a) and (b), respectively.  

TABLE I MACHINE DIMENSIONS AND DESIGN PARAMETERS 

Stator slot number 12 Active length (mm) 60 

Rotor pole number 8 
Stator slot opening 

coefficient 𝛽𝑠 0.49 

Stator outer radius (mm) 45 
Rotor slot opening 

coefficient 𝛽𝑟 0.57 

Stator inner radius 29.3 Turn number per phase 132 

Air gap length (mm) 0.5 Rated RMS current (A) 10 

Rotor outer radius (mm) 28.8 Current density (Arms/mm2) 5.68 
Rotor inner radius (mm) 9.3 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Comparison of winding configurations and flux distributions 

between the 12-slot/8-pole DSRMs: (a) DLC, (b) DLMC, (c) SLC, and (d) 

SLMC. The rotor is at aligned position and phase A is supplied by a 10A 

dc current.  

It can be found in Fig. 1 (a) that there is almost no 

mutual-flux in the DLC. However, the flux of phase A is 

also linked with other phases in the DLMC, as shown in Fig. 

1(b). In addition, the number of flux paths of the phase A is 

doubled than that with the DLC. Also, the coil magnetic 

polarities of the phase A of the DLC is SNSN while it is 

SSSS for the DLMC. As a result, the MMF waveform of 

the phase A of the DLC should be different from that of the 

DLMC as will be detailed later on in this paper.  

The flux distribution of their single layer counterparts: 

SLC and SLMC are shown in Fig. 1 (c) and (d), 

respectively, where the winding arrangements are similar to 

those in the double layer machines, but with single layer 

winding structures. Hence, the coil magnetic polarities are 

different as shown in TABLE II. It can be found that the 

DLC and DLMC have similar coil magnetic polarities as the 

SLC and SLMC, respectively. However, the periodicity of 

the magnetic polarities in the double layer machines is 

doubled than that in the single layer machines. Additionally, 

it is worth noting that the number of coils per phase of the 

double layer machines is doubled when compared to that of 

the single layer ones. However, the double layer machines 

have half number of turns per coil compared to the single 

layer ones, so they have the same number of turns per phase.  

By way of example, with 4 coils per phase, the double 

layer machines have 33 turns per coil to achieve 132 series 

turns per phase. However, the single layer ones have 2 coils 

per phase and 66 turns per coil. Therefore, at the same 

current, the amplitude of single phase MMF of the single 

layer machines are doubled than that of the double layer 

ones, regardless of the winding configurations. This means 

that the single layer winding might generate more torque 

but it could be more prone to magnetic saturation as well.  

 
TABLE II COIL MAGNETIC POLARITIES OF DSRMS WITH 

DIFFERENT WINDING CONFIGURATIONS 

Winding configurations Coil magnetic polarities 

DLC SNSNSNSNSNSN 

DLMC SSSSSSSSSSSS 

SLC NSNSNS 

SLMC NNNNNN 

B. Analysis of Single-Phase MMF for Different Winding 

Configurations 

According to the winding configurations and coil 

magnetic polarities, the single-phase MMF of both the 

double and single layer configurations can be calculated. It 

is worth noting that the waveform of the single-phase MMF 

of the double layer winding configurations are similar to 

their single layer counterpart, while their amplitudes 

(influenced by number of turns per coil) and periodicities 

(influenced by the periodicity of the coil magnetic polarities) 

are different. In order to avoid the duplication, only the 

DLC and DLMC have been selected for the MMF analytical 

modelling in this paper. 

1) Conventional winding configurations  

With 4 coils per phase, the coil magnetic polarities of the 

phase A of the DLC are SNSN. Therefore, the phase A 

winding has 2 pole pairs, and its MMF against angular 

position 𝜃 , at t=0, can be calculated over half of a 

mechanical period, i.e. [0, 𝜋]: 
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𝑀𝑀𝐹𝑎(𝜃, 𝑡 = 0)

=

{  
   
   
  
   
   
  𝐻 0 ≤ 𝜃 < 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠− 2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 12𝜃𝑠) 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 12𝜃𝑠0 12𝜃𝑠 ≤ 𝜃 < 52𝜃𝑠− 2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 52𝜃𝑠) 52𝜃𝑠 ≤ 𝜃 < 52𝜃𝑠 + 12𝛽𝑠𝜃𝑠−𝐻 52𝜃𝑠 + 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 72𝜃𝑠 − 12𝛽𝑠𝜃𝑠2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 72𝜃𝑠) 72𝜃𝑠 − 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 72𝜃𝑠0 72𝜃𝑠 ≤ 𝜃 < 112 𝜃𝑠2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 112 𝜃𝑠) 112 𝜃𝑠 ≤ 𝜃 < 112 𝜃𝑠 + 12𝛽𝑠𝜃𝑠𝐻 112 𝜃𝑠 + 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 6𝜃𝑠

 
(1) 

where 𝐻 = 𝑁𝑐𝐼𝑝ℎ  is the MMF per coil (𝑁𝑐 = 33  for the 

double layer machines while 𝑁𝑐 = 66 for the single layer 

machines). The dc phase current is used for the single-phase 

MMF modelling, while for the three-phase MMF modelling 

it is the phase peak current. 𝜃𝑠 is the stator pole pitch (30 

mech. deg. for the 12-slot/8-pole machines), 𝛽𝑠𝜃𝑠 is the 

stator slot opening which can be found in TABLE I, and 𝜃 

is the angular position in mech. deg. Accordingly, (1) can 

be expanded into Fourier series over [0, 2𝜋] as 

𝑀𝑀𝐹𝑎(𝜃, 𝑡 = 0) = 2𝑁𝑐𝐼𝑝ℎ𝜋𝛽𝑠𝜃𝑠 ∑ 1𝑘2 𝐶𝑎,𝑘 cos(𝑘𝜃∞
𝑘=1 ) (2) 

where the coefficient 𝐶𝑎,𝑘 is shown in TABLE III. It can be 

found that the single-phase MMF of the DLC contains 

harmonic orders of 2, 6, 10, …, (4k-2), where k=1, 2, 3, … 
Accordingly, the magnitude of each harmonic in the single-

phase MMF can be obtained.  

 
TABLE III  COEFFICIENT 𝐶𝑎,𝑘 IN SINGLE-PHASE MMF OF DLC 𝐶𝑎,𝑘 𝑛 4 sin(12𝑛𝛽𝑠𝜃𝑠) − 4√3 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 2 + 24(𝑘 − 1) 8 sin(12𝑛𝛽𝑠𝜃𝑠) 6 + 24(𝑘 − 1) 4 sin(12𝑛𝛽𝑠𝜃𝑠) + 4√3 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 10 + 24(𝑘 − 1) −4 sin(12𝑛𝛽𝑠𝜃𝑠) + 4√3 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 14 + 24(𝑘 − 1) −8sin(12𝑛𝛽𝑠𝜃𝑠) 18 + 24(𝑘 − 1) −4 sin(12𝑛𝛽𝑠𝜃𝑠) − 4√3 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 22 + 24(𝑘 − 1) 

 

2) Mutually-coupled winding configurations  

If the mutually-coupled winding is employed, the flux 

path is different from that of the DLC. It can be seen from 

Fig. 2 that the number of flux paths is doubled in the 

DLMC. In addition, its coil magnetic polarities, such as for 

the phase A, are SSSS. As a result, the periodicity of the 

single-phase MMF of the DLMC is 4 over one mechanical 

period ([0, 2𝜋]), and the phase A MMF against the angular 

position 𝜃, at t=0, is calculated over [0, 12𝜋]. 
 

 

  
(a) (b) 

 Fig. 2. Flux paths in (a) double layer, and (b) single layer machines when 

the phase A is supplied.  

 

Fig. 3. Comparison of the single phase MMFs between the 12-slot/8-pole 

DSRMs. (a) double layer, and (b) single layer machines. Phase A is 

supplied with a 10A dc current.  

 
Fig. 4. Spectra of the single phase MMFs. (a) double layer, and (b) single 

layer machines. Phase A is supplied with a 10A dc current. 

 𝑀𝑀𝐹𝑎(𝜃, 𝑡 = 0)
=
{  
   
    
 𝐻2 − 𝛿0 0 ≤ 𝜃 < 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠− 2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 12𝜃𝑠 + 14𝛽𝑠𝜃𝑠) − 𝛿0 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 12𝜃𝑠−𝐻2 − 𝛿0 12𝜃𝑠 ≤ 𝜃 < 52𝜃𝑠2𝐻𝛽𝑠𝜃𝑠 (𝜃 − 52𝜃𝑠 − 14𝛽𝑠𝜃𝑠) − 𝛿0 52𝜃𝑠 ≤ 𝜃 < 52𝜃𝑠 + 12𝛽𝑠𝜃𝑠𝐻2 − 𝛿0 52𝜃𝑠 + 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 3𝜃𝑠

 (3) 

where  𝛿0 = 1𝑇∫ 𝑀𝑀𝐹𝑎2𝜋
0 (𝜃, 𝛿0 = 0)𝑑𝜃 = −𝐻6 (𝛽𝑠 + 1) (4) 𝛿0 is referred to the dc component which is considered for 

the mutual flux path through other phases (when the phase 

A is excited). Accordingly, (3) can be expanded into Fourier 

series over [0, 2𝜋] as 

𝑀𝑀𝐹𝑎(𝜃, 𝑡 = 0) = 2𝑁𝑐𝐼𝑝ℎ𝜋𝛽𝑠𝜃𝑠 ∑ 1𝑘2𝑀𝑎,𝑘 cos(𝑘𝜃∞
𝑘=1 ) (5) 
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where the coefficient 𝑀𝑎,𝑘  is shown in TABLE IV. 

Therefore, the single-phase MMF of the DLMC contains 

harmonic orders of 4, 8, 12, …, (4k), where k=1, 2, 3, … It 
is apparent that the harmonic orders in MMF is different 

from the DLC due to different magnetic polarities. 

 
TABLE IV COEFFICIENT 𝑀𝑎,𝑘  IN SINGLE-PHASE MMF OF THE 

DLMC 𝑀𝑎,𝑘 𝑛 4√3 sin(12𝑛𝛽𝑠𝜃𝑠) + 4 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 4 + 24(𝑘 − 1) 4√3 sin(12𝑛𝛽𝑠𝜃𝑠) − 4 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 8 + 24(𝑘 − 1) −8 [cos(𝑛𝛽𝑠𝜃𝑠2 ) − 1] 12 + 24(𝑘 − 1) −4√3 sin(12𝑛𝛽𝑠𝜃𝑠) − 4 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 16 + 24(𝑘 − 1) −4√3 sin(12𝑛𝛽𝑠𝜃𝑠) + 4 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 20 + 24(𝑘 − 1) 8 [cos (𝑛𝛽𝑠𝜃𝑠2 ) − 1] 24 + 24(𝑘 − 1) 
 

The single-phase MMFs of both the SLC and SLMC can 

be obtained in similar way, but they are not shown in this 

paper to save space. According to these Fourier series 

expressions, the single-phase MMFs of both the double and 

single layer machines are illustrated in Fig. 3 (a) and (b), 

respectively. Fig. 4 shows their spectra. It can be found that 

the MMF amplitudes of both the double layer DSRMs are 

lower than that of the single layer ones, but the periodicity 

is doubled. This is due to the doubled number of coils per 

phase but halved periodicity in the coil magnetic polarities, 

as mentioned previously. In addition, with the conventional 

winding configurations, the harmonic orders of the SLC are 

2, 4, 6, …, (2k-1), where k=1, 2, 3, ..., while with the 

mutually-coupled winding configurations, the harmonic 

orders of the SLMC are 1, 3, 5, …, 2k, where k=1, 2, 3, ... 

Hence, the harmonic orders of the double layer DSRMs are 

doubled than those of the single layer ones, regardless of the 

winding configurations. Furthermore, it can be found that 

the phase A MMF is not zero at the angular position of 

other phases, e.g. 120 mech. deg., for phase B or C, in both 

the DLMC- and SLMCs. This is due to the mutual flux 

between phases as explained previously. 

C. 3-Phase MMF Supplied with Sinewave Currents 

Supplied with 3-phase sinewave currents as shown in (6), 

the 3-phase MMF can be calculated at different rotor 

positions. 

{  
  𝑖𝑎 = √2𝐼𝑟𝑚𝑠sin (𝜔𝑡)𝑖𝑏 = √2𝐼𝑟𝑚𝑠sin (𝜔𝑡 − 2𝜋3 )𝑖𝑐 = √2𝐼𝑟𝑚𝑠sin (𝜔𝑡 + 2𝜋3 )

 (6) 

For the DLC, the 3-phase MMF is given by 

𝑀𝑀𝐹𝑎𝑏𝑐(𝜃, 𝑡) = 3√2𝑁𝑐𝐼𝑟𝑚𝑠𝜋𝛽𝑠𝜃𝑠 ∑ 1𝑘2 𝐶𝑎,𝑘∞
𝑘=1 sin𝛽𝐶 (7) 

where 

𝛽𝐶 = { 𝑛𝜃 +𝜔𝑡 𝑛 = 2 + 12(𝑘 − 1)0 𝑛 = 6 + 12(𝑘 − 1)−𝑛𝜃 +𝜔𝑡 𝑛 = 10 + 12(𝑘 − 1) (8) 

Similarly, the 3-phase MMF of the DLMC is given by 

𝑀𝑀𝐹𝑎𝑏𝑐(𝜃, 𝑡) = 3√2𝑁𝑐𝐼𝑟𝑚𝑠𝜋𝛽𝑠𝜃𝑠 ∑ 1𝑘2𝑀𝑎,𝑘∞
𝑘=1 sin 𝛽𝑀 (9) 

where 

𝛽𝑀 = {−𝑛𝜃 + 𝜔𝑡 𝑛 = 4 + 12(𝑘 − 1)𝑛𝜃 + 𝜔𝑡 𝑛 = 8 + 12(𝑘 − 1)0 𝑛 = 12 + 12(𝑘 − 1) (10) 

                                                                                                                 

It can be found from (8) to (10) that the 10
th

 order harmonic 

of the DLC and the 4
th

 order harmonic of the DLMC are 

forward rotating. However, the 2
nd

 order harmonic of the 

DLC and the 8
th

 order harmonic of the DLMC are backward 

rotating. Moreover, there are no triplen harmonics in the 3-

phase MMF, as for other conventional 3-phase machines 

with neutral point. In addition, the rotation speed is 

determined by the rotor pole number but not by the stator 

winding pole numbers. Fig. 5 shows the comparison of the 

3-phase MMFs at t=0 between the DSRMs with both the 

double and single layer windings and Fig. 6 shows their 

spectra.  

 
Fig. 5. Comparison of the 3-phase MMFs between the 12-slot/8-pole 

DSRMs at 10𝐴𝑟𝑚𝑠. (a) DLC, (b) DLMC, (c) SLC, and (d) SLMC.  

 
Fig. 6. Spectra of the 3-phase MMFs between the 12-slot/8-pole DSRMs at 10𝐴𝑟𝑚𝑠. (a) double layer, and (b) single layer machines. 
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III. ANALYSIS OF AIRGAP FLUX DENSITY  

A. Airgap Permeance 

In order to investigate the slotting effect on the air-gap 

flux density, the doubly slotted airgap is divided into three 

regions, e.g. the stator slots, the air-gap, and the rotor slots, 

as shown in Fig. 7. As a result, the resultant airgap 

permeance can be written by (11). 

Λ𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝜃, 𝑡) = 1𝛿𝑠(𝜃) + 𝛿𝑟(𝜃, 𝑡) + 𝑙𝑔 (11) 

where 𝛿𝑠 and 𝛿𝑟 are additional airgaps due to the stator and 

rotor slotting effect, respectively, and 𝑙𝑔 is the airgap length. 

In addition, 𝑅𝑠1 and 𝑅𝑠2 are the radii of flux path lengths in 

the stator slot openings, and 𝑅𝑟1  and 𝑅𝑟2  are the radii of 

flux path lengths in the rotor slot openings. The resultant 

flux path in the stator and rotor slot openings have been 

derived in [20] and the additional airgap due to the stator 

and rotor slot openings over [0, 𝜃𝑠] and [0, 𝜃𝑟] are given by 

(12) and (13). 

𝛿𝑠(𝜃) =
{  
  
  0 0 ≤ 𝜃 < 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠𝜋𝑅𝑠𝑖2 sin(𝜃2 − 14𝜃𝑠 + 𝛽𝑠𝜃𝑠4 ) sin(𝛽𝑠𝜃𝑠4 − 𝜃2 + 14𝜃𝑠)sin(𝛽𝑠𝜃𝑠4 ) cos(𝜃𝑠4 − 𝜃2) 12𝜃𝑠 − 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 12𝜃𝑠 + 12𝛽𝑠𝜃𝑠0 12𝜃𝑠 + 12𝛽𝑠𝜃𝑠 ≤ 𝜃 < 𝜃𝑠

 (12) 

   𝛿𝑟(𝜃, 𝑡 = 0) =
{  
  
  0 0 ≤ 𝜃 < 12𝜃𝑟 − 12𝛽𝑟𝜃𝑟𝜋𝑅𝑟𝑜2 sin(𝜃2 − 14𝜃𝑟 + 𝛽𝑟𝜃𝑟4 ) sin(𝛽𝑟𝜃𝑟4 − 𝜃2 + 14𝜃𝑟)sin(𝛽𝑟𝜃𝑟4 ) cos(𝜃𝑟4 − 𝜃2) 12𝜃𝑟 − 12𝛽𝑟𝜃𝑟 ≤ 𝜃 < 12𝜃𝑟 + 12𝛽𝑟𝜃𝑟0 12𝜃𝑟 + 12𝛽𝑟𝜃𝑟 ≤ 𝜃 < 𝜃𝑟

 (13) 

where 𝑅𝑠𝑖 is the stator inner radius and 𝑅𝑟𝑜 is the rotor outer 

radius. Expanding (12) and (13) using Fourier series 

analysis over [0, 2𝜋] gives 𝛿𝑠(𝜃) = 𝑅𝑠𝑖(𝜋𝛽𝑠)272 +∑{− 𝑅𝑠𝑖24𝑘2 [1 + cos(2𝜋𝑘𝛽𝑠)+∞
𝑘=1− 1𝜋𝑘𝛽𝑠 sin(2𝜋𝑘𝛽𝑠)]} cos[6𝑘(2𝜃− 𝜃𝑠 + 𝛽𝑠𝜃𝑠)]+∑{ 𝑅𝑠𝑖24𝑘2 [ 1𝜋𝑘𝛽𝑠 [1 − cos(2𝜋𝑘𝛽𝑠)]+∞

𝑘=1− sin(2𝜋𝑘𝛽𝑠)]} sin[6𝑘(2𝜃 − 𝜃𝑠 + 𝛽𝑠𝜃𝑠)] 
(14) 

𝛿𝑟(𝜃, 𝑡) = 𝑅𝑟𝑜(𝜋𝛽𝑟)248 +∑{− 𝑅𝑟𝑜16𝑘2 [1 + cos(2𝜋𝑘𝛽𝑟)+∞
𝑘=1− 1𝜋𝑘𝛽𝑟 sin(2𝜋𝑘𝛽𝑟)]} cos[4𝑘(2𝜃− 𝜃𝑟 + 𝛽𝑟𝜃𝑟 − 2𝑡)]   +∑{ 𝑅𝑟𝑜16𝑘2 [ 1𝜋𝑘𝛽𝑟 [1 − cos(2𝜋𝑘𝛽𝑟)]+∞
𝑘=1− sin(2𝜋𝑘𝛽𝑟)]} sin[4𝑘(2𝜃 − 𝜃𝑟 + 𝛽𝑟𝜃𝑟− 2𝑡)] 

(15) 

 
Fig. 7. Diagram for illustration of reciprocal of resultant airgap permeance 

with idealized flux path in slot openings.   

 
Fig. 8. Additional airgap 𝛿 due to stator and rotor slotting effect. 

 
Fig. 9. Spectra of the additional airgap 𝛿 due to the stator and rotor slotting 

effect. 

Accordingly, the additional airgaps due to the stator and 

rotor slotting effects and their spectra have been illustrated 

in Fig. 8 and Fig. 9, respectively. Besides the dc component 

(1mm), it is apparent that with a slot number of 12, the 

harmonic orders of the stator side airgap is 12k, where k=1, 

2, 3, … Similarly, the harmonic orders of the rotor side 
airgap for a 8-pole machine is 8k. Substituting (14) and (15) 

into (11), the resultant airgap permeance can be obtained as 
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shown in Fig. 10. It can be found that the periodicity of the 

resultant airgap permeance in one mechanical period is 4, 

also, it is indeed the greatest common divisor of the slot and 

pole numbers. The harmonic orders of the resultant airgap 

permeance is 4k where k=1, 2, 3, …, as shown in Fig. 10 (b). 

 
Fig. 10. Airgap permeance of the 12-slot/8-pole DSRMs. (a) airgap 

permeance Λ (𝜃, 𝑡 = 0), and (b) spectra. 

B. Airgap Flux Density  

With the assumption of infinite permeability in the stator 

and rotor iron cores, the radial airgap flux density can be 

defined as 𝐵𝑟 (𝜃, 𝑡) = 𝜇0𝑀𝑀𝐹(𝜃, 𝑡)𝛬 (𝜃, 𝑡) (16) 

where 𝜇0  is the permeability of free space and 𝛬  is the 

airgap permeance. It is worth mentioning that the analytical 

model of MMF in Section II only considers the excitation of 

the armature coils. Hence, only the stator scalar magnetic 

potential is defined but the rotor scalar magnetic potential is 

assumed to be zero. Indeed, this approach can be used for a 

non-salient rotor case. However, due to the doubly salient 

structure in the DSRMs, the MMF has to be modified in 

order to take the non-zero rotor scalar magnetic potential 

into account. According to Gauss’s law for magnetism 
which states that 𝑑𝑖𝑣𝐵⃗ = 0, a coefficient 𝑞𝑐 can be defined 

according to [20] as 

𝑞𝑐(𝑡) = −∫ 𝑀𝑀𝐹𝑎(𝜃)Λ (𝜃, 𝑡)2𝜋0 𝑑𝜃∫ Λ (𝜃, 𝑡)2𝜋0 𝑑𝜃  (17) 

Hence, the MMF can be modified by adding the coefficient 𝑞𝑐: 𝑀𝑀𝐹𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑,𝑎(𝜃, 𝑡) = 𝑀𝑀𝐹𝑎(𝜃, 𝑡) + 𝑞𝑐(𝑡) (18) 

In addition, the coefficient 𝑞𝑐  is calculated as zero for 

conventional winding machines, regardless of the single or 

double layer winding structures. This is because that their 

dc component of 𝑀𝑀𝐹𝑎(𝜃)𝛬 (𝜃, 𝑡) equals zero, which is 

directly proportional to ∫ 𝑀𝑀𝐹𝑎(𝜃)𝛬 (𝜃, 𝑡)2𝜋0 𝑑𝜃 . Hence, 

the MMF of the conventional DSRMs can still be calculated 

using the analytical modelling in section II. However, this is 

not the case for the mutually coupled DSRMs, as will be 

detailed in the following sections. Hence, it can be 

concluded that the coefficient 𝑞𝑐  is only presented in the 

machine with mutually coupled winding configurations due 

to their unipolar MMF waveforms. 

1) Single-phase airgap flux density 

With the modified MMF, the airgap flux density can be 

obtained according to (16). The comparison of the single-

phase airgap flux densities of the DLC- and DLMCs 

between 2D FEA and analytical modelling is shown in Fig. 

11 (a) and (b), respectively. The phase A is supplied with a 

10A dc current. Fig. 12 shows the spectra. It is apparent that 

the analytical results match well with the FE results for both 

the DLC and DLMCs. Due to the doubled effective rotor 

pole number, the DLMC presents doubled periodicity than 

that of the DLC in the single-phase airgap flux density. It 

can be found that the harmonic orders of the DLC are 2, 6, 

10, …, (4k-2), while they are 4, 8, 12, …, 4k for the DLMC, 

where k=1, 2, 3, … Moreover, the harmonic orders of the 

single-phase airgap flux density is the same as that of the 

single-phase MMF which has been calculated in TABLE III 

and TABLE IV. 

 
(a) 

 
(b) 

Fig. 11.  Comparison of the single-phase airgap flux density 𝐵𝑟 between 

2D FEA and analytical modelling. Phase A is supplied with a 10A dc 

current. (a) DLC, and (b) DLMC. 

 
(a) 

 
(b) 

Fig. 12.  Spectra of the single phase airgap flux density 𝐵𝑟 between 2D 

FEA and analytical modelling. Phase A is supplied with a 10A dc current. 

(a) DLC, and (b) DLMC. 
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Similarly, the single-phase flux density of both the SLC 

and SLMCs can be obtained analytically and compared to 

2D FEA as shown in Fig. 13, and the spectra are shown in 

Fig. 14. As mentioned previously, the periodicity of the 

MMF of both the single layer DSRMs is half of that of the 

double layer DSRMs. With the same airgap permenace, the 

periodicity of the airgap flux density of both the single layer 

DSRMs is also half of that of the double layer DSRMs. It is 

worth noting that the harmonic orders of the single-phase 

airgap flux density of the single layer DSRMs are half of 

those of the single layer DSRMs. For example, for the SLC, 

the harmonic orders are 1, 3, 5, …, (2k-1), while they are 2, 

4, 6, …, 2k for the SLMC, where k=1, 2, 3, …  
 

 
(a) 

 
(b) 

Fig. 13.  Comparison of the single-phase airgap flux density 𝐵𝑟 between 

2D FEA and analytical modelling. Phase A is supplied with a 10A dc 

current. (a) SLC, and (b) SLMC. 

 
(a) 

 
(b) 

Fig. 14.  Spectra of the single phase airgap flux density 𝐵𝑟 between 2D 

FEA and analytical modelling. Phase A is supplied with a 10A dc current. 

(a) SLC, and (b) SLMC. 

2) 3-phase airgap flux density 

The 3-phase airgap flux density can be obtained by the 

same approach as for the single-phase airgap flux density. 

Fig. 15 and Fig. 16 compare the 2D FE and analytical 3-

phase airgap flux densities and their spectra for the double 

layer DSRMs. The phase current is 10𝐴𝑟𝑚𝑠 . For 

completeness, the 3-phase airgap flux density and the 

spectra of the single layer DSRMs are shown in Fig. 17 and 

Fig. 18. It can be found that the 3-phase airgap flux 

densities have the same harmonic orders as the single-phase 

airgap flux density for both the double and single layer 

DSRMs. It is worth noting that the harmonics in the 3-phase 

airgap flux density contribute directly (whether positively or 

negatively) to the on-load torque, which will be detailed in 

Section III. 

 

 
(a) 

 
(b) 

Fig. 15.  Comparison of the 3-phase airgap flux density 𝐵𝑟  between 2D 

FEA and analytical modelling at 10𝐴𝑟𝑚𝑠. (a) DLC, and (b) DLMC. 

 
(a) 

 
(b) 

Fig. 16.  Spectra of the 3-phase airgap flux density 𝐵𝑟 between 2D FEA 

and analytical modelling at 10𝐴𝑟𝑚𝑠. (a) DLC, and (b) DLMC. 
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(a) 

 
(b) 

Fig. 17.  Comparison of the 3-phase airgap flux density 𝐵𝑟  between 2D 

FEA and analytical modelling at 10𝐴𝑟𝑚𝑠. (a) SLC, and (b) SLMC. 

 
(a) 

 
(b) 

Fig. 18.  Spectra of the 3-phase airgap flux density 𝐵𝑟 between 2D FEA 

and analytical modelling at 10𝐴𝑟𝑚𝑠. (a) SLC, and (b) SLMC. 

IV. CONTRIBUTION OF AIRGAP FLUX DENSITY HARMONICS 

TO ON-LOAD TORQUE 

In this paper, the Maxwell stress tensor is used to 

investigate the contribution of the airgap flux density 

harmonics to on-load torque, which can be expressed as 

𝑇(𝑡) = 𝐿𝜇0∫ 𝑟2𝐵𝑟𝐵𝑡2𝜋
0 𝑑𝜃 (19) 

where 𝑟 is the airgap radius, L is the active length, and 𝜃 is 

the rotor position in mechanical degree.  The radial and 

tangential airgap flux densities 𝐵𝑟  and 𝐵𝑡  can be expressed 

using Fourier series analysis as 

{  
  𝐵𝑟(𝜃, 𝑡) =∑𝐵𝑟𝑖 cos[𝑖𝜃 − 𝜃𝑟𝑖(𝑡)]+∞

𝑖𝐵𝑡(𝜃, 𝑡) =∑𝐵𝑡𝑗 cos[𝑗𝜃 − 𝜃𝑡𝑗(𝑡)]+∞
𝑗

 (20) 

where 𝐵𝑟𝑖  and 𝐵𝑡𝑗  are the 𝑖𝑡ℎ and 𝑗𝑡ℎ order harmonics of 𝐵𝑟  

and 𝐵𝑡 , respectively. In addition, 𝜃𝑟𝑖  and 𝜃𝑡𝑗  are the 

corresponding phases of each harmonic. Substituting (20) 

into (19), the instantaneous torque 𝑇𝑖,𝑗(𝑡) generated by the 𝑖𝑡ℎ  radial and 𝑗𝑡ℎ  tangential airgap flux density harmonics 

can be given by 

𝑇𝑖,𝑗(𝑡) = 𝐿𝑟2𝜇0 ∫ {∑∑𝐵𝑟𝑖𝐵𝑡𝑗 cos[𝑖𝜃 − 𝜃𝑟𝑖(𝑡)]+∞
𝑗

+∞
𝑖 cos[𝑗𝜃 − 𝜃𝑡𝑗(𝑡)]}2𝜋

0 𝑑𝜃 
(21) 

It is found that the instantaneous torque 𝑇𝑖,𝑗(𝑡) can only be 

produced when 𝑖 = 𝑗. It refers to the fact that only the same 

harmonic order of the radial and tangential airgap flux 

densities can contribute to the torque. It is worth mentioning 

that only the radial airgap flux density is calculated by 

analytical modelling in this paper, and the tangential airgap 

flux density is obtained by 2D FEA directly. Although the 

latter can also be calculated by analytical means such as 

subdomain methods in [15] or conformal mapping using 

complex airgap permeance model in [22], these methods are 

quite complicated to implement due to the doubly salient 

structure of the investigated machines and hence are not the 

main focus of this paper. Accordingly, the instantaneous 

torque can be rewritten as 

𝑇(𝑡) =∑𝑇𝑖(𝑡)+∞
𝑖 = 𝜋𝐿𝑟2𝜇0 ∑𝐵𝑟𝑖𝐵𝑡𝑖 cos[𝜃𝑟𝑖(𝑡) − 𝜃𝑡𝑖(𝑡)]+∞

𝑖  (22) 

Based on (22), the on-load torque can be obtained by 

summing the instantaneous torque 𝑇𝑖(𝑡) . In addition, the 

positive or negative contribution to average torque can be 

calculated when instantaneous 𝑇𝑖(𝑡) and 𝑇(𝑡) are averaged. 

By way of example, 𝑇𝑖(𝑡)  of the DLC and DLMC have 

been shown in Fig. 19, which account up to the 50
th

 order 

harmonic in the airgap flux density. In addition, the 

resultant torque calculated by (22) has been compared to 

that obtained by direct 2D FEA and a good agreement can 

be observed.  

In order to investigate the contribution of each harmonic 

in the airgap flux density to the on-load torque, the two 

most dominant harmonics in the radial airgap flux density 

(as shown in Fig. 16 and Fig. 18) have been selected. For 

example, the 2
nd

 and 10
th
 order harmonics are the two most 

dominant harmonics for the DLC as shown in Fig. 16, while 

the 4
th

 and 16
th

 order harmonics are selected for the DLMC. 

It is apparent in Fig. 19 that the 10
th

 order harmonic in the 

airgap flux density of the DLC produces positive torque. 

However, the 2
nd

 order harmonic produces negative torque. 

For the DLMC, the 4
th

 and 8
th

 order harmonics produce 

positive and negative torques, respectively. Similarly, the 

on-load torque produced by the two most dominant 

harmonics in the radial airgap flux density of the SLC and 

SLMC has been shown in Fig. 20 (a) and (b), respectively.  

When looking at the rotating speed of the MMF shown in 

(8) and (10), the 10
th
 order harmonic in the DLC and the 4

th
 

order harmonic in the DLMC have positive rotating speed. 

However, the 2
nd

 order harmonic in the DLC and the 8
th
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order harmonic in the DLMC have negative rotating speed. 

As a result, it can be concluded that the dominant MMF 

harmonics with positive rotating speed (forward rotating) 

will produce positive torque. However, the dominant 

harmonics with backward rotating will produce negative 

torque. The dominant harmonic orders in MMF accounts for 

up to the 12
th

 order harmonics in both single and double 

layer machines. Also, it is worth mentioning that the 

dominant harmonics are the ones that contribute more than 

5% of the resultant average torque. 

 

 
(a) 

 
(b) 

Fig. 19. Comparison of torques at 10𝐴𝑟𝑚𝑠. (a) DLC, and (b) DLMC. 

 

 
(a) 

 
(b) 

Fig. 20. Comparison of torques at 10𝐴𝑟𝑚𝑠. (a) SLC, and (b) SLMC. 

 

 
(a) 

 
(b) 

Fig. 21. (a) Average torque and (b) contribution to average torque by 

airgap flux density harmonics for the DLC and DLMC at 10𝐴𝑟𝑚𝑠. 

 
(a) 

 
(b) 

Fig. 22. (a) Average torque and (b) contribution to average torque by 

airgap flux density harmonics for the SLC and SLMC at 10𝐴𝑟𝑚𝑠. 
The instantaneous torque generated by the 𝑖𝑡ℎ  order 

airgap flux density harmonics, where 𝑖 ≤ 50 has also been 

calculated. Moreover, the average torque produced by 

different airgap flux density harmonics of both the double 

and single layer DSRMs has been obtained as shown in Fig. 

21 and Fig. 22, respectively. For clarity, the contribution of 

the airgap flux density harmonics to the average torque 

(>5%) and the torque ripple has been summarized in 

TABLE V.   

In order to obtain the contribution of the 𝑖𝑡ℎ  order 

harmonic to the torque ripple, the peak to peak value of 

resultant torque ( ∆𝑇𝑟𝑒𝑠𝑢𝑙𝑡(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑡ℎ) ) has been firstly 

calculated without the 𝑖𝑡ℎ order harmonic in the airgap field. 



IEEE TRANSACTIONS ON MAGNETICS   10 

 

Then, the contribution of the 𝑖𝑡ℎ order harmonic to torque 

ripple can be given by 

𝑇𝑟𝑐 = ∆𝑇𝑟𝑒𝑠𝑢𝑙𝑡 − ∆𝑇𝑟𝑒𝑠𝑢𝑙𝑡(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑡ℎ)∆𝑇𝑟𝑒𝑠𝑢𝑙𝑡 × 100% (23) 

where ∆𝑇𝑟𝑒𝑠𝑢𝑙𝑡 is the difference between the maximum and 

minimum resultant torque. 
It is found that the 10

th
 order harmonic in the airgap flux 

density has the highest contribution (121.7%) to the average 

torque and contributes -45.73% to the torque ripple in the 

DLC. However, the 2
nd

 order harmonic contributes -27.5% 

to the average torque. This means that the 10
th

 order 

harmonic not only contributes to positive average torque but 

also has positive influence on the mitigation of the torque 

ripple. However, the 2
nd

 order harmonic has negative 

influence on the average torque.  

For the DLMC, the 4
th

 order harmonic has the highest 

contribution (83.18%) to the average torque and while the 

8
th

 and 12
th
 order harmonics generate negative average 

torque. For the single layer machines, the 7
th

 order 

harmonic in the SLC has the highest contribution (68.5%) 

to the average torque while the 10
th

 order harmonic in the 

SLMC contributes the most to the average torque (57.8%). 

Furthermore, it can be found that the harmonic order which 

has the most significant contribution to positive average 

torque can also reduce the resultant torque ripple, regardless 

of the winding configurations. 

TABLE V  CONTRIBUTION OF AIRGAP FIELD HARMONICS TO 

THE AVERAGE TORQUE AND THE TORQUE RIPPE  

Winding 

configuration 

Harmonic 

order 

Contribution to 

average torque 

(%) 

Contribution to 

torque ripple (%) 

DLC- 
2 -27.5 -3.02 

10 121.7 -45.73 

DLMC- 

4 83.2 -11.93 

8 -16.9 53.19 

12 -5.4 23.71 

16 20.2 0.24 

24 7.4 2.53 

SLC- 

1 8.7 2.16 

5 -12.6 -18.73 

7 68.5 -15.27 

13 29.7 -20.75 

SLMC- 

2 -13.2 -4.36 

4 44.1 -9.41 

8 -8.1 39.16 

10 57.8 -8.36 

16 9.12 0.78 

V. CONCLUSION 

By using simple analytical modeling for a 3-phase, 12-

slot/8-pole doubly salient synchronous reluctance machines, 

this paper achieves a better understanding for the different 

torque production mechanisms between single/double layer, 

conventional/mutually-coupled winding configurations. 

According to the MMF model, it is found that the working 

harmonic orders of the mutually-coupled windings are 

doubled compared to the conventional windings. In addition, 

the harmonic orders of the double layer machines are also 

doubled compared to the single layer ones.  

It is also found that the dominant MMF harmonics with 

positive (forward) rotating produce positive torque. 

However, the dominant harmonics with backward rotating 

produce negative torque. TABLE VI summarizes the 

harmonic orders in MMFa and airgap flux density, as well 

as the dominant harmonics which contribute to positive 

(TAV+) and negative (TAV-) average torque. Based on the 

results, the future work would be the torque capability 

enhancement by reducing the MMF harmonics which 

contribute to negative torque through advanced control 

strategies such as harmonic current injection. 

TABLE VI Summary of harmonic orders in MMF and airgap flux 

density,  and their contribution to average torque 

Winding 

configuration 
𝑀𝑀𝐹𝑎 Airgap flux density 𝑇𝐴𝑉 + 𝑇𝐴𝑉 − 

DLC 4k-2 4k-2 10 2 

DLMC 4k 4k 4 8 

SLC 2k-1 2k-1 7 5 

SLMC 2k 2k 10 2 
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