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Abstract 

The enigmatic biotic and environmental changes during the Carnian Humid Episode 

(CHE) have been investigated in South China. The body size of conodonts, assessed as 

length of P1 elements, and their diversity show substantial changes in the mid-Carnian. 

The well-dated Long Chang, Yongyue and Caizitang sections in southwestern China 

record a change of palaeoenvironments from shallow-marine carbonate platforms to 

deeper, euxinic basins. All sections show a major loss of conodont diversity and 

abundance late in the Julian 1 at a time of rapid warming and marine anoxia. Conodont 

size saw a reduction in maximum, mean and minimum size during the Julian 2 to 

Tuvalian 2 interval caused by the short-lived appearance of small species and a size 

decrease of the survivors. Conodont mean size reduction coincided with marine 

euxinia/anoxia and temperature fluctuations during the Julian 2 to Tuvalian 2 age. 

Carnian conodonts thus follow Bergmannǯs Ruleǣ element size is inversely correlated to 

the temperature. Climate warming with the consequential development of marine 

anoxia/euxinia are likely directly responsible for biotic changes at this time. 
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The fascinating Carnian Humid Episode (CHE, also known as Carnian Pluvial Event) 

of the Late Triassic was associated with global sedimentary and environmental changes 

and a poorly understood biotic crisis (Simms & Ruffell 1989; Ruffell et al. 2015). In 

China, there have only been a few studies of this Episode even though Triassic marine 

successions are well developed in the region (Wu 1989; Sun et al. 2016; Shi et al. 2017). 

Climate warming, carbon isotope oscillations and marine anoxia have been reported 

during the Carnian Humid Episode at Long Chang in Guizhou Province (Sun et al. 2016). 

Body size is an important factor in an organismǯs physiology and ecology and is 

sensitive to environmental factors such as temperature and productivity (Atkinson 

1994; Jablonski 1997; Ashton 2002; Woodward et al. 2005; Twitchett 2007; Sheridan & 

Bickford 2011; Smith 2012). Many studies have shown fossil size changes during mass 

extinctions (e. g. Luo et al. 2006, 2008; He et al. 2010, 2017; Song et al. 2011; Chen et al. 

2013). For example, a notable size reduction of conodonts during the Permo-Triassic 

mass extinction has been reported and attributed to prevailing conditions of low 

productivity and low oxygen conditions (Luo et al. 2006, 2008). Conodont size 

reduction also occurred during the Smithian-Spathian event in the Early Triassic and 

may have been caused by extremely high seawater temperatures (Chen et al. 2013). 

Previous studies have reported a loss/turnover of conodonts during the Carnian Humid 

Episode (e. g. Rigo et al. 2007; Martínez-Pérez et al. 2015), but their body size variations 

have not been investigated. 

In order to document the changes in conodont body size and diversity during the 

CHE, fossils from three sections in southwest China were investigated in detail. The 
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recorded diversity and size changes are associated with carbon isotope perturbations, 

sea-surface temperature fluctuations and marine euxinia/anoxia. 

Geological settings 

 Diverse Middle to Late Triassic carbonate deposits are well developed in 

southwest China (Yang et al. 1982㸹Enos et al. 2006). The studied sections include Long 

Chang (Sun et al. 2016), Yongyue (Zhang et al. 2017) and Caizitang (Zhang et al. 2018) 

which all have established conodont biostratigraphy. The Long Chang and Yongyue 

sections are situated in the Zhenfeng area, of southwestern Guizhou Province, which 

was located at the transition between the margin of Yangtze Platform and Nanpanjiang 

Basin (Enos et al. 2006). At Long Chang, the section consists of the upper part of the 

Zhuganpo Formation and the entire Wayao Formation. The upper Zhuganpo consists of 

medium-bedded (~10 Ȃ 30 cm thick), nodular limestone whilst the succeeding Wayao 

Formation consists of marly limestone with interbeds of black shale. At Yongyue, the 

section is composed of the upper Yangliujing, the whole Zhuganpo and the lowermost 

Wayao formations. The Yangliujing Formation is dominated by thick-bedded, shallow-

marine dolomitic limestone, representing shallow-marine facies. This is overlain by the 

Ladinian-Carnian Zhuganpo Formation, which consists of medium-bedded, nodular 

limestone and beds of carbonate breccia, representing marginal ramp facies. The lower 

part of Wayao Formation consists of marly limestone and black shale. 

 The Caizitang section is located in the Luoping area of eastern Yunnan Province, 

which belongs to the Yangtze region, and records shallower deposition (Yunnan Bureau 

of Geology and mineral Resources 1990, 1995; Ma et al. 2009). The section is composed 

of the entire Zhuganpo and lower Wayao formations. The Zhuganpo Formation again is 
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overlaid by the lower Wayao Formation, consisting of black shale, sandstone and marly 

limestone. 

The conodont zones from the Yongyue, Caizitang and Long Chang sections are, in 

ascending order, Paragondolella foliata Zone, Quadralella polygnathiformis Zone, 

Quadralella aff. praelindae Zone, Quadralella aff. auriformis Zone, Quadralella robusta 

Zone, Quadralella noah Zone and Quadralella ex gr. carpathica Zone (Sun et al. 2016; 

Zhang et al. 2017, 2018). The level of the CHE in South China has been identified, using a 

combination of biostratigraphic and chemostratigraphic data (Sun et al. 2016), at the 

transition of the Zhuganpo and Wayao formations. In our study sections the conodont 

Quadralella robusta is regionally recognized below the occurrence of the ammonoid 

Austrotrachyceras ex gr. A. austriacum in the uppermost Zhuganpo Formation. The FAD 

of ammonoid Austrotrachyceras austriacum has been used to mark the base of Julian 2 

(Gallet et al. 1994; Balini et al. 2010). Thus, the Quadralella robusta Zone may be the 

youngest conodont zone of the Julian 1 substage in southwestern China and may be 

correlated with the base of Mazzaella (Ma.) carnica Zone, which generally coincides 

with lithological change associated with the CHE in western Tethys and the northern 

Gondwana margin (e. g. Hornung et al. 2007a, 2007b). The base of Quadralella noah 

Zone can be used for marking the Julian/Tuvalian boundary (Kozur 1989). The 

Quadralella ex gr. carpathica Zone indicates a Tuvalian 2 age (Gallet et al. 1994). 

Method and materials 

 A total of 40 samples, containing abundant complete P1 conodonts were chosen 

for conodont length analysis. For size measurement, we measured lengths of all 

complete P1 elements in a given sample, using a scanning electron microscope at the 

State Key Laboratory of Biogeology and Environmental Geology, China University of 
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Geosciences (Wuhan). A total of 1386 conodonts was measured. The result reflects size 

variations in a natural conodont assemblage including all ontogenetic stages. Samples 

containing fewer than three complete P1 elements are not included in the data table 

(supplementary material Table 1). All conodont elements are gondolellids attributable 

to Paragondolella and Quadralella. The morphological differences of these two genera 

are very minor. Quadralella is considered to have directly evolved from Paragondolella, 

with Paragondolella excelsa thought to be the direct ancestor (Kovács 1983; Chen et al. 

2015). Thus taxonomic size variation is unlikely to be significant in such closely similar 

taxa. PAST software was used to analyze the data and produce boxplots. 

Results 

Diversity and abundance losses 

A sharp decrease in conodont diversity is seen at the transition from top Zhuganpo 

to the lower Wayao formations, based on all published conodont data from this region 

(Fig. 1). Abundant conodont elements were collected from the lower Zhuganpo 

Formation but they become much rarer in the upper part of the Formation and in the 

overlying Wayao Formation. Only a few conodont elements were obtained from strata 

deposited during the CHE. Samples NR0, NR2 and CZ43, CZ47.5 yielded few specimens 

even though each sample weighed ~9 kg. The conodont fauna from the Zhuganpo 

Formation consists of overall 31 species, but decreased to 12 species at the beginning of 

the CHE whilst only 6 species survived the CHE. The extinction rate increased sharply 

from ~20 % to ~80 % while the origination rate remained low (<20%) during the CHE 

(Fig. 1).  
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The conodont diversity decline in the study area coincides with the lithological 

change from nodular limestone to black shale and with climate warming, onset of 

intensive anoxia and a negative carbon isotope shift (Sun et al. 2016).  

Size variations 

The length of conodont elements provides an effective measure of the body size of 

the original animals (Luo et al. 2006, 2008; Chen et al. 2013). At Caizitang, the mean 

length of conodonts fluctuates between 0.59 mm and 0.82 mm in the lower part of the 

Zhuganpo Formation (Paragondolella foliata to Quadralella aff. auriformis zones). A 

remarkable length reduction from 0.82 mm to 0.41 mm then occurs in the upper part of 

Zhuganpo Formation (Quadralella robusta Zone). At the Yongyue, the mean length of 

conodonts oscillates between 0.52 mm and 0.79 mm in the Paragondolella foliata Zone 

to Quadralella aff. auriformis Zone before a sharp decrease in mean length from 0.55 

mm to 0.34 mm is seen again in the Quadralella robusta Zone. At Long Chang, conodont 

mean length ranges from 0.51 mm to 0.71 mm before the CHE and then shows a minor 

decrease from 0.53 mm to 0.49 mm during this episode. At Long Chang, we also have 

conodont length data from the younger portion of the Wayao Formation which shows 

fluctuation between 0.33 mm and 0.61 mm. Conodont size initially increases, especially 

the maximum size, during the late Julian 2 Ȃ Tuvalian 1 and then decreases again in the 

Tuvalian 2. The conodont length variations closely coincide with the sea surface 

temperature curve and redox conditions of Sun et al. (2016). The smallest mean length 

in conodont coincides with the hottest periods and the most intensive anoxia.  

Figure 2 (and supplementary Table 1) show that conodont mean length fluctuates 

between 0.48 mm and 0.82 mm below the CHE level in three studied sections and 

usually oscillates around 0.65 mm. However, the conodont mean length varies from 
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0.34 mm to 0.61 mm during the Julian 2 to Tuvalian 2 interval and usually oscillates 

around 0.45 mm. This decrease of conodont mean length, coincides with lithological 

change, temperature perturbation and marine anoxia.  

Discussion 

The conodont diversity loss during the CHE interval is likely a global phenomenon. 

The conodont database in Plasencia et al. (2013) includes most Carnian conodont 

species from western Tethys and North American. Data from the database indicate a 

conodont diversity decrease from 25 species in Julian 1 to 9 species in Julian 2. 

Martínez-Pérez et al. (2014, 2015) concluded that elevated extinction and suppressed 

origination during Julian resulted in the conodont diversity loss and was probably 

triggered by the CHE environmental turnover. Our data from SW China show a similar 

diversity trend to former studies. Since genera Mosherella, Budurovignathus and 

Mazzaella are absent in our studied material, our data mainly reflect changes in the 

Paragondolella-Quadralella lineage. Rare conodonts across the CHE interval likely 

reflect high environmental stress. As we noted above, sample sizes were much bigger in 

the lowest diversity interval in an attempt to find the extremely sparse conodonts at 

this level. Thus the CHE is likely to be a real interval of low conodont diversity and 

abundance. 

Twitchett (2007) reported the size reduction in marine organisms and trace fossils 

during the Permian-Triassic transition and proposed four models as potential causes of 

the ǲLilliput effectǳ: preferential extinction of large taxa, origination of small taxa, 

temporary disappearance of large taxa and within-lineage size decrease. In our 

investigations the fourth choice is applicable because the conodont length reduction 

occurs within a lineage and is seen to be reversible; sizes increase again (temporarily) 
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after the CHE (Figure 2). Multiple causes have been proposed for size reduction 

including variations of temperature, dissolved oxygen concentration, salinity, water 

depth, terrestrial influx, food supply and primary productivity (Urbanek 1993; Luo et al. 

2006, 2008; Twitchett 2007; Chen et al. 2013; Shi et al. 2016; He et al. 2017). For 

example, Luo et al (2006, 2008) considered that anoxia, food shortage and fluctuations 

of sea-level were all significant factors in conodont miniaturization during the Permian-

Triassic transition. However, the recognition during Smithian-Spathian event coincided 

with rapid warming has led many to favor temperature as a key control of body size (e. 

g. Chen et al. 2013). 

Temperature has a significant control on biological evolution, body size and 

distribution (e. g. Atkinson 1994; Van Voorhies 1996). The body size of organisms tends 

to be larger in the cooler, higher latitudes and altitudes Ȃ a phenomenon known as Bergmannǯs Rule. Conversely warmer conditions give rise to smaller organisms 

(Bergmann 1847; Jame 1970; Gillooly & Dodson 2000; Ashton 2002; Kingsolver & Huey 

2008; Daufresne et al. 2009; Sheridan & Bickford 2011; Smith 2012). The Bergmannǯs 
Rule was initially applied to endotherms, but later extended to ectotherms such as 

marine crustaceans (Angilletta et al. 2004). Note that some authors refer a temperature-

size rule rather than Bergmannǯs ruleǤ  In ectotherms, this link is thought to occur 

because rising temperatures increase metabolic rates and, without additional energy to 

meet the enhanced demands, a reduction of body size results (Sheridan & Bickford 

2011). In conodonts, environmental stress could lead to changes in available food to 

conodont animals and result in either mass mortalities or changes in conodont 

morphology (i.e. rises of new species). In our study, the sharp drop in both conodont 

diversity and abundance in the Julian 1-Julian 2 transition was a clear result of 
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deteriorating environments. At the same time, conodont length also decreased. The 

length variations correlate closely with the sea surface temperature perturbations (Fig. 

2Ȍǡ indicating that Bergmannǯs Rule was an important factor. This raises the question, 

did global warming play a role in the CHE crisis? 

Warming has been postulated as a cause of extinction during the Permian-Triassic 

mass extinction (Joachimski et al. 2012; Sun et al. 2012) when the magnitude of sea-

surface temperature (SST) rise was considerable (~10°C). It is unlikely that the 4°C SST 

rise during the CHE was sufficient on its own to cause extinction, although climate 

warming has been postulated to destabilize ecosystems (Fussmann et al. 2014). The 

estimated SST increase, from 26°C to 33°C during the Julian1 to Tuvalian 2 in 

southwestern China, is not of the same magnitude as the change that culminated in 

lethally hot SSTs (41°C) during the Early Triassic (Sun et al. 2012). SSTs may have been 

below thermal tolerance limits for some marine organisms. In addition, the conodont 

mean length and conodont Ɂ18Oapatite data (i. e. temperature) from the Long Chang 

section are well but not perfectly correlated (R2=0.53, r=-0.73, Fig. 3), suggesting other 

factors may have contributed to conodont size reduction in the studied interval.  

Rising temperatures are often associated with declining ocean oxygenation, and 

thus marine stress, because of two effects (Wignall 2015)Ȅthe first direct link is the 

decrease of dissolved oxygen concentration as temperature increases. Less directly, 

warmer, more humid climates are associated with increased rainfall, enhanced 

weathering and siliciclastic runoff: all factors observed during the CHE. Increased run-

off elevates nutrient levels and primary productivity leading to a higher biological 

oxygen demand and thus a tendency to anoxia (Simms & Ruffell 1989; Hornung et al. 

2007a; Ruffell et al. 2015). Oxygen concentration has been proposed as a key factor 
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affecting organismsǯ body size (e. g. Chapelle & Peck 1999; Morten & Twitchett 2009; 

Payne et al. 2009; Clapham & Karr 2012), and may therefore have contributed to the 

size decrease of conodonts during the CHE. The spread of marine anoxia in South China 

is clearly manifest by the development of organic-rich shales of the Wayao Formation. 

Contemporaneous anoxia is also known from other regions (e. g. Keim et al. 2006; 

Hornung et al. 2007a; Soua 2014), but the extent of oxygen-poor conditions during the 

CHE has yet to be determined.  

Conclusion  

A detailed investigation of conodont length variation was documented from Long 

Chang, Yongyue and Caizitang sections, in southwestern China, in order to investigate 

the conodont response to the Carnian humidification in a range of marine settings. The 

CHE occurred at the top of Zhuganpo Formation in the Quadralella robusta Zone and 

was correlated with lithofacies changes, biotic turnover/crisis, climate warming, isotope 

perturbation and marine anoxia in southwestern China. Conodonts suffered major 

diversity loss and the survivors show length reductions during the CHE and in the 

Tuvalian that correlate with increased seawater temperatures and the development of 

marine euxinia/anoxia. The size decrease is interpreted as a manifestation of the Bergmannǯs Rule (the inverse correlation between temperature and body size), 

although oxygen restriction may also have played a role. The two factors Ȃ temperature 

rise and anoxia Ȃ were likely linked, with increased runoff in a warmer more humid 

climate stimulating elevated productivity and oxygen consumption and ultimately 

triggering a crisis manifest as diversity reduction and size decrease of the survivors. 
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Fig. 1 Composition log, conodont ranges, diversity, and extinction and origination rate in 

the study sections. 

Fig. 2 Conodont length variations in the study sections, with estimated sea surface 

temperatures from the Long Chang section (data from Sun et al. 2016). 

Fig. 3 Cross plot between estimated temperature and conodont mean size in the Long 

Chang section, showing a good correlation between the two. 

Supplementary material-Table 1 Conodont length data from Long Chang (LC), Yongyue 

(NR) and Caizitang (CZ) sections and data of cross plot between estimated 

temperature and conodont mean size in the Long Chang section. 
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