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Abstract

With a rapid increase in volume and complexity of data sets, there is a need for methods that can extract useful

information, for example the relationship between two data sets measured for the same persons. The Partial Least

Squares (PLS) method can be used for this dimension reduction task. Within life sciences, results across studies are

compared and combined. Therefore, parameters need to be identifiable, which is not the case for PLS. In addition,

PLS is an algorithm, while epidemiological study designs are often outcome-dependent and methods to analyze

such data require a probabilistic formulation. Moreover, a probabilistic model provides a statistical framework

for inference. To address these issues, we develop Probabilistic PLS (PPLS). We derive maximum likelihood

estimators that satisfy the identifiability conditions by using an EM algorithm with a constrained optimization in

the M step. We show that the PPLS parameters are identifiable up to sign. A simulation study is conducted to study

the performance of PPLS compared to existing methods. The PPLS estimates performed well in various scenarios,

even in high dimensions. Most notably, the estimates seem to be robust against departures from normality. To

illustrate our method, we applied it to IgG glycan data from two cohorts. Our PPLS model provided insight as well

as interpretable results across the two cohorts.

Keywords: Dimension reduction, EM algorithm, Identifiability, Inference, Probabilistic partial least squares

1. Introduction

With the exponentially growing volume of data sets, multivariate methods for reducing dimensionality are an

important research area in statistics. For combining two data sets, Partial Least Squares (PLS) regression [28] is a

popular dimension reduction method [1]. PLS decomposes variation in each data set in a joint part and a residual

part. The joint part is a linear projection of one data set on the other that best explains the covariance between the

two data sets. These projections are obtained by iterative algorithms, such as NIPALS [28]. Partial Least Squares

is popular in chemometrics [3]. In this field, the focus is on development of algorithms with good prediction

performance, while the underlying model is less important. For applications in life sciences, interpretation of

parameter estimates is necessary to gain understanding of the underlying molecular mechanisms.

For interpretation, a model needs to be identifiable. A model is said to be unidentifiable if the model corresponds

to more than one set of parameter values. For PLS, rotation of the parameters does not change the model [26].

Hence, PLS does not provide an identifiable model. By constraining the parameter space, identifiability can be

obtained. This involves solving a challenging optimization problem, since PLS requires estimating a structured

covariance matrix [19].

For many problems in life sciences the study design needs to be accounted for, and algorithmic approaches

such as PLS cannot be applied. Hence, a probabilistic formulation is necessary. Since likelihood method provides

asymptotic standard errors of parameter estimates, computer-intensive resampling procedures can be avoided.
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Also for other dimension reduction techniques, probabilistic methods have been developed. In 1999, Tipping

and Bishop [23] developed the Probabilistic Principal Component Analysis (PPCA), in order to deal with missing

data and dependent samples. In 2005, Bach and Jordan [2] developed Probabilistic Canonical correlation analysis

(PCCA). However, for both PPCA and PCCA the model parameters are not identifiable, since rotation of the

parameters does not change the model [2, 23]. In addition, in 2015, simultaneous envelopes models have been

developed [4] for ‘low-dimensional’ settings. Further, Probabilistic PLS Regression and Probabilistic PLS have

been proposed [14, 30]. For all these approaches, the model parameters are not identifiable.

In this paper we propose the Probabilistic Partial Least Squares (PPLS) model and show that the model pa-

rameters are identifiable up to a sign. We propose to maximize the PPLS likelihood with an EM algorithm that

decouples the likelihood into several factors involving distinct sets of parameters. In the M step, a constrained

optimization problem is solved by using a matrix of Lagrange multipliers.

The rest of the paper is organized as follows: In Section 2 we develop the PPLS model and establish identifiabil-

ity of the model parameters. We develop an efficient algorithm for estimating the PPLS parameters. In Section 3

we study the performance of the PPLS estimators via simulations. In Section 4 we illustrate the PPLS model with

two data matrices from two cohorts. We finish with a discussion.

2. Model and estimation

2.1. The PPLS model

Let x and y be two random row-vectors of dimension p and q, respectively. The Probabilistic Partial Least

Squares (PPLS) model describes the two random vectors in terms of a joint part and a noise part. The joint part

consists of correlated latent vectors, denoted by t and u, while the noise part consists of isotropic normal random

vectors referred to as e, f and h. The dimension of t and u is denoted by r. The PPLS model describing the

relationship between x, y and the joint and noise parts is

x = tW⊤ + e, y = uC⊤ + f , u = tB + h. (1)

Specifically, e = (e1, . . . , ep), f = ( f1, . . . , fq) and h = (h1, . . . , hr) are independent with zero mean and referred

to as noise variables. The distributions of e, f and h are multivariate normal with positive definite covariance

matrix proportional to the identity matrix,

e ∼ N(0, σ2
e Ip), f ∼ N(0, σ2

f Iq), h ∼ N(0, σ2
hIr).

The latent vector t = (t1, . . . , tr) is an r-dimensional multivariate normal vector with with zero mean and diagonal

positive definite covariance matrix Σt = diag(σ2
t1
, . . . , σ2

tr
), so

t ∼ N (0,Σt) . (2)

The matrix B = diag (b1, . . . , br) is a diagonal matrix of size r, containing regression coefficients of u on t. Finally

W (p × r) and C (q × r) are parameter matrices, referred to as loadings. The PPLS model for the random p-

dimensional row-vector x and random q-dimensional row-vector y is given in Eq. (1). Let θ be the parameters of

the PPLS model, i.e.,

θ = (W,C, B,Σt, σe, σ f , σh). (3)

The PPLS model and its parameters are formulated conditional on the value of the dimension of the latent space r.

The PPLS model (1) assumes a multivariate normal distribution for the observable random vectors x and y. The

covariance between x and y is modeled by the regression of the latent vector u on t. The distribution of (x, y) is

N (0,Σ) with density given, for x ∈ Rp and y ∈ Rq, by

f (x, y) = (2π)−(p+q)/2|Σ|−
1
2 e(x,y)Σ−1(x,y)⊤ ,

and covariance matrix

Σ =

(

Σx Σx,y

Σy,x Σy

)

=

(

WΣtW
⊤ + σ2

e Ip WΣtBC⊤

CBΣtW
⊤ C(B2Σt + σ

2
h
Ir)C

⊤ + σ2
f
Iq

)

. (4)

This follows from the normality property and from computing the variances and covariances of the random vectors;

see Appendix A for the details.
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2.2. Identifiability of probabilistic PLS

To establish identifiability of the PPLS model, some assumptions about its parameters have to be made. First,

we assume that 0 < r < min(p, q). Second, we assume that the diagonal elements of B are positive, bk > 0 for

k ∈ {1, . . . , r}. This will not restrict the model, since tkbk is equal to −tkbk in distribution. To identify the order

of the loading vectors, the elements of (σ2
tk

bk)r
k=1

are assumed to be strictly decreasing with k. Finally, we assume

that the loading matrices W and C are orthogonal, i.e., W⊤W = C⊤C = Ir. Together with the diagonality of Σt in

(2), it implies identifiability of all parameters up to sign. This is shown in the following theorem.

Theorem 1. Let r be fixed such that 0 < r < min(p, q). Let (x, y)1 and (x, y)2 be generated by the PPLS model

(1) having covariance matrix Σ1 and Σ2 with underlying parameters θ1 and θ2 as defined in (3), respectively. Then

Σ1 = Σ2 implies that W1 = W2∆, C1 = C2∆ for some diagonal matrix ∆ with on the diagonal elements δi ∈ {−1, 1},

for i ∈ {1, . . . , r}, and all other parameters in θ1 and θ2 are equal.

The formal proof is given in Appendix B. Identifiability up to sign can be represented by a diagonal orthogonal

matrix, namely a diagonal matrix with diagonal elements in {−1, 1}. For example, taking the model for x in (1), we

may substitute W by WRS and t by tRS , where RS is a diagonal orthogonal matrix, and get

x = tRS R⊤S W⊤ + e =

r∑

j=1

t j(RS )2
j jw
⊤
j + e.

Since (RS )2
j j
= 1 and the distribution of t j and −t j is the same, the right-hand side reduces to the original model for

x in (1). Note that the PPLS model is not invariant under general rotation matrices. Take a general rotation matrix

R, then we still get

x = tW⊤ + e = tRR⊤W⊤ + e,

since RR⊤ = Ir. Inspecting the covariance of TR we see that cov(TR) = R⊤ΣtR, which is not diagonal if R is not

diagonal, and violates the PPLS model assumption on Σt in Eq. (2).

2.3. Estimating the parameters

Unlike the iterative PLS methods, we propose a simultaneous approach for estimating the parameters, while

taking the constraints in the PPLS model into account. Given the number of PPLS components, r, the log likelihood

of an independent and identically distributed (iid) sample (X,Y) = {(X1,Y1)⊤, . . . , (XN ,YN)⊤}⊤ of size N from (x, y)

is

L(θ) = −
N(p + q)

2
−

N

2
ln |Σ| −

N

2
tr(SΣ−1) (5)

with S = N−1
∑N

i=1(Xi,Yi)
⊤(Xi,Yi) and Σ as in Eq. (4). To ensure empirical identifiability, we assume that r < N.

Note that the data dimensionality p and q may be larger than N. For estimation of θ, maximum likelihood is used.

The log likelihood (5) depends in a non-linear way on the theoretical covariance matrix Σ, which contains the

loadings and variances. Optimizing this function directly is a non-trivial task, especially in high dimensions (i.e.

when p and q are large). However, the PPLS model allows for a more simple (but iterative) optimization approach.

Indeed, the maximum likelihood estimates for θ are a least squares type solution if the latent variables t and u are

observed, as the model for x and y in (1) involves known t and u. In contrast, knowing θ allows for reconstruction

of t and u by computing their conditional means given x and y. Alternating these two scenarios is actually an

Expectation-Maximization (EM) [5] algorithm, with observed data (x, y) and missing data (t, u).

The EM algorithm. The joint distribution of the complete data (x, y, t, u) can (with abuse of notation) be decom-

posed as

f (x, y, t, u) = f (x|t) f (y|u) f (u|t) f (t). (6)

This follows from

f (x, y, t, u) = f (x, y|t, u) f (t, u) = f (x|t, u) f (y|t, u) f (t, u).

The second equation is implied by the fact that x and y are independent given t and u. The first two factors in the

right-hand side can be rewritten as f (x|t, u) = f (x|t) and f (y|t, u) = f (y|u), since x and u are independent given t,
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and y and t are independent given u. The last factor can be rewritten as f (u|t) f (t), yielding Eq. (6). The logarithm

of the first three factors in the product in (6) can be written as

ln f (X|T ) = −
N p

2πσ2
e

−
1

2σ2
e

N∑

i=1

||Xi − TiW
⊤||2,

ln f (Y |U) = −
Nq

2πσ2
f

−
1

2σ2
f

N∑

i=1

||Yi − UiC
⊤||2,

ln f (U |T ) = −
Nr

2πσ2
h

−
1

2σ2
h

N∑

i=1

||Ui − TiB||
2.

Denote by LComp = ln f (X,Y,T,U) the complete data log-likelihood, and define

Q(θ) = E{LComp(θ)|X,Y, θ′},

where the expectation is taken conditional on the observed X and Y , and θ′ is a fixed current estimate of the

parameters. By optimizing Q over all allowed θ, we get a non-negative increase in the observed log-likelihood

L. Moreover, by iterating this process of taking the expectation and maximizing over θ, the estimates in general

converge to a stationary point or, in particular, a (possibly local) maximum of L [5, 29]. The expectation step

calculates the conditional expectation of the missing data given the observed data given by Q(θ), which may in

general involve intractable integration. However, for the exponential family, in particular the multivariate nor-

mal family, the complete likelihood depends on the complete data only via the sufficient statistics (called t(x) in

[5]), which are given in terms of the first and second moments of the complete data for the multivariate normal

distribution. Computing Q(θ) implies computing the expected first and second moment of the latent variables:

E (T |X,Y, θ), E
(

T⊤T |X,Y, θ
)

, E (U |X,Y, θ), E
(

U⊤U |X, X, θ
)

and E
(

U⊤T |X,Y, θ
)

; see Appendix C for details. More-

over, the decomposition in (6) allows for optimization of E{ln f (X|T )}, E{ln f (Y |U)} and E{ln f (U |T )} separately,

while only considering parameters involved in each factor. Maximizing Q over θ yields parameter estimates for

the next iteration in the EM algorithm. This leads us to the following theorem.

Theorem 2. Let X and Y be an observed data sample of size N, generated according to the PPLS model (1). Let r

be fixed such that 0 < r < min(N, p, q). The parameters in θ can be estimated with an EM algorithm, yielding the

following iterative scheme in k with given starting values for k = 0:

Wk+1 = X⊤ E(T |X,Y, θk)(L⊤W )−1; Ck+1 = Y⊤ E(U |X,Y, θk)(L⊤C )−1;

Bk+1 = E(U⊤T |X,Y, θk){E(T⊤T |X,Y, θk)}−1 ◦ Ir; Σ
k+1
t =

1

N
E(T⊤T |X,Y, θk) ◦ Ir; (σ2

h)k+1 =
1

Nr
trE(H⊤H|X,Y, θk);

(σ2
e)k+1 =

1

N p
trE(E⊤E|X,Y, θk); (σ2

f )
k+1 =

1

Nq
trE(F⊤F|X,Y, θk);

where LW and LC are such that

LW L⊤W = E(T⊤|X,Y, θk) X X⊤ E(T |X,Y, θk), LC L⊤C = E(U⊤|X,Y, θk) Y Y⊤ E(U |X,Y, θk).

The proof for Theorem 2 and the expressions for the conditional expectations are given in Appendix C. Note the

dependency of Wk+1 and Ck+1 on the matrices LW and LC . These matrices ensure orthogonality of Wk+1 and Ck+1

in each iteration:

(Wk+1)⊤Wk+1 = L−1
W T̃⊤ X X⊤ T̃ (L⊤W )−1 = L−1

W LW L⊤W (L⊤W )−1 = Ir,

where T̃ = E(T |X,Y, θk). The exact forms of LW and LC are not unique. Two choices are the eigenvectors of

E(T⊤|X,Y, θk) X X⊤ E(T |X,Y, θk) and the lower triangular matrix of X⊤ E(T |X,Y, θk) in the Cholesky decomposition.

Note that these two orthogonalization matrices are straightforward to calculate with standard linear algebra tools.

Since the PPLS model is identifiable, all choices for LW and LC will lead to the same optimum as the iteration

number k tends to infinity.
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Standard errors for PPLS. Asymptotic standard errors for maximum likelihood estimators are found by inverting

the observed Fisher information matrix. Following the reasoning of [16], the observed information may be given

by

E{B(θ̂)|X,Y} − E{S (θ̂)S (θ̂)⊤|X,Y}.

Here S (θ̂) = ∇λ(θ̂) and B(θ) = −∇2λ(θ̂) are the gradient and negative of the second derivative of the log likelihood

λ(θ) respectively evaluated in the MLE θ̂. The explicit form of the asymptotic covariance matrix of wk is given in

Appendix D. The square root of the diagonal elements are the asymptotic standard errors for the corresponding

loading estimates.

Finding the number of components r. Available approaches to determine the number of PPLS components r are

minimizing a cross-validated loss function [9], visually inspecting eigenvalues of a covariance matrix [17], and se-

lecting the number of components needed to achieve a certain proportion of variance explained by the components.

In this paper we apply the last approach.

The PLS and PPLS algorithms are available as R packages at github.com/selbouhaddani under repository

OmicsPLS and PPLS, respectively.

3. Simulation study

To evaluate the performance of the PPLS estimates, a simulation study was conducted. The aim was (1) to

investigate the performance of PPLS for various scenarios, (2) to evaluate robustness of the PPLS estimates against

departures from the normality assumption, (3) to compare the performance of the loading estimates with other

probabilistic approaches, and (4) to compare the asymptotic PPLS standard errors with the bootstrap standard

errors.

The simulated data were generated according to the PPLS model (1). The number of components was chosen to

be 3, both in the data generation and in the estimation. We considered combinations of small and large sample size

(N ∈ {50, 500}), low and high dimensionality (p ∈ {20, 1000}), and small and large proportion of noise (denoted

by αn ∈ {0.1, 0.5}). The robustness of PPLS was evaluated by considering four different continuous and discrete

distributions for the latent variables t, u, e, f and h; we chose the normal distribution, the t distribution with two

degrees of freedom, the Poisson distribution with rate 1, and the Binomial distribution with two trials and success

probability 0.25. These distributions cover a wide range of characteristics typically observed in omics data: heavy

tailed, skewed and/or discrete. The latent variables were scaled to have mean zero and variances as specified below.

All scenarios are summarized in Table 1.

The true loading values per component were generated from the normal density function with parameters µ and

σ, denoted by N(x; µ, σ2), as follows

w j,k = N{ j; (1/2 + 1/10 j)p, 1/10p}, c j,k = N{ j; (3/5 + 1/10 j)q, 1/10q}.

The second columns in W and C were orthonormalized with respect to the first columns, and the third columns were

orthonormalized with respect to the first two columns; we used a Gram–Schmidt procedure for both operations.

The elements of the diagonal matrix B were set to bk = eln(1.5)−3(k−1)/10 = (1.5, 1.11, 0.82), for Σt we chose σtk =

e−(k−1)/10 = (1, 0.90, 0.82).

For comparing the parameter estimates with the true values θ, we computed the bias and the variance of the

estimates. To deal with the identifiability up to sign, we multiplied each estimated loading vector by −1 if the inner

product of the estimated loading vector and the true loading vector was negative. Moreover, we swapped columns

in W and C to maintain the same ordering as the ordering in the true loadings. This was done to avoid inflation of

the bias or variance due to a wrong sign or ordering of the individual components.

PPLS estimates were compared to PLS estimates (with orthogonal loadings, see [20] for an overview) for all

scenarios above. For comparing PPLS with PPCA and PCCA, we constructed a ‘null model’, i.e., B = 0, as well

as B , 0. We used the same scenarios as above, but we only considered the normal distribution.

Regarding standard errors for PPLS loadings, we compared asymptotic standard errors (as in Section 2) and

bootstrap standard errors [27]. One set of two data matrices X and Y was simulated from a PPLS model with

p = q = 20 normally distributed variables. Based on these data, asymptotic and bootstrap standard errors were

calculated. The number of bootstrap replicates was 1000. Furthermore, simulation-based standard errors for the

loadings (based on standard deviations over 1000 data matrices drawn from the PPLS model used to generate the
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Table 1: Overview of the simulation scenarios. The noise level is defined as the proportion of variation in the noise matrices E, F and H relative

to the total variation in X, Y and U respectively.

Sample size N = (50, 500)

Dimensionality p = q = (20, 1000)

Noise level αn = (0.1, 0.5)

Distribution of t, u, e, f and h {N(0, 1), t2, P(1), BIN(2, 0.3)}

original data) were included as reference. Low and high noise levels (αn = 0.1 resp. αn = 0.5), and small, large

and ‘extra large’ sample sizes (N = 50, N = 500 and N = 5000, respectively) were considered. In the ‘extra

large’ sample size scenario, no simulation-based reference was calculated. The PPLS estimation algorithm was

considered to be converged when either the log-likelihood increment was below 10−6, or 104 EM steps were made.

For each scenario, 1000 replicates are used.

3.1. Results

Results for the loadings. The biases and variances of the estimated first component W1 for the low dimensional

case for normally distributed latent variables are graphically depicted in Figure 1. A black dot represents the

average estimated PPLS loading value across 1000 simulations, whereas the width of the black dashed vertical

line equals two times the standard deviation across 1000 simulations. The red star and red dashed vertical line

represent the average loading value and twice the standard deviation for the PLS estimates. The true loading

values are represented by a step function with steps at each index j ∈ {1, . . . , p}. Results for other components and

scenarios are included in the Online Supplement.

Comparing the estimates for the first loading component W1, a better performance of PPLS compared to PLS

was observed in terms of bias. In all scenarios the bias of the PPLS estimators were about the same as or less than

the bias of the PLS estimators. Both estimators showed larger bias towards zero for higher absolute loading values.

The biases decreased with a larger sample size and lower noise level. The biases of both estimators were very

similar across different distributions. In the scenario where there is 50% noise and few (50) samples the variance

of the PPLS estimators tended to be slightly larger than the variances of the PLS estimators when the true loading

values were larger. This was observed across all distributions. The variances of the PPLS estimates were about the

same or lower than the PPLS estimates in all other scenarios, where either the noise level was less or more samples

were available. For both PPLS and PLS estimators the variances tended to increase with higher loading values.

The variances decreased with larger sample size and lower noise level. The variances of bots estimators were very

similar across different distributions. For the loading component C1 and their PLS and PPLS estimators the same

conclusions were obtained.

For the second loading component W2 (shown in the Online Supplement), the biases of the PPLS loading

estimates were as good as, and often better than the PLS loading estimates, especially at lower values. In the

scenarios of 50% noise and a small sample size (N = 50) the bias was slightly larger for PPLS estimators compared

to PLS estimates when the loading values were larger. Both estimators showed larger bias towards zero for higher

loading values. The biases decreased with a larger sample size and lower noise level. For all distributions, the

biases of both estimators were very similar. The variances of the PPLS estimators were as good as or lower than

the PLS estimators, except in the scenario in which both the noise level was high (50%) and the sample size was

small (50). In this scenario the variances of the PPLS estimators were still lower if the true loading values were

close to zero, but higher for higher loading values. For both PPLS and PLS estimators the variances tended to

increase with higher loading values. The variances decreased with larger sample size and lower noise level. The

variances of both estimators were very similar across different distributions. For the loading component C2 and

their PLS and PPLS estimators the same conclusions were obtained.

For the third loading components W3 and C3 (shown in the Online Supplement), the same observations were

made as for the first loading components W1 and C1, both for the biases as for the variances.

For the high and extra high-dimensional case, the same results were obtained for the loadings W and C. See the

Online Supplement for more details.

With regard to the comparison of PPLS with PPCA and PCCA, PPLS performed better than PCCA and similar

to PPCA in most scenarios. Details are given in the Online Supplement.
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Table 2: Proportion of correct order of loadings W and C across 1000 simulation replicates. These were obtained for different values of the

dimensionality (high = 1000 variables, low = 20 variables), sample size (large = 500 subjects, small = 50 subjects) and noise level (high =

50% noise, low = 10% noise).

Dimensionality Sample Size Noise Level Correct Ordering Proportion

low

large
low 1.000

high 0.989

small
low 0.932

high 0.435

high

large
low 0.990

high 0.985

small
low 0.940

high 0.665

Results for the variance parameters. The performance of the estimators of the variance parameters B, σt, σe, σ f

and σh were also evaluated, the results are shown in Figure 2. We did not compare with PLS as these model

parameters are not present in the PLS framework. For sake of comparison, we calculated the relative biases

and variances of the estimates with respect to the true corresponding parameter value. The biases of the PPLS

estimators for all variance parameters were very small for large sample size (N = 500), regardless of the noise.

For small sample size (N = 50), the first two diagonal elements of B and Σt were overestimated, while the last

component was underestimated. The noise parameters σe and σ f were underestimated in these scenarios, while the

estimator for σh was unbiased, except in combination with a low noise level (10%). The relative biases decreased

slightly with lower noise level, except for the earlier mentioned σh, and decreased more with larger sample size.

The relative variances of the estimators of B, Σt and σh were larger than the variances of the estimators of σe

and σ f . For B, there was a slight increase in variance across the three components. The variances decreased

slightly with lower noise and more with larger sample size. The variances slightly decreased in the scenario of

high dimensionality and high noise level. The same observations were made across the different distributions.

Ordering of the loadings. We compared the ordering of the true loadings W and C with the ordering of the esti-

mated loadings. This provides a proportion across the 1000 simulation replicates in which the ordering matched.

In Table 2, the proportion of correct orderings of W for the scenario with normally distributed latent variables is

shown for different scenarios. It can be seen that the proportion of correct orderings tends to be lower with smaller

sample size and with higher noise level. Moreover, if the sample size is small, the proportion of correct orderings

is much lower with higher noise. A higher dimensionality has a slightly negative impact on the correct ordering

proportion when the sample size is larger, but a positive impact in the small sample size scenario. Especially, when

also the noise level is high, this can be considerable. The same observations were made for the other distributions.

Exactly the same proportions were observed for the loadings C.

Comparison of PPLS standard errors. The results for low noise level are shown in Figure 3. In all scenarios,

the asymptotic standard errors were smaller than the bootstrap standard errors for nearly all loading elements.

In particular, for high loading values the difference between asymptotic and bootstrap standard errors tended to

be large. This difference decreased with larger sample size: In the ‘extra large’ sample size, the bootstrap and

asymptotic standard errors had similar magnitude. Similar observations were made for other distributions. For

details, see the Online Supplement.

4. Data analysis

To illustrate the Probabilistic Partial Least Squares model, we apply it to IgG glycan datasets. Glycans, in

particular IgG glycans, play an important role in the innate immune system, as well as in cell signaling. IgG2

glycans are less abundant than IgG1 glycans and more difficult to measure. Therefore, by using the relationships

between IgG1 and IgG2 glycans, the characteristics of IgG2 can be better estimated. Hence, we will use IgG1 as

X matrix, and IgG2 as Y matrix.

In total, 40 IgG glycans were measured, of which p = 20 are of subclass IgG1 and q = 20 are of subclass IgG2.

These data were measured in two cohorts (CROATIA Korcula with 951 participants and CROATIA Vis with 796
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participants) [12]. The data matrices containing IgG1 and IgG2 glycan variables are denoted by Xm and Ym, with

m ∈ {1, 2}, where m = 1 corresponds to CROATIA Korcula and m = 2 corresponds to CROATIA Vis. We apply

PPLS to IgG1 and IgG2 glycans in each cohort separately and compare results.

In Figure 4, heatmaps of the correlations within and between the IgG1 and IgG2 glycans are shown, from which

it is clear that there are many highly positive correlations between and within IgG1 and IgG2 in each data set. The

RV coefficient [18], which generalizes the squared Pearson correlation coefficient to two matrices, was about 0.60

and 0.45 for CROATIA Korcula and CROATIA Vis cohorts respectively.

To determine the number of latent variables to use, we considered the total amount of variance explained by the

latent space relative to the total amount of variation in the data: ||Tm||/||Xm|| and ||Um||/||Ym|| for m ∈ {1, 2}. By using

four components, at least 89% of the total variation in each of the matrices X1, X2, Y1 and Y2 was accounted for.

For both cohorts, we fitted the PPLS models using r = 4 latent components. The amount of overlap in each

cohort, estimated by trΣ̂x,y/trΣ̂y given in (4), was 58% and 46% for CROATIA Korcula and CROATIA Vis cohorts,

respectively. The PPLS loadings are inspected to identify which IgG glycans contribute most to this overlap.

The estimated IgG1 loadings w j,k, j ∈ {1, . . . , p} and k ∈ {1, . . . , 4}, for both cohorts and both subclasses are

depicted in Figure 5. The first joint component is proportional to the average glycan, as all glycans get about

the same loading value. The second joint component involves especially G0 and G2 glycan subtypes, in which

they are negatively correlated. Inspection of the loading values for the third component shows contibutions of

fucosylated and non-fucosylated glycan subtypes. In the fourth component a pattern of positive and negative

loading values is visible regarding the presence and absence of bisecting GlcNAc, respectively. The large loading

value for G1NS is remarkable. The same conclusions hold for IgG2, as the estimated loading values were very

similar. It is interesting to note that the observed patterns within components potentially reflect enzymatic synthesis

where monosaccharides are added to glycan substrates [22]. Additionally, similar patterns are seen reflecting the

inflammatory characteristics of glycans in aging and several different diseases [13]. Finally, the observed loading

patterns were strikingly similar for both cohorts.

5. Discussion

We proposed PPLS to model the covariance matrix of two data sets. Maximum likelihood estimators for the

model parameters were derived by solving a constrained optimization problem, and the parameter loadings were

shown to be identifiable up to sign. This property ensures that PPLS estimates are comparable across several

studies.

Our simulation study showed that the PPLS estimators had good performance and lower bias compared to PLS.

Most notably, the performance of PPLS was robust to misspecification of the distribution of the variables. A

smaller sample size and high noise level had a negative effect on the accuracy of the estimates, but large loading

values were still non-zero. Also, compared to Probabilistic CCA estimates, the PPLS estimates were less biased

and more efficient. For high-dimensional data, PCCA estimates have larger bias and higher variance. This is likely

to be caused by the unstable inverse sample covariance matrix calculated when using PCCA. Moreover, if the

number of variables is larger than the sample size, PCCA estimates cannot be obtained. Therefore, especially in

omics data analysis, PPLS provides more robust findings.

As an illustration of the PPLS model, we analyzed IgG glycomics data from two cohorts. The high correlations

in the data (Figure 4) and the use of multiple cohorts illustrate the applicability of PPLS to facilitate combination

of results derived from different experimental settings. We found that the estimated loading values were almost

identical across the two cohorts (Figure 5).

When multiple cohorts are available, a meta-analysis on the parameter estimates can be performed. In ordi-

nary regression models, this has been addressed for both low-dimensional [6] and high-dimensional [10] design

matrices. When there is no access to all data, PPLS estimates can be combined by using standard meta-analysis

approaches [6]. Such an approach requires that the PPLS parameter estimates are identifiable and asymptotically

normally distributed. For the PLS framework, several approaches to combine estimates across cohorts were devel-

oped when there is access to all data. A group-PLS approach was considered [15] to incorporate several groups

of subjects in the model. The authors showed that under certain assumptions this approach provided better predic-

tions than a model without group effects. However their model is not identifiable and requires N > p. Another

method is based on weighted least squares to combine data from different studies with potentially different co-

variates [11]. An alternative method, when access to data is possible, is to estimate joint parts between the data

sets and the studies simultaneously. This yields a joint space with variables that have high loading values in most
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studies. For example, in [25], a non-probabilistic approach is pursued in a least squares estimation method using

PCA. Performing data integration across studies, while taking into account uncertainties within each study, is one

of our topics for future research, and will lead to more powerful analysis of the IgG glycans across cohorts.

To assess the statistical significance of loadings, the probabilistic framework provides alternative approaches

to jackknifing and bootstrapping [27]. The observed Fisher information matrix can be used to estimate standard

errors for individual loading parameters. For small sample sizes, bootstrap approaches appears to better reflect

the uncertainty of the parameters. For large enough sample sizes, the asymptotic standard errors are close to the

simulation-based standard errors. Typically, in epidemiological studies, the sample size is large enough to use

asymptotic standard errors.

In this paper we ignored the fact that different biological ‘omics’ measurements have different error structures.

An extension of Partial Least Squares was proposed to correct for systematic variation (variation induced by latent

variables uncorrelated to the other data set) in the data sets, named Two-Way Orthogonal PLS (O2PLS) [8, 24].

Such an extension can be pursued for PPLS by adding for both X and Y in (1) a set of independent latent variables

multiplied by their loading parameters. We are currently working on exploring the possibilities of a Probabilistic

O2PLS for heterogeneous data sets.
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Appendix A Variances and covariances

The covariance matrix of (x, y) is given in (4). First note that var(u) = var(tB + h) = B2Σt + σ
2
h
Ir, then compute

var(x) = var(tW⊤ + e) = Wvar(t)W⊤ + var(e) = WΣtW
⊤ + σ2

e Ip,

var(y) = var(UC⊤ + f ) = Cvar(u)C⊤ + var( f ) = C(B2Σt + σ
2
hIr)C

⊤ + σ2
f Iq,

cov(x, y) = cov(tW⊤ + e, uC⊤ + f ) = Wcov(t, u)C⊤ = Wcov(t, tB)C⊤ = WBΣtC
⊤.

The covariances between the observed and latent variables are as follows

cov(x, t) = cov(tW⊤ + e, t) = Wvar(t) = WΣt,

cov(x, u) = cov(tW⊤ + e, tB + h) = Wvar(t)B = WΣtB,

cov(y, t) = cov(uC⊤ + f , t) = Ccov(tB + h, t) = CΣtB,

cov(y, u) = cov(uC⊤ + f , u) = Ccov(tB + h, tB + h) = C(ΣtB
2 + σ2

hIr).

See, e.g., [21] for more details.

Appendix B Identifiability of PPLS

For establishing identifiability of the PPLS model, we need to prove that if the distribution of (x, y) is given,

there is only one corresponding set of parameters yielding this distribution. Since (x, y) follows a zero mean

normal distribution, identifiability is equivalent to

Σ = Σ̃ ⇔ θ = θ̃,
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where Σ, Σ̃ is defined, through θ, θ̃, in (4). The following lemma will be very useful in establishing identifiability.

Lemma 1. (Singular Value Decomposition). Let W, W̃ be p×r and C, C̃ be q×r, all orthogonal matrices. Let D, D̃

be r × r diagonal with r distinct positive elements on the diagonal. Then WDC⊤ = W̃D̃C̃⊤ (B.1) implies W = W̃∆,

C = C̃∆ for some diagonal matrix ∆ of size r × r with on the diagonal elements δi ∈ {−1, 1} and D = D̃.

Proof. Let A1 = WDC⊤ and A2 = W̃D̃C̃⊤. Consider AiA
⊤
i

and A⊤
i

Ai, i ∈ {1, 2}. The assertion (B.1) then implies

the following.

A1A⊤1 = WD2W⊤ = W̃D̃2W̃⊤ = A2A⊤2 ; A⊤1 A1 = CD2C⊤ = C̃D̃2C̃⊤ = A⊤2 A2.

Note that both WD2W⊤ and W̃D̃2W̃⊤ are eigenvalue decompositions, as D2 and D̃2 are diagonal and W, W̃ and

C, C̃ are orthogonal. The spectral theorem for matrices [7] then implies that whenever the elements in D2, D̃2 are

distinct, the corresponding columns in W, W̃ and C, C̃ are equal up to multiplication with the same sign. We thus

get W = W̃∆, C = C̃∆ and D = D̃.

Using this lemma, we show identifiability of the off-diagonal block part of the covariance matrix as given in

Eq. (4).

Lemma 2. If for matrices W, W̃, C, C̃ and diagonal B, B̃ and Σt, Σ̃t, given as in the PPLS model, WΣtBC⊤ =

W̃Σ̃t B̃C̃⊤, then W = W̃∆, C = C̃∆ and ΣtB = Σ̃t B̃.

Proof. Applying Lemma 1 with D = ΣtB and D̃ = Σ̃t B̃ gives the desired result, since ΣtB and Σ̃t B̃ are diagonal

matrices with distinct ordered elements.

Given Σx,y we can identify W and C up to sign and the product ΣtB. We now show that in particular also the

individual parameters Σt and B are identified from the upper diagonal block matrix Σx.

Lemma 3. If for matrix W, diagonal matrices Σt and Σ̃t and positive numbers σ2
e , σ̃

2
e , given as in the PPLS model,

WΣtW
⊤ + σ2

e Ip = WΣ̃tW
⊤ + σ̃2

e Ip (B.2), then σe = σ̃e and Σt = Σ̃t.

Proof. Suppose (B.2) holds. Since r < p and p > 1, one can find a unit vector w⊥ such that W⊤w⊥ = 0.

Multiplying with such vector yields σ2
ew⊥ = σ̃

2
ew⊥. Multiplying again with w⊤⊥ yields σ2

e = σ̃
2
e . It follows that we

can identify σ2
e . We can now reduce (B.2) to WΣtW

⊤ = WΣ̃tW
⊤. Pre-multiplying with W⊤ and post-multiplying

with W on both sides yields Σt = Σ̃t.

We have seen in Theorem 2 that we can identify ΣtB. Since we identified Σt we get identifiability of B. The

remaining parameters σ2
h

and σ2
f

are now shown to be identified using the lower block diagonal Σy.

Lemma 4. If for matrices C, B, Σt, σ
2
f
, σ̃2

f
and σ2

h
, σ̃2

h
, given as in the PPLS model, the assertion Σy = Σ̃y holds,

i.e.,

C(B2Σt + σ
2
hIr)C

⊤ + σ2
f Iq = C(B2Σt + σ̃

2
hIr)C

⊤ + σ̃2
f Iq,

then σ2
f
= σ̃2

f
and σ2

h
= σ̃2

h
.

Proof. In Theorem 3 take W equal to C, σ2
e equal to σ2

f
, σ̃2

e equal to σ̃2
f
, and the diagonal covariance matrices Σt

and Σ̃t equal to ΣtB
2 + σ2

h
Ip and ΣtB

2 + σ̃2
h
Ip. We find that we can identify ΣtB

2 + σ2
h

and σ2
f
. Since we already

identified Σt and B, we have also identifiability of σ2
h
.

We conclude with the proof of Theorem 1.

Proof. Suppose Σ = Σ̃. This is true if and only if

Σx,y = Σ̃x,y, Σx = Σ̃x, Σy = Σ̃y. (B.1)

Applying Lemma 2 to the first equation, we identify W and C up to sign. Considering Lemma 3 together with

Lemma 2, the second equation implies identifiability of Σt, B and σe. The three Lemmas 2, 3 and 4 together with

the last equation imply identifiability of σh and σ f .
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Appendix C An Expectation-Maximization algorithm for PPLS

To obtain parameter estimates in the PPLS model, maximum likelihood is used. The EM algorithm is an iterative

procedure for maximizing the observed log-likelihood (5) and consists of an Expectation step and a Maximization

step. The following Lemma is convenient to make the expectation step explicit.

Lemma 5. Let the pair (z, x) be jointly multivariate normal row vectors with zero mean and covariance matrix

(

Σz Σz,x

Σx,z Σx

)

.

Then z|x is normally distributed with conditional mean E (z|x) = xΣ−1
x Σx,z, and conditional covariance matrix

var (z|x) = Σz − Σz,x Σ
−1
x Σx,z. Secondly, if z = (t, u), cov(t, x) = Σt,x and cov(x, u) = Σx,u, then the conditional

covariance between t and u is cov(t, u|x) = cov(t, u) − Σt,x Σ
−1
x Σx,u.

Proof. The proof for the first part of the Lemma is found in [21]. The second part follows from the off diagonal

blocks of var(z|x).

Expectation. The conditional first moments can be obtained by applying Lemma 5 while substituting t or u for z

and (x, y) for x.

µt = E (t|x, y, θ) = (x, y)Σ−1 cov{(x, y), t}, µu = E (u|x, y, θ) = (x, y)Σ−1 cov{(x, y), u}.

The same substitution can be made for the conditional second moments. Using E(a⊤b|z) = cov(a, b|z)+E(a|z)⊤E(b|z),

we get

CTT = E(t⊤t|x, y, θ) = Ir − cov{t, (x, y)}Σ−1 cov{(x, y), t} + cov{t, (x, y)}Σ−1SΣ−1 cov{(x, y), t},

CUU = E(u⊤u|x, y, θ) = Ir − cov{u, (x, y)}Σ−1 cov{(x, y), u} + cov{u, (x, y)}Σ−1SΣ−1 cov{(x, y), u},

where S is the biased sample covariance matrix of (x, y). The conditional cross term equals

CUT = E(u⊤t|x, y, θ) = ΣtB − cov{u, (x, y)}Σ−1 cov{(x, y), t} + cov{u, (x, y)}Σ−1SΣ−1 cov{(x, y), t}

The covariances are given by

cov{(x, y), t} =

(

WΣt

CΣtB

)

, cov{(x, y), u} =

(

WΣtB

C(ΣtB + σ
2
h
Ir)

)

.

Although the the conditional expectations involve random variables and parameters, in the maximization step the

calculated quantities are considered fixed and known.

Maximization. The maximization step involves maximizing the complete-data likelihood (6), we have seen that

it can be decomposed in distinct factors. This allows optimization of the expected complete data likelihood to be

split into four sub-maximizations, given by the individual factors and their respective parameters in the following

annotated product:

f (x|t)
︸︷︷︸

W,σe

f (y|u)
︸︷︷︸

C,σ f

f (u|t)
︸︷︷︸

B,σh

f (t)
︸︷︷︸

Σt

Moreover, it will become apparent that each parameter within each component can be decoupled, yielding a sep-

arate maximization per component per parameter. We focus on the part of f (x|t) that depends on W, which is

given by

E {ln f (X|T )|X,Y} = −E(||X − TW⊤||2|X,Y) + const.

= tr(−X⊤X + 2X⊤µtW
⊤ −WCTT W⊤) + const.

To take into account the constraints on W, namely W⊤W = Ir, we introduce a matrix of Lagrange multipliers Λ.

We get as objective function

tr(−X⊤X + 2X⊤µtW
⊤ −WCTT W⊤) − tr{(W⊤W − Ir)Λ}.
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Differentiating with respect to W yields 2X⊤µt − 2WCTT − 2WΛ = 2W (CTT + Λ) − 2X⊤µt. One may choose Λ so

that CTT + Λ is invertible. In a maximum W then satisfies W = X⊤µt (CTT + Λ)−1. We want to find a Λ such that

the constraint holds, i.e.,

Ir = W⊤W = {(CTT + Λ)−1}⊤µ⊤t XX⊤µt (CTT + Λ)−1 , µ⊤t XX⊤µt = (CTT + Λ)⊤ (CTT + Λ)

The last identity can be recognized as a Cholesky or Eigenvalue decomposition.

µ⊤t XX⊤µt = (CTT + Λ)⊤ (CTT + Λ) = LtL
⊤
t

with Lt the lower triangular matrix of a Cholesky decomposition of µ⊤t XX⊤µt. Note that Lt exists, since µ⊤t XX⊤µt

is always positive semi-definite. Choosing Λ = L⊤t − CTT , we get as update W = X⊤µt(L
⊤
t )−1. Following the

same reasoning, we obtain for the f (Y |U) part C = Y⊤µu(L⊤u )−1, where Lu is the lower triangular matrix from the

Cholesky decomposition of µ⊤u YY⊤µu.

The parameter B involves maximizing ln f (U |T ), which is given by

−||U − T B||2 = −tr(U⊤U − 2U⊤T B + BT⊤T B) + const.

Taking the conditional expectation with respect to (x, y) yields −tr E(U⊤U−2U⊤T B+BT⊤T B|X,Y). Differentiating

with respect to B and equating to the zero matrix yields

BE(T⊤T |X,Y) = E(U⊤T |X,Y) B = E(U⊤T |X,Y){E(T⊤T |X,Y)}−1

To incorporate the constraint that B should be diagonal, we set the diagonal elements to zero, yielding

B = E(U⊤T |X,Y){E(T⊤T |X,Y)}−1 ◦ Ir,

with ◦ the element-wise (Hadamard) product operator.

For the covariance matrix of Σt, we consider ln f (T ) which is given by

2 ln f (T ) = const. − N ln |ΣT | − tr(T⊤TΣ−1
T ) = const. + N ln |Σ−1

T | − tr(T⊤TΣ−1
T ).

After taking the conditional expectation of the last expression, it can be differentiated with respect to Σ−1
t , which

yields

2
∂

∂Σ−1
T

ln f (T ) = NΣT − E(T⊤T |x, y) = 0, ΣT = N−1E(T⊤T |x, y) ◦ Ir

The last Hadamart product ensures Σt is diagonal.

To maximize over σ2
e , we consider ln f (X|T ) and note that E = X − TW⊤. Then ln f (X|T ) is given by

2 ln f (X|T ) = const. − N p ln |σ2
e | − σ

−2
e tr(E⊤E) = const. + N p lnσ−2

e − σ
−2
e tr(E⊤E)

After taking the conditional expectation of the last expression, we differentiate it with respect to σ−2
e , yielding

2
∂

∂σ−1
e

ln f (X|T ) = N pσ2
e − E(E⊤E|X,Y) = 0, σ2

e = (N p)−1E(E⊤E|X,Y)

The same derivation can be applied to ln f (y|u) and ln f (u|t) to find

σ2
f = (Nq)−1E(F⊤F|X,Y), σ2

h = (Nr)−1E(H⊤H|X,Y)

Appendix D Asymptotic standard errors for PPLS loadings

Using notation as in [16] we define

λ(Wk) = −
1

2σ2
e

tr(X⊤X − 2X⊤tkw⊤k + wkt⊤k tkw⊤k )
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to be the part of the log likelihood depending on wk. We calculate the following first and second derivatives.

S (wk) = ∇λ = σ−2
e (X⊤tk − wkt⊤k tk), B(wk) = −∇2λ = σ−2

e (t⊤k tk)Ip.

We obtain

σ4
eS (wk)S (wk)⊤ = X⊤tkt⊤k X − 2X⊤tkt⊤k tkw⊤k + wkt⊤k tkt⊤k tkw⊤k ,

σ4
eE{S (wk)S (wk)⊤|X,Y} = X⊤E(tkt⊤k |X,Y)X − 2X⊤E(tkt⊤k tk |X,Y)w⊤k + wkE(t⊤k tkt⊤k tk |X,Y)w⊤k

= σ2
k X⊤X − 2X⊤(µk ||µk ||

2
2 + 3µkσ

2
k)w⊤k + wk(||µk ||

4
2 + 6||µk ||

2
2σ

2
k + 3σ4

k)w⊤k .

Here µk = E(tk |X,Y) and σk = E(t⊤
k

tk |X,Y). For explicit expressions of these expectations, see Appendix C. For

the second derivative we get E{B(wk)|X,Y} = σ2
k
Ip/σ

2
e . The observed Fisher information is now

Iobs = E{B(wk)|X,Y} − E{S (wk)S (wk)⊤|X,Y},

and the asymptotic covariance matrix of wk is −I−1
obs

. The square root of the diagonal elements are the standard

errors of the corresponding loading elements.
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(a) Low noise (10%); small sample size (N = 50)
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(b) Low noise (10%); large sample size (N = 500)
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(c) High noise (50%); small sample size (N = 50)
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(d) High noise (50%); large sample size (N = 500)

Figure 1: True and estimated loadings W1 over 1000 simulation replications. The black dots and dashed vertical lines (on the left of each pair)

represent PPLS estimates, the red stars and dashed vertical lines (on the right of each pair) represent PLS estimates. The dots and stars are the

average loading values across 1000 simulation replications; the width of the dashed lines are twice the standard deviations. The results are for

normally distributed latent variables (t, e, f and h) and low dimensionality (p = q = 20 variables).
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B1 B2 B3 sigma_T1 sigma_T2 sigma_T3 sigma_E sigma_F sigma_H

- -
-

- - - - - -
- - -

- - - - - -

0.
6

0.
8

1.
0

1.
2

(b) Low noise (10%); large sample size (N = 500)
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(c) High noise (50%); small sample size (N = 50)
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(d) High noise (50%); large sample size (N = 500)

Figure 2: True and estimated variance parameters B, Σt , σe, σ f and σh over 1000 simulation replications. The dots are the average values

across 1000 simulation replications; the width of the dashed lines are twice the standard deviations. The results are for normally distributed

latent variables (t, e, f and h) and low dimensionality (p = q = 20 variables).
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Figure 3: Standard errors of the W loading elements per component. Bootstrap standard errors (solid green line), asymptotic standard errors

(dashed red line) and simulation-based standard errors (dotted black line) are plotted for the loading estimates in each component. Plots for

the three sample sizes (small N = 50, large N = 500, ‘extra large’ N = 5000) are shown along the rows. The three loading components (W1,

W3 and W3) are plotted column wise. The last row does not include simulation-based standard errors. The data are generated from a normal

distribution with p = q = 20 variables and low noise level (αn = 0.1).
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(b) The second (CROATIA Vis) cohort

Figure 4: Heatmaps of the correlations between IgG1 and IgG2 glycans. In left the correlations of the CROATIA Korcula cohort is shown.

In right the CROATIA Vis cohort is shown. The upper-left and lower-right block are the within subclass correlations, the off-diagonal block

contains the correlations between IgG1 and IgG2 glycans. In both cohorts the glycans exhibit high positive correlations, especially between

glycans within the IgG1 and IgG2 subclasses.
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(a) The IgG1 glycan loadings (W) for both cohorts.
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(b) The IgG2 glycan loadings (C) for both cohorts.

Figure 5: Loadings per component for both cohorts. In the top four plots loading values of IgG1 glycans (W) are plotted per glycan. The red

dots connected by red lines are for the CROATIA Korcula loadings. The four loading vectors are plotted left-to-right and top-to-bottom. The

blue triangles and lines are for the CROATIA Vis cohorts. In the bottom four plots the IgG2 glycan loading values are plotted in the same order

and style.
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