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Ring�opening metathesis polymerization of tertiary 

amide monomers derived from a bio�based 

oxanorbornene  
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MAILING ADDRESS: Department of Chemistry, University of York, Heslington, York, YO10 

5DD, UK. 

Email: Michael.north@york.ac.uk 

KEYWORDS. Ring�Opening Metathesis Polymerization, Itaconic Anhydride, Furfuryl Alcohol, 

Diels�Alder, Lactonization, Platform Molecules.   

���������	 Ring�Opening Metathesis Polymerization (ROMP) of bio�based oxanorbornene 

amides by Grubbs second generation catalyst was used to prepare a range of well�defined homo� 

and co�polymers. A series of eleven amide monomers, featuring a variety of functionalities 

including amino acids and peptides, have been synthesized from a bio�based oxanorbornene acid, 

prepared through the 100% atom economical tandem Diels�Alder lactonization between itaconic 

anhydride and furfuryl alcohol. The polymerization has been shown to be well�controlled, with 
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 2

the prepared homo� and co�polymers possessing controlled molecular weights with narrow 

polydispersities. 	


����
������	

Synthetic polymers have become ubiquitous in modern society, finding widespread application 

in packaging, building materials and consumer products, to name but a few. Consequently, there 

is a growing demand for these materials, with synthetic polymers currently produced on a scale 

of more than 300 million metric tonnes annually, the vast majority of which are derived from 

non�renewable petrochemical feedstocks.1 This accounts for approximately 8% of the global 

crude oil and gas production, the second largest sector behind transport fuels.2 However, 

fluctuating petroleum prices and environmental concerns, pertaining to their depletion, is driving 

interest in the production of synthetic polymers from renewable and sustainable resources. 

Currently only 1.7 million metric tonnes (ca. 0.57%) of synthetic polymers can be regarded as 

bioderived.3 However, predictions suggest that 90% of the current total consumption of plastics 

could be replaced with bio�based alternatives.1 A particular challenge is the synthesis of nitrogen 

containing bio�derived polymers as there are limited numbers of suitable nitrogen containing 

precursors with amino acids being the most readily available. The incorporation of nitrogen 

functionalities into polymers is however important as it can dramatically change the physical and 

chemical properties of the polymer. Polyamides such as Nylon and polyurethanes are examples 

of commercially important nitrogen�containing synthetic polymers. Nitrogen functionality in 

monomers can also cause problems during polymerizations as the Brønsted or Lewis basicity 

associated with functional groups such as amines and amides can result in inhibition or 

decomposition of polymerization initiators.   
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 3

There are generally two distinct approaches for the preparation of bio�based plastics. Either the 

development of sustainable routes to monomers chemically equivalent to those derived from 

petrochemical sources (bioreplacement), or the synthesis of novel structures from biomass as 

new sustainable monomer species (bioadvantage).4 We had previously been interested in the 

development of aromatic itaconate esters, with the intention of producing bio�based furan 

analogues of poly(benzyl)itaconiates, through radical polymerization.5,6,7,8 It was expected that 

these would possess higher glass transition temperatures (Tg) than their poly(dialkyl)itaconate 

equivalents.9 However, the reaction between itaconic anhydride � and furfuryl alcohol � gave not 

ester �, but the unusual oxanorbornene�lactone � as a single product (Scheme 1).10 This outcome 

was reported independently and simultaneously by Pehere �����.11  

 

 

������	�. Preparation of acid �. 

 

The formation of acid � occurs $�� a tandem Diels�Alder cycloaddition followed by lactone 

formation. Diels�Alder reactions of furans are reversible and in this case, subsequent 
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 4

lactonization causes product � to precipitate from the reaction mixture. This reaction is effective 

when carried out both with a solvent, usually acetonitrile, or under solvent free conditions. As 

such, compound � is a very promising candidate for the development of sustainable polymers, as 

its synthesis from compounds � and � is 100% atom economical and can performed without the 

need for solvents, catalysts or other reagents. Additionally, both starting materials (� and �) are 

highly promising platform molecules for a bio�economy and are currently produced on an 

industrial scale.12 Alcohol �	 is readily available by the hydrogenation of furfural13 
�	(Figure 1)	

which is produced by the acid catalyzed dehydration of pentoses (ca. 200 000 tons per annum), 

usually from agricultural waste.14,15 Itaconic acid �	 can be obtained by fungal fermentation 

carbohydrates using !
%������&
� �����&
 (ca. 400 000 tons per annum by 2020).16 However, 

anhydride �	 is most efficiently made, not from itaconic acid �, but from citric acid �, which 

undergoes simultaneous decarboxylation and dehydration to yield itaconic anhydride �	directly 

when distilled.17 Citric acid is produced on over a one million tons per annum scale by 

fermentation of glucose�containing sugars with !
%������&
� �����, making it an equally 

sustainable feedstock.18  

 

 

������	�. Structures ���. 

 

As a result of significant advances in initiator activity and functional group tolerance, ROMP 

has developed into a versatile methodology for the synthesis of highly functionalized polymers 

with controlled molecular weights and stereochemistry.19,20,21 Ruthenium based ROMP initiators 
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 5

have also been used to polymerize monomers which incorporate natural products within their 

structures.22,23,24,25,26,27 In previous work we have shown that esters of acid � could be 

polymerized by ROMP in the presence of Grubbs second generation catalyst �� (Scheme 2).10,28
	 

 

������	�. ROMP of esters ���� and amides � ��!. 

 

The homopolymer "�	of methyl ester ��	was found to have poor solubility in a range of solvents, 

but monomer ��	did undergo well�controlled polymerization to give soluble copolymers when 
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 6

copolymerized with a commercial norbornene derivative. To increase the solubility of the 

homopolymers, esters ���� were subsequently prepared, most of which can be obtained from 

bio�mass derived alcohols.28 Esters "��� were found to undergo ROMP over 72 hours in a well�

controlled manner, to give wholly biomass derived homo� and co�polymers. The polymers were 

produced with narrow polydispersities, and in most cases, were found to possess good thermal 

stability. Consequently, we have been interested in further functionalization of oxanorbornene�

acid � and in the properties of the corresponding polymers obtained by ROMP. Herein, we 

demonstrate that acid � can be converted into a range of tertiary amides � ��!, including those 

derived from amino acids and peptides, and that the resulting amides also undergo well�

controlled ROMP to form nitrogen containing polymers. 

 

#$%��������&	

Details of materials, reagents and analytical methods are given in the supporting information. 

 

������&	'����
���	(��	���	�)�������	�(	���
��	� ��!�	

Acid monomer10 � (2.0 g, 9.5 mmol) was suspended in anhydrous CH2Cl2 (5 mL) under an 

argon atmosphere. The suspension was cooled to 0 °C and oxalyl chloride (12.0 mL of 2.0 M 

solution in CH2Cl2, 24.0 mmol) was added dropwise over 10 minutes, followed by DMF (4 

drops). The suspension was stirred at ambient temperature until a solution was obtained. The 

obtained solution was concentrated ��� $��&�, to give a brown solid which was redissolved in 

anhydrous CH2Cl2 (10 mL) and cooled to 0 °C. A solution of disubstituted amine ����!	 (14 

mmol) and triethylamine (2.7 mL, 19.0 mmol) (or 5.4 mL, 38.0 mmol if using the TFA salt of 

amine ��) in CH2Cl2 (10 mL) was added dropwise over 10 minutes. The solution was allowed to 
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 7

stir at ambient temperature overnight, then additional CH2Cl2 (30 mL) and H2O (50 mL) were 

added. The organic layer was separated and further washed with 1M HClaq (50 mL), 1M 

NaHCO3 (50 mL), H2O (50 mL) and brine (50 mL). The organic layer was dried (MgSO4), 

filtered and concentrated ��� $��&�. The residue was then purified using flash column 

chromatography. Details of solvent systems and compound characterization are given in the 

supporting information. 

	

������&	'����
���	(��	���	*+,'	�(	���
��	� ��!�	

The appropriate quantities of monomer(s) and catalyst �� were separately dissolved in 

(CH2Cl)2. Each solution was degassed by three cycles of freeze�pump�thaw. The monomer 

solution was prewarmed to the desired temperature and the catalyst solution added. The reaction 

mixture was then stirred for 72 h. After this time, the polymerization was terminated by the 

addition of an excess of ethyl vinyl ether, followed by stirring for a further 30 minutes. The 

solution was then filtered through a short plug of silica to remove catalyst residues. The solution 

was then precipitated into hexane. After settling, the hexane was carefully decanted and the 

polymer dried under reduced pressure. Details polymer characterization are given in the 

supporting information. 

 

'����
���	(��	���	�)�������	�(	-����.)&/-����)&	0&��!	1�%�&)���	

Dibenzyl amide � � (39 mg, 0.1 mmol) and catalyst �� were combined in a Schlenk tube 

under argon. (CH2Cl)2 was degassed by three cycles of freeze�pump�thaw, then (CH2Cl)2 (1 mL) 

was added to the Schlenk tube containing the monomer/catalyst. The reaction mixture was then 

stirred at 40 °C for 13.6 h, which corresponds to 80% conversion, as determined by the kinetic 
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 8

plot obtained for monomer � �. After 13.6 h, a sample was taken and immediately analyzed by 

1H NMR spectroscopy to determine the conversion. A second sample was then taken, end�

capped by treatment with excess ethyl vinyl ether for 30 minutes, filtered through a silica plug 

and precipitated into hexane. The hexane was decanted and the sample dried under reduced 

pressure before being analyzed by SEC. A solution of diethyl monomer � � (29 mg, 0.1 mmol) 

in (CH2Cl)2 (1 mL), which had been subjected to degassing by three cycles of freeze�pump�thaw, 

was then added to the reaction mixture. The reaction was monitored by SEC and 1H NMR 

spectroscopy every 24 h for the next 48 h as the second block was incorporated according to the 

previously described procedure. After 48 h the polymer was end�capped by treatment with 

excess ethyl vinyl ether for 30 minutes. The polymer was then filtered through a plug of silica 

and precipitated into hexane. The hexane was decanted and the polymer dried under reduced 

pressure before being analyzed by 1H NMR spectroscopy and SEC. Details polymer 

characterization are given in the supporting information. 

	

������&	'����
���	(��	,���������	���	2�������	�(	���
�	3���%�&)����.�����		

The appropriate quantities of monomer(s) and catalyst �� (1.7 mg, 1 mol%) were separately 

dissolved in (CD2Cl)2 (0.5 mL). Tetramethylsilane (1 drop) was then added to the monomer 

solution.  Each solution was subjected to three cycles of degassing by freeze�pump�thaw. The 

monomer and catalyst solution were then combined. A sample of the reaction mixture was then 

transferred to an NMR tube equipped with a Young tap. The sample was sealed under argon and 

1H NMR spectra recorded at 40 °C every 30 mins for 24 h. Conversion was then determined by 

integrating monomer alkene peaks relative to the TMS peak. 
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 9

*���&��	��
	-���������	

Acid � was converted into its acid chloride as previously reported,28 then reacted with 

disubstituted amines ����! to give tertiary amide monomers � ��! (Scheme 2). The structures of 

amides � �4� and �	were confirmed by X�ray crystallography (Figure 2). The eventual aim of 

this project was to use bio�based amines to complement the 100% bio�derived nature of acid �. 

However, bio�based amines are rather scarce and can only be easily obtained from chitin or 

amino acids.29 Alternative approaches have typically resorted to amination of bio�based platform 

molecules.30,31 Therefore, initial studies to prove that amide containing monomers would 

undergo ROMP were carried out using simple petrochemically derived amines �����, to produce 

the corresponding tertiary amides � ���,	in good to excellent yields. 

 

 

������	 �: Elipsoid representations of the crystal structures of monomers � �,� and �. The 

tetrahydropyrrole and butyrolactone of � � were disordered and only the major form of each is 

shown. 

 

Alternative routes to the synthesis of amide � �	were also investigated to avoid the use of 

oxalyl chloride and chlorinated solvents. However, attempts to prepare the amide directly from 

acid � and amine ��� using amorphous or mesoporous (SBA15) silica32 activated at 700 oC, or 
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 10

boric acid,33 as catalysts in refluxing toluene were unsuccessful and resulted in the 

decomposition of acid �. 

ROMP conditions were then optimized using the dibenzyl amide � � as model substrate. 

Polymerizations to form homopolymer ���	were attempted using 1 mol% of catalysts �����	

(Figure 3), in 1,2�dichloroethane at various temperatures and concentrations for 72 hours, after 

which time a sample was taken and analyzed by 1H NMR spectroscopy to determine conversion. 

The polymerization was then quenched with ethyl vinyl ether and the resulting polymer was 

analyzed by SEC (Table 1). 1,2�Dichloroethane was chosen as the solvent as it had given the best 

results for the ROMP of esters ����.10,28 When polymerization was performed at room 

temperature using catalyst	�� and a 0.1 M concentration of monomer � �, identical conditions 

to those previously used for the ester derivatives,10,28 only 37% conversion was observed (Table 

1, entry 1). Performing the polymerization at elevated temperature had a positive influence on 

the conversion, with 82% of monomer � � converted at 30 °C (Table 1, entry 2) and 91% of 

monomer converted at 40 °C (Table 1, entry 3). Above 40 oC, there was no significant further 

improvement in the conversion (Table 1, entries 4 and 5). Reducing the polymerization 

temperature to 0 oC completely suppressed the polymerization of monomer � � (Table 1, entry 

6). The molecular weight of polymer ��� increased as the conversion increased as expected for a 

well�controlled ROMP and the use of elevated polymerization temperatures did not have a 

significantly detrimental effect on the dispersity of polymer ��� with all samples displaying 

polydispersities below 1.1 (Table 1, entries 1�4). The temperature dependence of the 

polymerization of monomer � � is consistent with the known need to dissociate the 

tricyclohexylphosphine ligand from �� as the rate determining step of metathesis initiation with 
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 11

this catalyst.34 This will be an endothermic process and hence will be facilitated at elevated 

temperatures. 

 

 

������	�: Structures of metathesis catalysts �����. 

 

5��&�	�. Reaction optimization for the ROMP of dibenzyl amide � �.a  

Entry Catalyst Temperature (°C) [� �] (M) Conversion (%)b Mn
c Mw

c Đd 

1 G2 rt 0.10 37 16,100 17,000 1.06 

2 G2 30 0.10 82 18,500 19,100 1.03 

3 G2 40 0.10 91 20,400 21,400 1.05 

4 G2 50 0.10 93 23,500 25,100 1.07 

5 G2 60 0.10 93 22,000 23,500 1.07 

6 G2 0 0.10 0    

7 G2 40 0.05 79 17,800 19,000 1.06 

8 G2 40 0.20 91 16,900 17,700 1.05 

9 G1 rt 0.10 0    

10 G1 40 0.10 0    

11 G3 rt 0.10 0    

12 G3 40 0.10 0    
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 12

a) All polymerizations were carried out using a � �:catalyst ratio of 100:1. b) Conversion was 

determined by 1H NMR spectroscopy. c) Determined by SEC in THF at 23 °C and calibrated 

relative to polystyrene standards. d) Đ = Mw/Mn. 

Halving the concentration of monomer � � decreased the conversion (Table 1, entry 7), but 

doubling its concentration did not increase the conversion (Table 1, entry 8). Attempts to 

polymerize monomer � � using first or third generation Grubbs catalysts (�� and ��) were 

unsuccessful (Table 1, entries 9�12). Thus, the use of catalyst �� (initially 1 mol%) with a 0.1 M 

solution of monomer in 1,2�dichlorethane at 40 °C for 72 h were chosen as the conditions to 

further study the polymerization of monomers � ��!. under these conditions the 

homopolymerization of dibenzyl amide � � was repeated at � ���� ratios of 20:1 to 100:1 

(Table 2). In each case polymer ��� was obtained with narrow polydispersity (Figure 4) and 

there was a linear relationship between the number averaged molecular weights and the � ���� 

ratio (Figure 5) which is indicative of the homopolymerization of monomer � � being a well�

controlled chain growth polymersation. 

 

5��&�	�. Molecular weight data for homopolymers ��� of dibenzyl amide � �. 

Entry  � �:�� Mn
a Mw

a Đb 

1 20:1 8,400 8,900 1.06 

2 40:1 14,100 14,900 1.05 

3 60:1 18,400 19,600 1.06 

4 80:1 23,100 25,100 1.09 

5 100:1 26,200 28,900 1.10 

a) Determined by SEC in THF at 23 °C and calibrated relative to polystyrene standards. b) Đ = 

Mw/Mn. 
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 13

 

������	�. SEC of homopolymer ��� prepared using various � ���� ratios.  

 

������	�. Plot of Mn against � ���� ratio for homopolymer ���. 	

 

Having demonstrated using monomer � �	 that ROMP of tertiary amide derivatives of 

oxanorbornene � was possible and occurs in a well�controlled manner, a series of homopolymers 
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����!	were prepared using amides � ��!	(Table 3). Generally, the polymers were obtained with 

molecular weights close to the expected values and with narrow polydispersities. Polymers ���4� 

could not be analyzed by SEC as they were insoluble in THF (Table 3, entries 1 and 2). As these 

polymers are derived from monomers with the shortest alkyl chains (Me and Et), this suggests 

that more than four carbon atoms need to be present in the amide unit for the polymers to be 

soluble in organic solvents. This is consistent with our previous experience of homopolymers "��

�	derived from ester containing monomers ����.28  

Soluble polymers with molecular weights close to the expected values were obtained for the 

homopolymers ���4
 of propyl and butyl amides � �4
	 (Table 3, entries 3 and 4). However, 

monomers � �4( which have longer linear or branched alkyl groups on the amide seem to inhibit 

the polymerization (Table 3, entries 5 and 6). This is apparent in the conversions obtained for the 

polymerization of monomers � �4( after 72 hours and, for polymer ��(, in the much lower than 

expected number average molecular weight. However, monomers � �4( still gave polymers ���4( 

with narrow polydispersities. This effect seems to be restricted to larger aliphatic groups as 

monomer � � which contains two large, branched, benzyl groups underwent ROMP without any 

difficulty (Table 3, entry 7 and Tables 1 and 2). 

Having shown that symmetrical tertiary amides � ��� derived from petrochemically sourced 

secondary amines ����� all underwent ROMP, the use of monomers � ��! which all contain 

unsymmetrical tertiary amides derived from amino acids was investigated. Initially, acid �	

(racemic) was reacted with methyl (�)�prolinate to give amide � � as a 1:1 mixture of 

diastereomers. Monomer � � underwent ROMP under the standard conditions (Table 3, entry 8), 

but the resulting polymer was insoluble in THF. To avoid complications due to the presence of 

diastereomers when racemic acid � was coupled to chiral amines, it was decided to limit the 
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 15

study to achiral amino acid derivatives. Thus, monomer � � derived from sarcosine (��

methylglycine) benzyl ester was prepared and cleanly converted into polymer ���, which SEC 

showed to have the right number average molecular weight and a narrow polydispersity (Table 3, 

entry 9). 

 

5��&�	�: Molecular weight and thermal analysis data for homopolymers ����!.a 

Entry Polymer 
Conversion 
(%)b 

Mn
c Mw

c Đd Tg 

(°C) 
T10% 
(°C) 

1 ��� (amide = NMe2)
e 93    115 345 

2 ��� (amide = NEt2)
e 90    146 349 

3 ��� (amide = NPr2) 78 25,700 28,100 1.09 203 350 

4 ��
 (amide = NBu2) 82 25,000 26,800 1.07 139 361 

5 ��� (amide = NOct2) 52 23,300 23,700 1.02 137 269 

6 ��( (amide = (2�ethylhexyl)2
e 49 10,900 12,100 1.11 171 321 

7 ��� (amide = NBn2) 91 20,100 21,000 1.04 130 352 

8 ��� (amide = Pro�OMe)f 87    149 332 

9 ��� (amide = Sar�OBn) 87 18,300 19,900 1.09  327 

10 ��6 (amide = Sar�Gly�OBn)f �g    155 306 

11 ��! (amide = Sar�Sar�OBn)f 62     315 

a) All polymerizations were carried out in 1,2�dichloroethane at 40 °C for 72 hours using catalyst 

�� and a � ��!:�� ratio of 100:1. b) Conversion was determined by 1H NMR spectroscopy. c) 

Determined by SEC in THF at 23 °C and calibrated relative to polystyrene standards. d) Đ = 

Mw/Mn. e) Amine ��( was used as a mixture of racemic and meso�stereoisomers. f) Polymer was 

insoluble in THF. g) Conversion could not be determined as polymer precipitated out of solution 

over 72 hours. 
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The study was then extended to monomers � 64!	derived from peptides, again using achiral 

amino acids to avoid complications caused by diastereomer formation. Previous work on ROMP 

of peptide derived norbornenes has been based on the potential of the polymers as functional 

materials and therapeutic agents.35,36,37,38,39 Monomers � 64!	 differ only by the presence of a 

hydrogen (� 6) or methyl group (� !) on the nitrogen of the "�terminal amino acid. In the case 

of monomer � 6, the polymerization did occur, but the polymer precipitated from the reaction 

mixture as it was formed over the course of 72 hours (Table 3, entry 10). The polymerization of 

monomer � ! was more straightforward (Table 3, entry 11), though both polymers ��64! were 

insoluble in THF and so could not be analyzed by SEC. 

All of monomers � ��! contain a tertiary amide structure. The ROMP of analogous monomers 

containing a secondary amide unit was also investigated but in every case was unsuccessful. This 

is probably due to the �� ��nature of the amide substituent which aids coordination of the amide 

to the propagating metal alkylidene, inhibiting catalyst turnover, in a similar manner to that 

previously observed by Sutthasupa ��� �� and Lapinte ��� ��.40,41 This coordination would be 

stronger in the case of a secondary amide due to its ability to form an imidic acid tautomer. The 

formation of polymer from monomer � 6 does however show that secondary amides are 

compatible with ROMP initiated by catalyst ��, provided they are present far enough away from 

the alkene to disfavour their coordination to the propagating metal alkylidene.  

The thermal properties of homopolymers ����! were also determined, using TGA and DSC 

analysis (Table 3). The polymers were found to be amorphous, as no Tm or Tcryst
 was observed in 

any case, but showed fairly high Tg values ranging from 115�203 °C. The polymers also mostly 

displayed high temperatures of decomposition (T10%) with values typically obtained between 

305�361 °C (Figure 6). The only exception was polymer ��� derived from dioctylamine ��� 
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which had a lower decomposition temperature of 269 °C. Samples of polymers ���46 showed a 

stepwise weight loss, losing 10�15% of the sample mass at 100�150 °C, before a second weight 

loss occurs above 300 °C. The higher temperature weight loss corresponds to polymer 

decomposition as for polymers �����4!	 and TGA�FTIR analysis showed that the lower 

temperature weight loss was due to release of encapsulated hexane. Encapsulation of 

hydrocarbons, including hexane, within polynorbornenes has been reported before42 and is 

known to be highly dependent upon the exact structure of the monomer. 

 

 

������	�: TGA traces for homopolymers ���,�4�,�. 
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Having studied the formation of homopolymers ����! from monomers � ��!, the synthesis of 

random copolymers ����
	was investigated, focusing particularly on those monomers that had 

produced insoluble homopolymers (Scheme 3 and Table 4). Copolymers ����
	were all prepared 

from a 50:50:1 ratio of the two monomers to ��, to give copolymers which were comparable 

with homopolymers ��	prepared using a 100:1 monomer to �� ratio (Table 3). High conversions 

of monomers � 	to polymers ����
 was observed in all cases within 72 hours, to give polymers 

with narrow polydispersities (Figure 7). Polymer ��� was derived from monomers � � and � � 

both of which had given soluble homopolymers (Table 3) and not surprisingly give a soluble 

random copolymer (Table 4, entry 1). The other three random copolymers prepared (����
) were 

all derived from one monomer which had given a soluble homopolymer and one which had 

given an insoluble homopolymer. Two of these combinations were found to give soluble 

copolymers (Table 4, entries 2 and 3), but the third gave a random copolymer that insoluble in 

organic solvents (Table 4, entry 4).  

 

 

������	�: Random ROMP copolymerization of monomers � .  
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5��&�	�: Molecular weight and thermal analysis data for random copolymers ����
a  

Polymer (monomers) Conversion (%)b Mn
c Mw

c Đ Tg (°C) T10% (°C) 

��� (� �:� �) 80 10,800 12,000 1.11  319 

��� (� �:� �) 89 25,100 27,500 1.10 157 355 

��� (� 
:� �) 89 12,200 12,900 1.06 155 307 

��
 (� �:� �)d 95     319 

a) Polymerizations were carried out in 1,2�dichloroethane at 40 °C for 72 hours using catalyst 

�� and a monomer:catalyst ratio of (50:50:1). b) Conversion was determined by 1H NMR 

analysis. c) Determined by SEC in THF at 23 °C and calibrated relative to polystyrene standards. 

d) Polymer was insoluble in THF. 

 

������	�: SEC trace for the copolymer formed from a 50:50:1 mixture of monomers � 
4� and 

catalyst ��. 
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Thermal analysis of the random copolymers indicated that they possessed similar properties to 

the homopolymers. Tg values were only observed for copolymers ���4� but were fairly high at 

157 and 155 °C respectively. Thermal decomposition temperatures were again above 300 °C, 

and polymer ��� which included sarcosine benzyl ester � 6 as one of its monomers again 

showed hexane encapsulation, exactly analogous to that observed for homopolymer ��6. 

The synthesis of a block copolymer ��	using the benzyl � � and ethyl � � monomers was then 

undertaken by the sequential addition of monomers � � and � �	 (Scheme 4). Initial reactions 

gave bimodal SEC traces due to chain ends dying before the second monomer was added. The 

same effect had been observed for the preparation of block copolymers using catalyst �� with 

the analogous ester monomers.28 This problem could be solved by monitoring polymerization of 

the first monomer, to ensure that the second monomer was added slightly prior to the first 

monomer being fully consumed. The homopolymerization of monomer � � was therefore 

monitored by 1H NMR spectroscopy and SEC, to allow for a more accurate determination of the 

polymerization end�point. This showed that, 50 equivalents of monomer � �, was 80% 

consumed after 13.6 hours. After 13.6 hours, 50 equivalents of monomer � � was added, then 

the reaction was monitored every 24 hours before quenching after 48 hours. The resulting SEC 

traces (Figure 8) show that the both blocks produce monomodal high molecular weight polymer 

with narrow polydispersityand hence indicate that there were no issues with dead chain ends. 
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������	�: Block copolymerization of monomers � � and � �	to produce block copolymer	��.  

 

������	 ": SEC trace for the block copolymer formed from 50:50:1 � �:� �:��. Black, 13.6 

hours after addition of monomer � �. Red 48 h after addition of monomer � �.  
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Monitoring the reaction profile by 1H NMR also made it possible to determine kinetic 

information on the homopolymerization of these tertiary amides. The decrease in concentration 

of dibenzyl monomer � � against time was found to fit first order kinetics at 40 °C in deuterated 

1,2�dichloroethane, giving an observed rate value (Kobs) of 2.1 × 10�3 s�1 when the natural 

logarithm of concentration was plotted against time (Figure 9). This study was then extended to 

monomers � �4
4� and �. Monomer � � (derived from dimethylamine) was found to have the 

highest observed rate constant (2.3 × 10�3 s�1) whilst monomer � � (derived from dioctylamine) 

was found to have the lowest observed rate constant (3.1 × 10�4 s�1). The relative small difference 

(a factor of eight) between the highest and lowest of these rate constants suggests that the 

structure of the amide substituents does not have a large effect on the rate of polymerization of 

monomers � .  

 

������	�: First order kinetic plots for the determination of Kobs for monomer � �,
,� and � 
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1���&������	

A series of eleven tertiary amide monomers have been synthesized from a bio�based 

oxanorbornene prepared from itaconic anhydride and furfuryl alcohol. ROMP of these tertiary 

amides was shown to procced in a well�controlled manner, producing a range of nitrogen 

containing homo� and random� copolymers with high molecular weights with narrow 

polydispersities. Thermal analysis showed that the polymers were amorphous with Tg values in 

the range of 115�203 °C and thermal decomposition temperatures typically above 300 °C. A 

block copolymer could also be prepared by monitoring the progress of the growth of the first 

polymer block to ensure that the second monomer was added before chain termination became 

significant. Monitoring the homopolymerizations also provided kinetic data on the rates of 

polymerization of the monomers. 
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5+1	#���)	

 

�)��%��� 

ROMP is used to prepare nitrogen containing polymers. The monomers can be prepared from 

sustainably sourced chemicals: itaconic acid, furfurol and amino acids. 
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