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Abstract: Previous studies have shown the effect of a lead vehicle’s speed, deceleration rate 21 

and headway distance on drivers’ brake response times. However, how drivers perceive this 22 

information and use it to determine when to apply braking is still not quite clear. To better 23 

understand the underlying mechanisms, a driving simulator experiment was performed where 24 

each participant experienced nine deceleration scenarios. Previously reported effects of the lead 25 

vehicle’s speed, deceleration rate and headway distance on brake response time were firstly 26 

verified in this paper, using a multilevel model. Then, as an alternative to measures of speed, 27 

deceleration rate and distance, two visual looming-based metrics (angular expansion rate ߠሶ  of 28 

the lead vehicle on the driver’s retina, and inverse tau ߬ିଵ, the ratio between ߠሶ  and the optical 29 

size ߠ), considered to be more in line with typical human psycho-perceptual responses, were 30 

adopted to quantify situation urgency. These metrics were used in two previously proposed 31 

mechanistic models predicting brake onset: either when looming surpasses a threshold, or when 32 

the accumulated evidence (looming and other cues) reaches a threshold. Results showed that 33 

the looming threshold model did not capture the distribution of brake response time. However, 34 

regardless of looming metric, the accumulator models fitted the distribution of brake response 35 

times better than the pure threshold models. Accumulator models, including brake lights, 36 

provided a better model fit than looming-only versions. For all versions of the mechanistic 37 

models, models using ߬ିଵ as the measure of looming fitted better than those using ߠሶ , indicating 38 

that the visual cues drivers used during rear-end collision avoidance may be more close to ߬ିଵ. 39 

Keywords: rear-end collision, brake response time, multilevel model, visual looming, 40 

threshold model, accumulator model  41 

  42 
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1. Introduction 43 

According to statistics provided by the World Health Organization, about 1.25 million people 44 

die each year as a result of road traffic crashes (WHO, 2015). Among all the collisions types, 45 

rear-end crashes account for about 20% of all crashes in Shanghai, China (Wang et al., 2016) 46 

and 32% approximately in the US (National Highway Traffic Safety Administration, 2014). 47 

To avoid rear-end collisions, the initiation of a brake response, when required, is of great 48 

importance. Total brake response time is defined as the time from stimulus appearance to the 49 

reaction of the driver, plus the movement time to hit the brake pedal (Schweitzer et al., 1995). 50 

It is a measurement which has been widely used and analysed in crash-related investigations. 51 

Previous studies have reported that brake response time values vary in a large range under 52 

different conditions (Johansson et al., 1971; Sohn and Stepleman, 1998; Green, 2000). 53 

Summala (2010) suggested that urgency of a situation was one of the factors which may affect 54 

drivers’ brake response time. Situation urgency can be described by the behaviour of the lead 55 

vehicle (e.g. lead vehicle’s deceleration rate) and the driving state when the lead vehicle’s brake 56 

onset (e.g. headway distance and time to collision). Liebermann et al (1995), Schweitzer et al. 57 

(1995) and Summala et al. (1998) tested the effects of speed and following distance on reaction 58 

time, finding that drivers reacted faster at a shorter following distance, whereas the driving 59 

speed did not show any significant effects both in Liebermann et al (1995) and Schweitzer et 60 

al. (1995) studies. Hulst (1999) tested the effects of a lead vehicle’s deceleration rate on 61 

response time, and showed that this was longer for slow deceleration rates. The combined effect 62 

of a lead vehicle’s deceleration rate and driving distance on response time has also been studied 63 

by Lee et al. (2002) and Wang et al. (2016), who showed that drivers responded faster when 64 

the lead vehicle’s deceleration increased or when the initial headway decreased. Li et al (2016) 65 

tested the effect of driving speed, headway distance, gender and cell phone use on drivers’ 66 

brake response time and showed that drivers reacted faster with faster speed and reduced 67 
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headway distance. Therefore, although the overall behavioural pattern emerging from previous 68 

studies suggest that brake response time decreases with increasing situation urgency, the effect 69 

of a lead vehicle’s speed, lead vehicle deceleration, and initial headway to the lead vehicle, on 70 

drivers’ brake response times has not yet been considered. Thus, the first goal of this paper was 71 

to test the overall effect of the above mentioned variables on drivers’ brake response time.  72 

According to previous studies, during a rear-end collision avoidance process, drivers control 73 

braking on the basis of their assessment of the situation urgency. However, the extent to which 74 

drivers can perceive the lead vehicle’s distance, speed and deceleration information is not clear. 75 

Since brake lights do not indicate how hard the lead vehicle is braking, drivers have to rely on 76 

other visual information to determine how rapidly they are closing in on the lead vehicle (Lee, 77 

1976). One much-studied form of such information is visual looming, which is produced by an 78 

object moving towards the subject, and may indicate an impending collision (Terry et al., 2008). 79 

The angular projection of an object on the subject’s retina is defined as ߠ, with  ߠሶ  being the 80 

angular expansion rate (Lee, 1976). Liebermann et al. (1995) pointed out that changes in 81 

angular velocity during optical expansion of the lead vehicle may be used as a cue to modulate 82 

braking movement, and Yilmaz and Warren (1995) provided empirical support for this idea.  83 

Previous authors have often assumed that there is a threshold at which drivers realize that they 84 

are approaching the lead vehicle in such a way that they must take some action to avoid a rear-85 

end collision (Lamble et al., 1999; Muttart, 2005; Olson et al., 2010; Maddox and Kiefer, 2012). 86 

One version of this threshold, which has often been discussed in the literature, is looming 87 

detection threshold, which is the minimum threshold at which drivers start perceiving the threat, 88 

and is generally assessed using ߠሶ . These threshold models assume that drivers respond within 89 

0.75-2 s after reaching the detection threshold (Plotkin, 1976; Mortimer, 1990). Maddox and 90 

Kiefer (2012) assumed three candidate values of perception-reaction time, and examined real-91 

world accident data to obtain an estimate of the detection threshold, but found that the data 92 
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could be described by a range of possible combinations of detection thresholds and reaction 93 

times. Another type of threshold model just assumes a single response threshold, at which 94 

drivers start directly responding to the threat. There have been a number of studies investigating 95 

response threshold models (Lee, 1976; Kiefer et al., 2003; Flach et al., 2004) but all assuming 96 

slightly different looming cues. Lee (1976) suggested that braking performance might be 97 

contingent on the optical parameter ߬ and its derivative ߬ሶ. ߬  is the ratio of ߠ and ߠሶ . ߬  has units 98 

of time and is an approximation of time-to-contact. Drivers are assumed to start their braking 99 

actions when ߬  reaches a certain margin value ߬௠ . The inverse of ߬ , ߬ିଵ  has also been 100 

considered as a cue in near-accident control. Kiefer et al. (2003) developed a model which is 101 

based on a ߬ ିଵ threshold that decreases linearly with own driving speed.  Kondoh et al. (2014) 102 

demonstrated the tight connection between drivers’ perception of risk and ߬ ିଵ, following a  103 

driving simulator experiment.  104 

However, it seems reasonable to assume that in real traffic, drivers’ response behaviour is not 105 

only based on responding to perceptual quantities such as ߬ିଵ. The stimulus in the threshold 106 

models mentioned above has been limited to visual looming, while various other stimuli were 107 

ignored (e.g., brake light onset). An alternative to the threshold model, which has been 108 

proposed by Markkula and colleagues (Markkula et al., 2014; Markkula et al., 2016) is the 109 

accumulator model, suggesting that visual looming might be used as one source of evidence 110 

for the need to brake, combined with other sources of evidence in noisy accumulation (i.e., 111 

integration), to a decision threshold at which brake onset occurs. Markkula et al. (2016) showed 112 

that qualitative patterns of brake timing in naturalistic near-crashes and crashes aligned better 113 

with this type of account than with a threshold-based account.  114 

Accumulator-type models have been studied extensively in perceptual decision tasks in the 115 

laboratory, often using Ratcliff’s (1978) drift diffusion model. The underlying assumption is 116 

that the brain extracts, per time unit, a piece of evidence from the stimulus (drift) which is 117 
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disturbed by noise (diffusion) and subsequently accumulates these over time, until a decision 118 

criterion is hit, at which point a response is initiated (Ratcliff and Smith, 2004; Ratcliff and 119 

Van Dongen, 2011; Bitzer et al., 2014). These models have been applied in a variety of domains 120 

such as psychology and neuroscience (Gold & Shadlen, 2001; Ratcliff et al., 2003; Schall et 121 

al., 2011, Roe, Busemeyer & Townsend, 2001; Krajbich & Rangel, 2011). Ratcliff and Strayer 122 

(2014), successfully fitted this type of model to a distribution of reaction times to the lead 123 

vehicle’s brake lights, in a simulated driving task, but did not consider the possible influence 124 

of situation urgency, e.g., in terms of visual looming on response. 125 

Although the role of visual looming in driver brake action has been investigated in previous 126 

studies, the threshold and accumulator types of model have not been stringently compared, and 127 

especially not in their ability to model distributions of brake response times. Therefore, both 128 

types of model, referred to here as mechanistic models (since they propose specific 129 

mechanisms for what determines brake onset), were tested here, with the  aim of investigating 130 

which of the two hypothesised mechanisms better explains human brake timing distributions. 131 

For different versions of the visual looming-based mechanistic models, perceptual cues were 132 

quantified both as ߠሶ  and ߬ ିଵ; the comparison of these two cues was another aim of this study. 133 

Finally, as the multilevel model is a linear model, based on values such as speed, deceleration 134 

and distance. A comparison between multilevel model fitting and accumulator model fitting 135 

was conducted, to see whether the accumulator model can be an alternative to the regression 136 

analysis, when considering the effects of scenario urgency on drivers’ response time.  137 

2. Methodology 138 

2.1 Equipment 139 

The equipment used in this experiment was the Beijing Jiaotong University driving simulator 140 

(as shown in Figure 1). The simulator was produced by Real-time Technologies. Inc in U.S. It 141 
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is composed of a cabin of a Ford Focus with automatic gearbox, gas/brake pedal and other 142 

components, which are in full accordance with the real vehicle. The simulator has a linear 143 

motion base, capable of operating with a single degree of freedom (the rotation of pitch). The 144 

driving scenarios were designed using SimVista (Real-time Technologies. Inc, U.S) and 145 

projected on five screens to realize a 300-degree field of front view, with each of the screens 146 

having a resolution of 1400×1050 pixels. The core simulator and visual subsystems operate at 147 

a 60 Hz update rate, supporting smooth graphics presentation and rapid system response in 148 

complex driving environments. The simulator used in this study was very similar to the one 149 

used by Western Transportation Institute (WTI), where both its physical and behavioural 150 

fidelity were demonstrated in a summary report by Philips and Morton (2013). In addition, the 151 

visual system used in this study was very similar to the simulator used in studies of McGehee 152 

et al. (2000) and Hoffman et al. (2002) (details in Kuhl et al., 1995). They compared drivers’ 153 

braking response between a driving simulator study and on a test track, and no statistically 154 

significant difference was found for the reaction time between simulator studies and test track. 155 

The relative validity of the driving simulator, which can be used for brake initiation timing 156 

problems with reduced risk of harm on participants, can thus be supported. 157 

 158 

Fig. 1 Illustration of the driving simulator system. 159 
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2.2 Scenario design  160 

In this study, each participant experienced three experimental drives, each on a bidirectional 161 

straight rural road with a speed limit of 60 km/h. At the beginning of each drive, the lead vehicle 162 

was stationary 1500 m ahead of the start point of the driver, with its brake lights on. When the 163 

participant was 50 m behind the lead vehicle, the lead vehicle began to accelerate and then 164 

followed one of three predefined speed profiles, shown in Figure 2. In each drive, the lead 165 

vehicle reduced its speed (with brake lights on) three times, at one of three deceleration rates: 166 

2 m/s2, 4 m/s2 or 6 m/s2 (the order of deceleration rates in the three experimental drives is 167 

shown in Figure 2). The time that the lead vehicle needed to reach the first designated 168 

deceleration point was about 40 s. The order of the three drives was counterbalanced among 169 

participants. Drivers in this experiment thus experienced 3×3 deceleration scenarios in total, 170 

and the time gap between two deceleration scenarios in one drive was around one minute. To 171 

collect drivers’ natural driving behaviour, headway distances were not controlled in this 172 

experiment. The basic road scenario and pattern of travel for the other vehicles in this 173 

experiment is shown in Figure 3. The double yellow solid lines in the middle of the road 174 

indicate that drivers were not allowed to take over the lead vehicle, as ruled by the Chinese 175 

traffic laws. The duration of one drive was about 5 min, so that participants had a total driving 176 

time of about 15 min.  177 
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Fig. 2 Lead vehicle’s speed and deceleration rate in three drives (dashed vertical lines show start and end points 181 

of lead vehicle’s deceleration). 182 
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Fig.3 Basic road scenario. 185 

2.3 Participants and procedure 186 

In this experiment, a total of 46 participants (24 males and 22 females) aging from 30-40 years 187 

(M =34.33, SD =2.99) were recruited. Each participant held a valid Chinese driving license 188 

and had at least one year’s driving experience and 30,000 km driving mileage per year. After 189 
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arrival, each participant was briefed on the requirements of the experiment. The basic road 190 

scenario was explained and they were told there would be a vehicle driving in front, and that 191 

they should follow this lead vehicle as they normally would, and that they were not allowed to 192 

overtake. The participants were not informed beforehand that the lead vehicle would be braking 193 

and they signed an informed consent form. Before the formal experiment, the participants were 194 

given at least 10 minutes of training, to familiarize them with the driving simulator operation. 195 

For the training session, participants were asked to drive on a straight section of road, instructed 196 

to accelerate or decelerate to a designated speed, so that they could adapt to the acceleration 197 

and braking operation. For the formal experiment, participants had to drive three times and 198 

would rest for at least 5 min between the drives. All participants received 100 RMB (around 199 

15 USD) for their participation in the study.  200 

2.4 Testing the effects of situation urgency on brake response times 201 

Multilevel regression models, also known as random coefficient models, hierarchical linear 202 

models or mixed-effects or mixed models (Tso and Guan, 2014), form a class of models that 203 

incorporate multilevel hierarchies in data (Nakagawa and Schielzeth, 2013), including 204 

longitudinal designs, where one variable is sampled repeatedly from the same set of individuals 205 

at different time points (Gelman and Hill, 2007; Buxton, 2008; Snijders and Bosker, 2011). In 206 

this study, each driver experienced nine deceleration scenarios, with the lead vehicle’s speed 207 

and deceleration in different controlled combinations, but with self-paced speed and time 208 

headway. The adopted multilevel model, considering individual differences, can be written as: 209 

௜ܻ௝ ൌ ଴ߚ ൅ σ ௛ܺ௛௜௝௣௛ୀଵߚ ൅ ௝ߙ ൅  ௜௝;    (1) 210ߝ

௝̱ܰሺͲǡߙ  ఈଶሻ;    (2) 211ߪ

௜௝̱ܰሺͲǡߝ  ఌଶሻ,    (3) 212ߪ
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where ܻ ௜௝ is the ith brake response time of the jth individual, ܺ௛௜௝ is the ith value of the jth 213 

individual for the hth predictor, ߚ଴  is the overall intercept, ߚ௛  is the slope (regression 214 

coefficient) of the hth predictor, ߙ௝ is the individual-specific effects with mean of zero and 215 

variance of ߪఈଶ and ߝ௜௝ is the residual associated with the ith value of the jth individual from a 216 

normal distribution of residuals with mean of zero and variance of ߪఌଶ. This multilevel model 217 

was applied using the Matlab function fitlme with default settings (R2016a), with the lead 218 

vehicle’s driving speed, deceleration rate and headway distance input as predictors. All of these 219 

predictor variables were measured at the lead vehicle’s brake onset. As the headway distance 220 

was not controlled in the experimental design, 78 recordings with time headway larger than 3.5 221 

s were excluded. A total of 336 samples, including both the lead and own vehicle’s driving 222 

behaviour variables were obtained from the driving simulator experiment.  223 

2.5 Mechanistic models of brake response time 224 

2.5.1 Threshold models 225 

According to looming response threshold models of brake onset (Kiefer et al., 2003; Maddox 226 

and Kiefer, 2012), once the looming exceeds the driver’s threshold, a brake action will be taken 227 

to avoid hitting the lead vehicle. The optical variables ߠ  and ߠሶ  can be calculated by the 228 

following formulas (Lee, 1976): 229 

ߠ ൌ ʹ ή arctan ሺܹȀʹ݀ሻ;  (4) 230 

ሶߠ ൌ െWݒ௥௘௟Ȁሺ݀ଶ ൅ ܹଶȀͶሻ;  (5) 231 

߬ିଵ ൌ  232 (6) .ߠ ሶȀߠ

In which W is the width of the lead vehicle, d is the distance from the driver’s eyes to the tail 233 

of the lead vehicle and ݒ௥௘௟ is the relative speed of the two vehicles. Threshold model can be 234 

described as: 235 



12 

 

ሻݐሺܮ ൅ ሻݐሺߝ ൒  ሻ.  (7) 236ݐ଴ሺܮ

Here, ܮሺݐሻ is either ߠሶሺݐሻ or ߬ିଵሺݐሻ, ߝሺݐሻ is noise, ߝሺݐሻ̱ܰሺͲǡ  ሻ is the looming 237ݐ଴ሺܮ ௔ሻ andߪ

threshold. Essentially the noise term can be considered as sensory noise, and the model initiates 238 

braking as soon as the noisy signal exceeds the threshold. Typical looming threshold models 239 

are deterministic; Eq. (7) is a generalization to a stochastic formulation. In this study, threshold 240 

models are formulated as: 241 

ܭ ή ሺܮሺݐሻ ൅ ሻሻݐሺߝ ൒ ͳ,  (8) 242 

where K is the model parameter. The threshold here can thus be described as 1/K.  243 

2.5.2 Accumulator models 244 

In accumulator models, instead of simply continuously comparing a sensory input to a 245 

threshold, there is instead a gradual process of accumulation of evidence over time. The 246 

accumulator models used in this paper were based on the evidence accumulation framework 247 

developed by Markkula (2014), here considering two types of sensory evidence, visual looming 248 

and the lead vehicle’s brake light onset.  249 

A simple, looming-only accumulator was defined as:   250 

ݐሻȀ݀ݐሺܣ݀ ൌ ܭ ή ሻݐሺܮ െ ܯ ൅  ሻ,  (9) 251ݐሺߝ

where K and M are model parameters, ߝሺݐሻ is noise, and a braking response is generated when 252 ܣሺݐሻ ൒ ଴ܣ ൌ ͳ. ܮሺݐሻ is one piece of looming evidence and represented by ߠሶሺݐሻ or ߬ ିଵሺݐሻ. The 253 

–M can be interpreted as the sum of negative gating together with all the other available 254 

evidence for and against the drivers’ brake action (Markkula, 2014). In addition to looming 255 

evidence, some drivers may also react to the lead vehicle’s brake light. Considering this 256 

possibility, another version of the accumulator model including drivers’ reaction to brake light 257 

was also defined: 258 
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ݐሻȀ݀ݐሺܣ݀ ൌ ܭ ή ሻݐሺܮ െ ܯ ൅ ܽ஻௅ ൅  ሻ.  (10) 259ݐሺߝ

Here ܽ ஻௅ is the evidence supported by the lead vehicle’s brake light that can help drivers to 260 

take brake action. In this version of the accumulator model, there is a ݌஻௅ probability that 261 

drivers will also consider the brake lights as extra evidence for the need to brake, e.g. the term 262 ܽ஻௅ was added in Eq. (10) with a probability of ݌஻௅. Eq. (10) is in practice a direct summation 263 

of the previous looming-only model by Markkula (2014), i.e., Eq. (9), and the brake lights-264 

only model of Ratcliff and Strayer (2014).  265 

2.5.3 Data for model fitting 266 

For both the threshold and accumulator models, the aim of model fitting is to find the 267 

parameters for the model that allow it to produce predicted brake response times, that are as 268 

close as possible to the observed data. To predict response times, the looming traces ܮሺݐሻ, i.e., 269 

time histories of ߠሶ  or ߬ ିଵ, were simulated from the lead vehicle’s brake onset, to full stop, by 270 

adopting Eq.(5) and Eq.(6). A total number of 336 samples were used as the full dataset for 271 

multilevel model in section 2.4. Thus 336 unique looming traces can be generated from the 272 

collected data. The original intention for the mechanistic model fitting was to fit to each such 273 

looming trace individually, but the computational requirements turned out to be excessive. 274 

Instead, nine unique looming traces were generated to represent average visual looming 275 

conditions in the nine deceleration scenarios. This allows an approximate, but less 276 

computationally intensive fitting. The average looming traces for the nine deceleration 277 

scenarios, using ߠሶ  and ߬ ିଵ, are shown in Figure 4. For the same driving speed, e.g., 60 km/h, 278 

the harder braking makes both the speed difference and the decreased distance between the two 279 

vehicles per time unit become larger. Visual looming thus grows faster when the lead vehicle 280 

brakes harder. Also, for the same deceleration rate, visual looming grows faster when drivers 281 

are driving at a slower speed.  Drivers usually keep a closer headway distance when driving at 282 
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a slower speed (Taieb-Maimon et al., 2001; Duan et al., 2013), so for a given deceleration, the 283 

relative distance change in a slow driving condition can be more significant than in a fast 284 

driving condition. As a result, the strongest (fastest increasing) looming occurred in the V20A6 285 

deceleration scenario, while the weakest looming occurred in the V60A2 and V40A2 286 

deceleration scenarios. Note that the looming trace for the V20A6 scenario has a ‘knee’ at 287 

around 0.9 s, this is because the lead vehicle comes to a complete stop at that point, which 288 

makes the looming grow more slowly.  289 

 290 

Fig.4 Looming traces for the nine deceleration scenarios. V60, V40 and V20 indicates that the lead vehicle’s speed 291 

is 60 km/h, 40 km/h and 20 km/h, respectively. And A2, A4 and A6 indicates that the lead vehicle’s deceleration 292 

rate is 2 m/s2, 4 m/s2 and 6 m/s2, respectively. 293 

When fitting based on these nine unique looming traces, the dataset had to be narrowed to 294 

exclude recordings that deviated too much from the average self-selected following speed and 295 

time headway in the scenario in question. First, only recordings where the following vehicle’s 296 

(i.e., the participant’s) speed fell within the range of lead vehicle’s speed ±1 m/s were included. 297 

Then, mean time headways within the remaining recordings were calculated per deceleration 298 

scenario, and only recordings with time headway within ±0.5 s were retained. As can be seen 299 
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in Table 1, between 11 and 19 data points remained per deceleration scenario after these two 300 

steps. The nine unique looming traces shown in Figure 4 were generated using the average 301 

following speeds and headways shown in Table 1. Further below, it will be described how the 302 

mechanistic model that performed best on this constrained dataset, was also tested on the full 303 

dataset.  304 

Table 1 The narrowed-down dataset. 305 

Deceleration 
scenario 

LV’s speed 
(m/s) 

FV’s speed 
range (m/s) 

THW range 
(s) 

FV’s mean 
speed (m/s) 

Mean THW 
(s) 

Number of 
subjects 

V60A2 19.44 19.44±1 1.77±0.5 19.85 1.86 11 
V60A4 16.67 16.67±1 1.65±0.5 16.64 1.62 14 
V60A6 16.67 16.67±1 1.71±0.5 16.47 1.70 19 
V40A2 13.89 13.89±1 2.21±0.5 14.08 2.22 12 
V40A4 11.11 11.11±1 1.94±0.5 11.14 1.86 14 
V40A6 11.11 11.11±1 2.06±0.5 11.35 1.97 17 
V20A2 5.56 5.56±1 2.47±0.5 5.71 2.48 14 
V20A4 8.33 8.33±1 2.38±0.5 8.29 2.37 18 
V20A6 5.56 5.56±1 2.75±0.5 5.57 2.70 14 

LV: lead vehicle; FV: following vehicle; THW: time headway 306 

2.5.4 Model fitting 307 

To perform maximum-likelihood fitting of the mechanistic models on the dataset, all model 308 

parameters were searched on a uniformly spaced grid. The search range for each parameter is 309 

listed in Table 2. For each combination of parameters, 200 simulations were run for each of the 310 

nine deceleration scenarios. A numerical distribution of predicted brake response time was thus 311 

generated per scenario, for each combination of parameters, and the maximum likelihood 312 

parameterisation, i.e., the one which yielded probability distributions under which the observed 313 

data were maximally probable, was retained. 314 

Table 2 Parameters search range.  315 

Parameter 
Searched values 

Threshold model Accumulator model 

K 
߬ିଵ {1, 1.25, 1.5, …, 6} ߠሶ  {15, 15.25, 15.5, …, 30} 

߬ିଵ {1, 2.25, 2.5, …, 6} ߠሶ  {20, 20.25, 20.5, …, 30} 
M -- {-0.7, -0.675, -0.65, …, 0} ߪ௔ {0, 0.005, 0.0.01, …, 0.4} {0.1, 0.15, 0.2, …, 0.4} ܽ஻௅ -- {0, 0.25, 0.5, …, 2} 
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 ஻௅ -- {0, 0.025, 0.05, …, 1}݌
 316 

The Akaike Information Criterion (AIC), which has been widely used in model selection 317 

(Burnham and Anderson, 2002; Washington et al., 2011; Haque and Washington, 2014), was 318 

used to evaluate the model fitting of different versions of mechanistic model on drivers’ brake 319 

response time and model fitting of multilevel model and best version of mechanistic models 320 

on the full dataset. The general form for calculating AIC is (Akaike, 1973): 321 

ܥܫܣ ൌ ʹ݇ െ ʹln ሺܮ෠ሻ,  (11) 322 

where ln is the natural logarithm, k is the number of parameters in the model and ܮ෠ is the value 323 

of the likelihood. According to the AIC selection criterion, for a given dataset, smaller AIC 324 

values indicate preferable models. 325 

3. Results 326 

3.1 Multilevel regression analysis 327 

Figure 5 shows observed brake response time from the full dataset. The black square and 328 

whiskers show average brake response time and its 95% confidence interval, respectively. 329 

Table 3 shows the multilevel model regression results. All of the three predictors have a 330 

significant effect on drivers’ brake response time (with p< 0.01). Generally, drivers’ brake 331 

response time increases with the increase of distance gap, while it decreases with the increase 332 

of lead vehicle’s deceleration rate and speed, in line with previous literature as referenced in 333 

the Introduction.  334 
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 335 

Fig.5 Drivers’ brake response time for nine deceleration scenarios (Whiskers indicate the variance of brake 336 

response time on 95% CI). 337 

 338 

Table 3 Multilevel regression results of brake response time, all with p < 0.01. 339 

 
Multilevel Model 

Estimate (95% CI) T test 
Intercept 1.20 [1.03, 1.37] 13.86 

LV’s deceleration rate -0.05 [-0.07, -0.02] -3.61 
LV’s speed -0.02 [-0.03, -0.01] -4.13 

Distance gap 0.02 [0.015, 0.025] 8.15 ߪఢ 0.36 [0.33, 0.39] -- ߪఈ 0.16 [0.11, 0.23] -- 
R2 0.326 

 340 

3.2 Mechanistic model fitting (constrained dataset) 341 

Table 4 shows the best parameterisation obtained for the constrained dataset using grid search 342 

with maximum likelihood estimation. The model fitting results of the threshold model and two 343 

versions of the accumulator model, using ߠሶ  and ߬ିଵ  are shown in Figure 6 and Figure 7, 344 

respectively. For the threshold model, the obtained response thresholds (cf. Eq. (8)) were ߠሶ  = 345 

1/15.5 = 0.06 rad/s and ߬ିଵ = 1/1.75 = 0.57 s-1. The threshold model was not able to capture 346 

the observed brake response time distributions very well. For instance, in the V60A2 and 347 

V40A2 (weak looming) scenarios, the human drivers reacted faster than the model, while the 348 

converse was true in the V20A6 (strong looming) scenario; see Figure 6 and Figure 7. For both 349 
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the ߠሶ  and ߬ ିଵ accumulator models including brake lights, the best-fitting parameterisation had 350 

a 77.5% probability of adding an extra ܽ஻௅= 0.5 from brake light onset. These combined brake 351 

light-looming models fitted better than the looming-only versions; in practice by providing (a 352 

hint of) an extra peak in the distribution of drivers’ brake response time (again see Figure 6 and 353 

Figure 7). The AIC values in Table 4 suggest that the ߬ିଵ accumulator model including braking 354 

lights can better model drivers’ brake response time than the second-best, corresponding ߠሶ  355 

model (424.07 vs. 427.06). In the terminology of the AIC, the ߬ିଵ  model is exp((427.06-356 

424.07)/2) = 4.5 times more probable to minimize the information loss; i.e., to be the better 357 

model (Burnham and Anderson, 2002). 358 

Table 4 Best parameterisation for threshold model and accumulator model of brake response time using ߠሶ  and 359 ߬ିଵ as measures of kinematical urgency. 360 

Parameter 

ሶߠ  ߬ିଵ 

Threshold 
model 

Accumulator 
model 

Accumulator 
model incl. 

braking light 

Threshold 
model 

Accumulator 
model 

Accumulator 
model incl. 

braking light 
K 15.5 28.75 20.5 1.75 3.25 1.75 
M -- -0.675 -0.4 -- -0.625 -0.425 ߪ௔ 0.025 0.35 0.2 0.22 0.35 0.2 ܽ஻௅ -- -- 0.5 -- -- 0.5 ݌஻௅ -- -- 0.775 -- -- 0.775 

AIC 520.3 436.1208 427.0574 493.68 427.3708 424.0698 
 361 

  362 
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 363 

 364 

Fig.6 Mechanistic model fitting for the nine deceleration scenarios on the constrained dataset using Ʌሶ . The bar 365 

histograms represent the observed brake response times and different line types show the fitted distribution of the 366 

mechanistic models. From row 1 to row 3, the lead vehicle’s speed is 60 km/h, 40 km/h and 20 km/h. The lead 367 

vehicle’s deceleration rate is 2 m/s2, 4 m/s2 and 6 m/s2, from the left panel to the right panel. 368 
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 369 

 370 

 371 

Fig.7 Mechanistic model fitting for the nine deceleration scenarios on the constrained dataset, using ߬ିଵ. Bar 372 

histograms, line types, and the scenarios order as in Figure 6. 373 
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3.3 Model evaluation (full dataset) 374 

The best-fitting version of the accumulator model generated from the constrained dataset 375 

(section 3.2), was then tested on the full dataset. Instead of using the nine average looming 376 

traces, the full set of 336 unique looming traces were adopted here, to obtain a model-predicted 377 

response time distribution per specific recorded event. For both the multilevel model and the 378 

accumulator model, AIC were calculated on this full dataset. Results for both of the two models 379 

are illustrated in Figure 8. The blue dots refer to the data already in the constrained dataset, 380 

while the purple dots refer to the remaining data in the full dataset. The vertical lines indicate 381 

the width of the model-predicted distribution. It can be noted that the multilevel model 382 

produces distributions of predicted brake response time, which are scenario-independent 383 

(vertical lines are all of the same length), symmetric (dot in middle of each line) and wider 384 

(longer lines) than for the accumulator model, which exhibits scenario-dependent, asymmetric, 385 

more narrow distributions. At first glance, it is easy to interpret Figure 8 solely in terms of the 386 

average predicted response times (the dots), in which case one notes that small observed values 387 

near 0.5 s seem overestimated by the model, and vice versa for large values. It should be noted 388 

however that this is not an indication that the models are incorrect or insufficient in some way; 389 

it is instead a direct consequence of the models being not only urgency-dependent but also 390 

probabilistic. Consider for example a situation where a single normal distribution was the 391 

exactly correct model; this would look even ‘worse’ in Figure 8, appearing as a completely 392 

horizontal stretch of dots and equal-length vertical lines. The fact that Figure 8 here shows non-393 

horizontal, slightly slanted configurations of averages is because there is indeed a certain 394 

scenario-dependence in the observed response times, the lack of exact alignment of means with 395 

the y = x diagonal is because of the probabilistic nature of the phenomenon. A more appropriate 396 

way of reading Figure 8 is to focus on the vertical lines, and to note that these lines envelop the 397 

y = x diagonal.  398 
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However, for the accumulator model, three observations around 0.8 s with small variance stand 399 

out; these are for recordings with very close following, at around 0.3-0.8 s time headway.  Also 400 

note that there are two data points with long observed brake response time, where the 401 

accumulator model performs notably worse than the multilevel model; both of these two data 402 

points are for recordings with long time headway, e.g. at around 3 s. Note that all of these data 403 

points are plotted in purple, i.e., none of these short or long headway recordings were part of 404 

the constrained data set to which the accumulator model was fitted. And as shown in Figure 8, 405 

the AIC value of the accumulator model is considerably larger than the multilevel model here 406 

(1386.3 vs. 1304.3). Besides AIC, the mean squared error (MSE) of the two models on the full 407 

dataset are also calculated, to examine the predictive ability of the two models. In line with the 408 

AIC results, the predicted brake response time of multilevel model is closer to the observed 409 

values than accumulator model with a smaller MSE (0.12 vs 0.18). 410 

 411 
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 412 

Fig. 8 Model fitting for multilevel model and accumulator model on the full dataset. Blue dots indicate data 413 

from the constrained dataset while purple dots indicate remaining data in the full dataset. The line extending 414 

around each average indicates the central 95% of the model-predicted response time distribution. 415 

4. Discussion 416 

Drivers’ brake response time plays an important role in avoiding rear-end collisions. Factors 417 

which may affect brake response time have been investigated by numerous studies. The 418 

multilevel model adopted in this paper corroborated the significant effect of lead vehicle’s 419 

speed, deceleration rate and headway on drivers’ brake response time. Generally, drivers’ brake 420 

response time decreases when the lead vehicle decelerates at a larger deceleration rate, drives 421 

at a higher speed, or keeps a shorter distance from the lead vehicle (Lee et al., 2002; Wang et 422 

al., 2016; Li et al., 2016). Here, we show for the first time, the combined effect of the lead 423 

vehicle’s speed, deceleration rate and headway distance in a single study, which provides a 424 

strong replication and synthesis of effects previously reported separately. However, the 425 

potential effects of repeated exposures on drivers’ brake response time have not been examined 426 

directly in this study. As the lead vehicle in this experiment was stationary 1500 m ahead of 427 

the start point, drivers braked once they drove close to the stationary lead vehicle. Strictly 428 

speaking, it was the first brake drivers applied in this experiment. But the brake response time 429 
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included in this paper was measured from the lead vehicle’s brake to the driver’s brake. That 430 

is why drivers’ average brake response time for each first deceleration scenario was not the 431 

largest, as shown in Figure 5. Future studies should consider the effect of repeated exposures 432 

effects. 433 

Though the combined effect of the lead vehicle’s speed, deceleration rate and headway distance 434 

was tested, it is generally assumed that drivers do not perceive speed, distance and deceleration 435 

information directly, but rather cues like visual looming affect response time. For a potential 436 

rear-end collision, measures used to quantify visual looming, e.g., ߬ିଵ and ߠሶ , both increase as 437 

the threat draws nearer. Although these two measures have been adopted in many studies to 438 

quantify situation urgency (Lamble et al., 1999; Maddox and Kiefer, 2012; Markkula et al., 439 

2016), stringent comparisons between the two measures have not been conducted. Among all 440 

three model types in this study (threshold, accumulator and accumulator including brake lights 441 

model), models based on visual looming measured by ߬ିଵ  always fit the data better than 442 

models based on ߠሶ  (AIC values listed in Table 4). This could be taken to suggest that drivers 443 

make use of visual cues which are more similar to ߬ିଵ than ߠሶ .  444 

For the looming threshold model, previous studies have suggested that they can describe rear-445 

end collision avoidance behaviour in both routine driving and surprise emergencies (Fajen, 446 

2005; Markkula et al., 2016) and that most drivers brake within a second after ߬ିଵ ൌ ͲǤʹ sିଵ 447 

or ߠሶ ൌ ͲǤͲʹ radȀs  (Markkula et al., 2016). Indeed, the 0.57 ିݏଵ  and 0.06 rad/s response 448 

thresholds obtained here are in line with the Markkula et al. (2016) findings, i.e. ߬ିଵ ൌ449 ͲǤͷ͹ ିݏଵ and ߠሶ ൌ ͲǤͲ͸ radȀs  happened within 1 s of ߬ିଵ ൌ ͲǤʹ ିݏଵ  and ߠሶ ൌ ͲǤͲʹ radȀs , 450 

respectively, for all deceleration scenarios except the two least critical ones (see Figure 4). 451 

However, despite this relative success at the level of average brake response times, as seen in 452 

Figures 6 and 7, the threshold model was not able to capture the observed variability of brake 453 
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reaction time very well, and especially not in the scenarios with the weakest looming (e.g., 454 

V60A2) and strongest looming (e.g., V20A6). This implies that the decision-making process 455 

behind drivers’ brake onset is more likely based on evidence accumulation than a particular 456 

threshold.  457 

In fact, as illustrated in Figure 9, the way in which the threshold model fails to capture 458 

behaviour in the weakest and strongest looming scenarios provides further support for the 459 

looming accumulation hypothesis. The coloured areas in Figure 9 are equal; integration of a 460 

small quantity over a long time is equivalent to integration of a large quantity over a short time. 461 

Therefore, if brake onset timing is determined by evidence accumulation, i.e., an integration, 462 

then an average looming threshold fitted to a mix of weak and strong looming scenarios will 463 

predict a brake response time that is too short in strong looming conditions, and too long in 464 

weak looming conditions. As can be seen in Figures 6 and 7, this is exactly the pattern observed 465 

for the threshold model here.  466 

 467 

Fig. 9. Schematic illustration of the errors in a threshold model predicted by evidence accumulation. Growth of 468 

looming over time for V60A2 and V20A6 deceleration scenarios, with the two coloured areas under these 469 

curves of equal size. The accumulator model responds at the blue circles, and a threshold model fitted to these 470 

values could do no better than the average threshold, responding too quickly in the strong looming V20A6 471 

scenario, and too slowly in the weak looming V60A2 scenario.  472 
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Previously, many experiments on basic decision-making tasks in the psychology or 473 

neuroscience laboratory have supported the idea that stimulus-driven action timing is 474 

determined by noisy accumulation of sensory evidence (Gold and Shadlen, 2007; Purcell et al., 475 

2010; Ratcliff and Van Dongen, 2011), and qualitative analyses have pointed toward the 476 

possibility that visual looming can be accumulated in this way to guide braking (Markkula et 477 

al., 2016). However, this has not been quantitatively demonstrated. Thus, the accumulator 478 

model was included in this study to test this possibility, and explore the mechanism behind 479 

when drivers decide to brake. The results here indicate that sensory stimuli (both visual 480 

looming and brake lights onset) can be accumulated and with just three or four parameters, the 481 

accumulator model is relatively successful in reproducing the varying distributions of brake 482 

response time across the nine deceleration scenarios.  483 

When comparing the accumulator model including brake lights with the version excluding 484 

brake lights, the former model, with 77.5% probability of adding an extra ܽ஻௅=0.5 from brake 485 

light onset, provided a better fit of the observed data1. The accumulator model including brake 486 

lights effectively provide an extra, kinematics-independent, peak in the response time 487 

distribution, which proved an improvement in general. However, for weak looming conditions 488 

(e.g. V60A2 and V40A2 deceleration scenarios in Figures 6 and 7), the accumulator model 489 

without brake lights seems fitted slightly better. It might thus be that drivers’ tendencies to 490 

react to brake lights decrease with increasing headway distances.  491 

When the accumulator model was tested on the full dataset in Section 3.3, the multilevel model 492 

worked better than the accumulator model, with a smaller AIC value. A possible reason is that 493 

                                                           

1 In this paper, we did not look into whether some drivers always seemed to be using brake 
lights or whether all or some drivers had mixed strategies, i.e. we did not look into whether ݌஻௅ 
is to be interpreted as a fraction of drivers in a population or a fraction of responses within one 
individual. 
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the parameters of the accumulator model were generated from the constrained dataset with nine 494 

average looming traces, due to the computational challenges of fitting to the full dataset. 495 

Simulation on the full dataset with all observations’ individual looming traces may provide a 496 

better model fitting of the observed brake response time.  497 

5. Conclusion 498 

Car following occurs very frequently for drivers in their daily driving, thus an appropriate rear-499 

end collision avoidance measure is necessary for all drivers. To better understand the 500 

mechanisms behind such avoidance, this study investigated drivers’ brake response time under 501 

different lead vehicle behaviours, in a high fidelity driving simulator. A multilevel model was 502 

first applied to investigate the combined effect of the lead vehicle’s driving speed, deceleration 503 

rate and distance gap on brake response time. Although all the factors had significant effects 504 

on drivers’ brake response time, there was still large variance between the 336 observations 505 

and modelled values. In addition, the predictors in the multilevel model (distances, speeds, 506 

accelerations) are not easy for drivers to perceive during their driving. Threshold models of 507 

visual looming were tested, but were not able to capture the variability of observed brake 508 

response timing well. Therefore, models based on the neurobiologically established mechanism 509 

of evidence accumulation were also tested, and were found to provide a better account of 510 

response times than the threshold models. The accumulator models assume that the driver’s 511 

brake response is initiated when evidence for and against the brake action has accumulated to 512 

a decision threshold. Accumulator models assuming a certain probability of responding to 513 

brake lights, in addition to visual looming, fitted better than looming-only accumulator models. 514 

Models using ߬ିଵ as the visual looming cue were found to be preferable over models using ߠሶ . 515 

The best-fitting accumulator model did not generalise well enough to the full dataset to 516 

outperform the multilevel model (fitted on the full dataset), but the accumulator provides an 517 



28 

 

advantage in that it helps provide a better understanding of drivers’ brake response behaviour. 518 

The accumulator model tested here provides, not only a powerful means of predicting drivers’ 519 

brake response time, but also a plausible account of the mechanisms underlying drivers’ use of 520 

looming cues for deciding on brake activation. The evidence accumulation mechanism tested 521 

in the paper can be further adopted for the design of driving assistance systems, e.g., Forward 522 

Collision Warning (FCW) systems, and for self-driving vehicles. The FCW can be designed 523 

on the basis of calculating real-time visual looming related measures, a warning could, for 524 

example, be issued when most typical drivers have reacted. The effects of warnings on brake 525 

timing also merit further investigation within the evidence accumulation framework, since they 526 

might be regarded, and thus possibly modelled, as another piece of evidence for the need to 527 

apply braking (Markkula, 2014). The results presented here could also provide support for the 528 

design of brake timing in a self-driving vehicle involved in a potential rear-end collision 529 

situation, or for the self-driving vehicle to predict likely behaviour of surrounding road users. 530 

 531 
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