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Abstract 25 

Debris surface temperature is a function of debris characteristics and energy fluxes at the 26 

debris surface. However, spatial and temporal variability in debris surface temperature, and 27 

the debris properties that control it, are poorly constrained. Here, near-surface debris 28 

temperature (Ts) is reported for 16 sites across the lower elevations of Khumbu Glacier, Nepal 29 

Himalaya, for the 2014 monsoon season. The debris layer at all sites was ≥1 m thick. We 30 

confirm the occurrence of temporal and spatial variability in Ts over a 67-day period and 31 

investigate its controls. Ts was found to exhibit marked temporal fluctuations on diurnal, short-32 

term (1–8 days) and seasonal timescales. Over the study period, two distinct diurnal patterns 33 

in Ts were identified that varied in timing, daily amplitude and maximum temperature; days in 34 

the latter half of the study period (after Day of Year 176) exhibited a lower diurnal amplitude 35 

(mean = 23°C) and reduced maximum temperatures.  Days with lower amplitude and 36 

minimum Ts were concurrent with periods of increased seasonal variability in on-glacier air 37 

temperature and incoming shortwave radiation, with the increased frequency of these periods 38 

attributed to increasing cloud cover as the monsoon progressed. Spatial variability in Ts was 39 

manifested in variability of diurnal amplitude and maximum Ts of 7°C  to 47°C between sites. 40 

Local slope, debris clast size and lithology were identified as the most important drivers of 41 

spatial variability in Ts, with inclusion of these three variables in the stepwise general linear 42 

models resulting in R2 ≥0.89 for six out of the seven sites. The complexity of surface energy 43 

fluxes and their influence on Ts highlight that assuming a simplified relationship between air 44 

temperature and debris surface temperature in glacier melt models, and a direct relationship 45 

between debris surface temperature and debris thickness for calculating supraglacial debris 46 

thickness, should be undertaken with caution.  47 

 48 

1. Introduction 49 



 

 

Debris-covered glaciers exhibit a continuous mantle of rock debris over the full width of at 50 

least some of their ablation zone (Kirkbride et al., 2011). These glaciers are common in 51 

mountainous regions across the world, including in the European Alps (e.g. Mihalcea et al., 52 

2006), Andes (e.g. Glasser et al., 2016), Southern Alps of New Zealand (e.g. Kirkbride, 2000) 53 

and the Himalaya (e.g. Scherler et al., 2011). The presence of a supraglacial debris layer 54 

influences glacier ablation, acting as a thermal buffer between the atmosphere and glacier 55 

ice surface, and modifying the energy available for melt (Jansson and Fredin, 2002; Kirkbride, 56 

2000). The extent to which a supraglacial debris layer controls ablation is primarily dependent 57 

on the thickness of the debris layer (Clark et al., 1994; Mattson, 2000; Østrem, 1959). While 58 

a thin layer of debris below a critical thickness causes an increase in ablation due to a 59 

reduction of the surface albedo (Nakawo and Rana, 1999), ablation exponentially decreases 60 

with increasing debris thickness above a critical thickness, as the debris layer inhibits glacier 61 

melting by attenuating and reducing thermal energy transfer to the underlying ice surface 62 

(Brock et al., 2010; Mihalcea et al., 2008a; Nicholson and Benn, 2006; Reid et al., 2012).  63 

 64 

Supraglacial debris surface temperature is a function of the surface energy balance and 65 

modulates heat transfer through the debris layer (Nakawo and Young, 1981). Therefore, 66 

debris surface temperature can provide useful insight into the extent to which debris 67 

properties affect energy transfer at the surface of and through a debris layer. To date, little 68 

focus has been given to the influence of spatial and temporal variability in surface 69 

temperature across supraglacial debris layers, which can be affected by incoming energy 70 

fluxes and debris properties including albedo, surface roughness, sediment porosity, and 71 

moisture content (Reznichenko et al., 2010; Evatt et al., 2015; Rounce et al., 2015). 72 

 73 



 

 

Nicholson and Benn (2013) highlighted the occurrence of spatial and temporal variability in 74 

supraglacial debris properties and their influence of surface temperature and temperature 75 

gradients through the debris layer, and therefore glacier mass balance. However, many of 76 

the previous studies concerned with the measurement of debris surface temperature on 77 

glaciers have had limited spatial or temporal extent. For example, Nakawo and Young (1982) 78 

measured debris surface temperature at 6 plots over a 48-hour period, whilst Nicholson and 79 

Benn (2006) measured debris surface temperature at a maximum of 11 plots on one glacier, 80 

but only for a maximum period of 11 days. Steiner and Pellicciotti (2015) presented one of 81 

the most extensive debris surface temperature datasets to date, from 13 locations over three 82 

ablation seasons on Lirung Glacier, Nepal. However, the study focused on describing the 83 

relationship between air temperature (Ta) and debris surface temperature rather than 84 

exploring spatial variability in debris surface temperature. Moreover, Steiner and Pellicciotti 85 

(2015) did not state the thickness of the debris layer underlying each of the sensors 86 

measuring debris surface temperature, an important factor in the consideration of 87 

spatiotemporal variability in debris surface temperature and the influence of underlying ice 88 

(cf. Nicholson and Benn, 2006). Consequently, the nature of and controls on debris surface 89 

temperature variability remains poorly constrained in glacial environments.  90 

 91 

Conversely, ground surface temperature variability has been relatively well studied in other 92 

cold region environments (e.g. Gubler et al., 2011; Guglielmin, 2006; Romanovsky and 93 

Osterkamp, 2000) where significant spatial variation arises from localised changes in surface 94 

properties and environmental conditions. These studies have concluded that such variability 95 

influences the accuracy of surface energy balance modelling in these environments. We 96 

therefore contend that such variability may also be applicable to numerical modelling of 97 

debris-covered ice ablation and the response of these glaciers to climate change.  98 



 

 

 99 

The importance of studies of debris surface temperature on debris-covered glaciers is 100 

manifested in the recent application of temperature-index models to debris-covered glaciers, 101 

which determine debris surface temperature from Ta (e.g. Carenzo et al., 2016). Furthermore, 102 

debris surface temperature has previously been used to determine debris layer thickness 103 

through two approaches: the use of an empirical relationship between debris surface 104 

temperature and debris layer thickness, based on field data (e.g. Michalcea et al., 2008a; 105 

2008b; Minora et al., 2015); and a surface energy balance approach also using debris surface 106 

temperature (e.g. Foster et al., 2012; Rounce and McKinney, 2014). Currently, neither 107 

approach has been considered robust, as the empirical approach is only applicable for debris 108 

layers thinner than 0.5 m (Mihalcea et al., 2008a) and the energy balance approaches 109 

exclude consideration of spatially variable debris properties such as albedo, surface 110 

roughness or moisture content that will affect energy exchange and therefore surface 111 

temperature at the debris surface (e.g. Collier et al., 2014; Evatt et al., 205; Rounce et al., 112 

2015). To understand the validity of these methods, and discern how to develop them further, 113 

confirmation of both the spatiotemporal regime of debris surface temperature and its controls 114 

is needed.  115 

 116 

Considering these shortcomings, here we aimed to characterise the spatial and temporal 117 

variability in debris surface temperature on a debris-covered glacier using data collected from 118 

temperature sensors located in the debris near-surface and distributed over the lower 119 

ablation area of Khumbu Glacier, Nepal, in areas of thick (≥1 m) debris cover. The primary 120 

objectives of the study were to (i) examine the temporal and spatial variation of debris surface 121 

temperature during an ablation season, and (ii) determine the controlling factors underlying 122 

variations in debris surface temperature. 123 



 

 

 124 

2. Study area 125 

2.1. Khumbu Glacier, Central Himalaya 126 

Khumbu Glacier (27°56’N, 86°56’E) is ~17 km long and has an area of ~27 km2 including the 127 

detached tributary glaciers, Changri Nup and Changri Shar (Figure 1: Arendt et al., 2012; 128 

Bolch et al., 2008; Vincent et al., 2016). The glacier flows from the southwest flanks of Mount 129 

Everest at 8230 m above sea level (a.s.l.) descending to 4816 m a.s.l. The equilibrium line 130 

altitude (ELA) is situated at around 5700 m a.s.l. within the Khumbu Icefall (Benn and 131 

Lehmkuhl, 2000; Inoue, 1977). Khumbu Glacier is typical of many large Himalayan debris-132 

covered glaciers, with a low-gradient (<2°), slow-flowing (<10 m a-1) ablation area (Hambrey 133 

et al., 2008; Quincey et al., 2009). The glacier flows at ~70 m a-1 near the base of the icefall, 134 

whilst the lowermost 3–4 km is thought to flow at velocities below 10 m a-1 (Quincey et al., 135 

2009). Khumbu Glacier is in a state of negative mass balance; Bolch et al. (2011) calculated 136 

a surface change of –0.56 ± 0.13 m a-1 between 1956 and 2007, whilst King et al. (2017) 137 

calculated surface change across the glacier’s ablation area of around –0.81 ± 0.16 m a-1 138 

between 2000 and 2014.  139 

 140 

The ablation area is almost entirely debris covered below 5400 m a.s.l., with the debris layer 141 

>2 m thick in places (Gades et al., 2000). The debris-covered ablation area displays a wide 142 

range of clast sizes comprising of granitic and schistose lithologies derived from the 143 

surrounding hillslopes (Iwata et al., 1980; Nuimura et al., 2011). The debris-covered area is 144 

topographically complex and dynamic, being characterised by an undulant surface 145 

punctuated by numerous supraglacial ponds and associated ice cliffs, which changes over 146 

seasonal and interannual timescales (Watson et al. 2016; Nuimura et al., 2011). The more 147 



 

 

stable, lowermost region of the ablation area shows the early stages of soil formation and is 148 

partially vegetated (Kadota et al., 2000). 149 

 150 

2.2. Central Himalayan climate 151 

The South Asian Summer Monsoon (hereafter, ‘the monsoon’) dominates the climate of the 152 

Khumbu Glacier catchment, and the Central Himalaya. The highest annual air temperatures 153 

occur between May and October (Ageta, 1976; Nayava, 1974) and ~80 % of precipitation 154 

falls between June and September (Bookhagen and Burbank, 2010). During the onset and 155 

progression of the monsoon season, high pressure over the Tibetan Plateau results in an 156 

increased temperature and pressure gradient southward towards the Indian subcontinent 157 

(Yasunari, 1976). This pressure gradient produces seasonally variable wind patterns in the 158 

Central Himalaya region and localised synoptic weather systems are dominated by mountain 159 

and valley winds, which vary on sub-diurnal timescales (Bollasina et al., 2002). As the 160 

monsoon season progresses, increases in regional precipitation frequency, air temperature, 161 

relative humidity and incoming longwave radiation occur, and are coupled with a decrease in 162 

shortwave radiation attributed to increasing cloud cover (Salerno et al., 2015; Shea et al., 163 

2015). 164 

 165 

3. Data acquisition  166 

3.1. Near-surface debris temperature 167 

3.1.1. Temperature sensors 168 

Near-surface debris temperature (Ts) was measured as a robust proxy for true debris surface 169 

temperature using Maxim iButton™ Thermochron temperature sensors (model number 170 

DS1921G: http://datasheets.maximintegrated.com/en/ds/DS1921G.pdf) which record 171 

instantaneous temperature from –30 to +70°C with a manufacturer-stated accuracy of 172 

http://datasheets.maximintegrated.com/en/ds/DS1921G.pdf


 

 

±1.0°C. iButton sensors were chosen due to their low cost, reliability (e.g. Hubbart et al., 173 

2005) and previous successful applications in a number of environmental settings including 174 

permafrost landscapes (e.g. Gubler et al., 2011). Gemini Tiny Tag™ Plus2 data loggers 175 

(model number TGP-4520) with encapsulated thermistor probes were used for sensor 176 

calibration prior to fieldwork and have a manufacturer–stated accuracy of ±0.4°C. The 177 

iButtons were placed in waterproof polycarbonate plastic containers to protect from water 178 

damage following the method of Gubler et al. (2011). The effect of polycarbonate plastic 179 

waterproof casing on temperatures recorded was tested in laboratory conditions prior to 180 

fieldwork. In laboratory conditions, temperatures recorded by contained and uncontained 181 

iButtons in the same environments varied by <2°C, and more typically by ≤0.5°C, which is 182 

within the manufacturer’s stated accuracy (see Supplementary Information; Figure S1).  183 

 184 

3.1.2. Field experiment design 185 

Near-surface debris temperature (Ts) was measured at hourly intervals at 16 sites between 186 

the 21st May and 29th July 2014 (Day of Year (DOY) 141 and 210). The first 48 hours of each 187 

Ts timeseries were discarded to allow the sensors to equilibrate with local conditions. For all 188 

sites, iButtons were placed in the immediate near-surface of the debris layer, typically 189 

between 0.01 and 0.05 m below the surface, using a single layer of clasts of representative 190 

size for each site from the immediate surrounding area as a shield from direct solar radiation 191 

as is common practice in ground surface temperature studies (e.g. Apaloo et al., 2012; 192 

Gisnås et al., 2014). Using a handheld Garmin 64 GPS, the iButton temperature sensors 193 

were distributed across the lowermost 2 km2 of Khumbu Glacier’s ablation area in a gridded 194 

pattern (Figure 1c). The elevation of sensor sites varied across the study area by 49 m 195 

between 4903 m a.s.l. and 4952 m a.s.l. (±3 m due to vertical accuracy of the handheld GPS) 196 



 

 

and each site had a unique combination of site characteristics, varying in slope, aspect, 197 

elevation, clast size, sorting, roundness, and clast lithology (Table 1; see also Section 3.2).  198 

 199 

To allow examination of the influence of additional debris layer properties and incoming 200 

energy fluxes on Ts other than debris layer thickness, all iButton temperature sensors were 201 

installed in locations where the debris layer had a thickness of ≥1 m where the effect of cold 202 

propagation from underlying ice on Ts is insignificant (Nicholson and Benn, 2006; Foster et 203 

al., 2012). Debris thickness was established by excavating the debris layer adjacent to the 204 

iButton location to a depth of 1 m; if no ice was present, debris thickness was reported as >1 205 

m. At each site, a textural description of the debris was made, and digital photographs were 206 

taken before and after the emplacement of the sensors (Figure 2). The iButton temperature 207 

sensors at Sites 7 to 13 were placed within a 90 × 90 m area to investigate variability in Ts 208 

across an area typical of the resolution of remotely sensed thermal satellite data (e.g. 209 

ASTER) often used for supraglacial debris thickness mapping.  210 

 211 

On retrieval of the iButton temperature sensors at the end of the monsoon season, 212 

comparison with the initial site photographs was used to evaluate any surface change at each 213 

site. For all 16 sites reported, the debris showed little or no disruption after sensor installation, 214 

and none of the temperature sensors were exposed at the time of collection. A further 42 215 

iButton sensors were installed on the glacier surface but, due to topographic change during 216 

the monsoon season, they could neither be located or retrieved.  217 

Despite following standard methods for measuring ground surface temperature (e.g. Apaloo 218 

et al., 2012; Gisnås et al., 2014), placing clasts on the contained iButtons to shield them from 219 

direct incoming shortwave radiation created an additional source of uncertainty in the 16 220 

retrieved Ts data. Consequently, our measurements of Ts do not necessarily reflect absolute 221 



 

 

debris surface temperature (Conway and Rasmussen, 2000) as the emplacement of sensors 222 

beneath clasts may mean that the sensors record temperature below rather than at the debris 223 

surface. Without detailed knowledge of the specific thermal properties of the debris at each 224 

site, more accurate assessment of the uncertainty between near-surface and true surface 225 

temperature is challenging. However, here we assumed our Ts data were sound proxies for 226 

absolute Ts. To identify any data which were likely to be less representative of true surface 227 

temperature, uncertainty at each site was estimated using the diurnally-averaged 228 

temperature gradient calculated through a debris layer by Nicholson and Benn (2006) from 229 

data collected on nearby Ngozumpa Glacier of –10.5 °C m -1, and mean clast size for each 230 

site. These uncertainties ranged from 0.03°C  to 4.39°C (Table 1 ). Temperature metrics 231 

(mean Ts, maximum Ts, minimum Ts and Ts amplitude) were also regressed against 232 

estimated sensor depth. No significant relationship was identified meaning Ts variability 233 

between sites cannot be attributed directly to sensor depth. Consequently, sites at which the 234 

calculated near-surface to surface temperature difference was greater than 0.5°C (the 235 

assessed uncertainty in our iButton sensor data) were considered to be less reliable in 236 

reflecting absolute surface temperature (Sites 1, 2, 9, 11 and 13), and were therefore either 237 

noted or omitted from subsequent analyses to avoid potential influence of misrepresentative 238 

data.  239 

 240 

Mean clast size was considered a proxy for sensor burial depth, although it is probable that 241 

clasts covering the sensors were smaller than the mean clast size as a bias towards the 242 

smaller clasts would have occurred on emplacement. It is therefore expected the uncertainty 243 

calculated using mean clast size overestimates burial depth, and consequently the 244 

uncertainty in temperature with depth is less than estimated. However, this method of 245 

uncertainty calculation does not include consideration of diurnal variability in temperature 246 



 

 

gradient through the debris layers, which may cause mean temperature differences 247 

calculated here to be larger at certain times of day (as observed by Nicholson and Benn, 248 

2006).  The influence of this diurnal variability on results is discussed in Section 6.2.  249 

 250 

3.2. Ancillary data 251 

3.2.1. Clast size and lithology 252 

Clast size at each site was estimated from 18.0 Mpix digital site photographs acquired using 253 

a Canon 550D camera and processed in ImageJ, v. 1.49 (Rasband, 2008), following the 254 

method outlined by Igathinathane et al. (2009). At all sites, images covered approximately 1 255 

m2 and a known scale in each photograph was used to define the metre:pixel ratio. Clasts 256 

were selected using a random sampling method. For each site photo, every clast identified 257 

was assigned a number, and a random number generator was used to subsample 25 clasts 258 

for measurement within ImageJ. Assuming from the 2D imagery that the long and 259 

intermediate clast axes were visible, the intermediate axis length was retrieved and a mean 260 

representative clast size for each site calculated (Table 1). Where the intermediate axis of a 261 

clast was larger than the photo (e.g. Sites 9 and 13) the maximum length measurable from 262 

the scaled image was used. 263 

 264 

Clast lithology was determined in the field using clast size, colour and mineral composition. 265 

Two major lithologies were identified; granite and schist. The dominant lithology at each site 266 

(Table 1) was determined by manually classifying the lithology of all clasts in each of the site 267 

photographs in ImageJ and then calculating the percentage of granite for each site (e.g. 268 

Solano et al., 2016).  269 

 270 

3.2.2. Local meteorological data 271 



 

 

Meteorological data were collected at four locations: on the debris-covered glacier surface of 272 

Khumbu Glacier at an elevation of 4950 m a.s.l. (Figure 1c); at the Pyramid Observatory 273 

(Figure 1b; 27°57'32" N, 86°48'47" E; 5050 m a.s.l.) ~1 km to the northwest of the study area; 274 

an automatic weather station on a debris-covered area of the adjacent Changri Nup Glacier 275 

(Figure 1b; 27°58'55"N, 86°45'52.92" E; 5363 m a.s.l.); and at an automatic weather station 276 

5 km down-valley from the terminus of Khumbu Glacier at Pheriche (27°53'24" N, 86°49’12" 277 

E; 4260 m a.s.l.). 278 

 279 

Off-glacier air temperature (TaP) was recorded at hourly intervals 2 m above the ground 280 

surface, using an artificially ventilated LSI-Lastem DMA 570 sensor (accuracy ±0.2°C) at the 281 

Pyramid Observatory. On-glacier air temperature (TaG) was recorded at 30-minute intervals 282 

in a location with schistose debris lithology (Figure 1c) using a Gemini Tiny Tag™ Plus2 data 283 

logger (model number TGP–4520) and thermistor probe with a stated accuracy of ±0.2 °C . 284 

The on-glacier thermistor probe was placed in a naturally aspirated radiation shield mounted 285 

on a tripod 1 m above the debris surface. TaG was resampled to give hourly values 286 

corresponding to the resolution of the Ts data. Incoming shortwave (SWin) and longwave 287 

(LWin) radiation (Kipp&Zonen CNR4 sensor, 1.0 m above debris surface, stated accuracy 288 

±3%) and relative humidity data (RH: Vaisala HMP45C sensor, 2.15 m above debris surface, 289 

stated accuracy ±2%) were recorded at an automatic weather station at the Changri Nup 290 

Glacier. Meteorological data from the Changri Nup station were collected at 30-minute 291 

intervals and resampled to 1-hour resolution using an hourly mean algorithm. Precipitation 292 

(P) was measured using a Geonor T-200 all-weather rain gauge at the Pheriche site where 293 

summer precipitation predominantly occurs as rainfall; these data were corrected for 294 

undercatch of solid precipitation using air temperature and wind speed (Sherpa et al., 2017) 295 

and the resultant corrected data have an estimated accuracy of ±15%.  296 



 

 

 297 

3.2.3. Local topography 298 

The digital elevation model (DEM) from which slope and aspect were extracted for each 299 

sensor site was derived from a series of Surface Extraction from Triangulated Irregular 300 

Network Searchspace Minimization (SETSM) DEMs sourced from the Polar Geospatial 301 

Centre (University of Minnesota) at 8 m resolution, collected between 8th February and the 302 

4th of May 2015 (Noh and Howat, 2015). The DEM correction method is detailed in King et 303 

al. (2017). Due to the complex and dynamic nature of the glacier surface, topographic 304 

parameters at each iButton site were estimated a-posteriori from the DEM and are presented 305 

here as a generalised local proxies rather than absolute, site-specific values (Table 1). Slope 306 

(in degrees) and terrain curvature were extracted for the pixels corresponding to the sensor 307 

locations using ESRI’s ArcMap v10.1 Spatial Analyst toolbox. Relative terrain roughness was 308 

derived using the ‘vector ruggedness measurement toolbox’, which considers slope and 309 

aspect variability for the nine pixels on and around each site location (Sappington et al., 310 

2007).  Curvature and roughness metrics both ranged between –1 and +1. In situ 311 

observations of the local aspect of each iButton site, measured relative to north, were 312 

collected in the field using a magnetic compass with an uncertainty of ± 2°.  313 

 314 

4. Results 315 

4.1. Near-surface debris temperature 316 

Daily mean near-surface debris temperature (Ts) for all 16 sites typically exceeded air 317 

temperatures (TaP and TaG) throughout the monsoon period (Figure 3a). Mean Ts for the 318 

period of observations at the 16 sites ranged from 7.0 to 11.6°C. T s remained close to 0°C 319 

between DOY 146 and 152, which was coincident with heavy snowfall in Khumbu valley and 320 

the ensuing persistence of a ~0.4 m snow layer on the glacier surface. Following DOY 152, 321 



 

 

the snow cover melted, with the rate and timing of the return to Ts >5°C at each site highly 322 

varied. Subsequently, from DOY 156 onwards, all Ts timeseries exhibited a broadly similar 323 

quasi-parallel pattern of change until the end of the observation period. Ts appeared to follow 324 

a generally rising trend from DOY 156–166, and then a seasonal decrease of approximately 325 

–0.1°C d -1 until DOY 210. However, these seasonal rising and falling trends were 326 

superimposed with 5 to 8 day cycles in Ts, potentially reflecting synoptic variations, and 327 

intermittent, shorter (1–3 day) periods with lowered Ts. At all 16 sites, Ts exhibited marked 328 

diurnal variation (Figure 3b). Zero amplitudes persisted during the brief period of snow cover 329 

(DOY 147–151), the highest daily amplitudes of up to 47°C were found prior to  DOY 170, and 330 

progressively declining amplitudes (reducing to a mean of 15°C) characterised  the period 331 

following DOY 170. Over the monsoon season, the contrasts in Ts between the sites were 332 

greatest at the start of our observations and between DOY 153 and 170, and declined 333 

thereafter, with the least difference between sites seen during the short periods of reduced 334 

Ts.  335 

 336 

4.2. Meteorology 337 

Mean daily on- and off-glacier air temperature (TaG and TaP) followed a similar, but subdued, 338 

pattern to the Ts data (Figure 3a). Air temperature increases of the order of 3°C occurred 339 

over the entire study period in both TaP and TaG. The seasonal pattern in TaG and TaP was 340 

overlain by a subtle synoptic periodicity with a 5–8 day recurrence. The diurnal amplitudes 341 

seen in the Ta series were less than those observed for Ts. Daily variation in amplitude ranged 342 

from 2.1 to 10.4°C for T aP, and from 5.4 to 20.2°C for T aG. In both Ta records, diurnal amplitude 343 

was greatest during the period of snow cover, and showed a general reduction over the 344 

course of the observation period albeit punctuated by short (1-3 day) variability. Off-glacier 345 



 

 

TaP was consistently lower than on-glacier TaG by a mean difference of 5°C between DOY 346 

145 and 190, and 3°C from DOY 190 onwards. 347 

 348 

Mean daily SWin displayed an overall seasonal decrease from 405 W m2 to ~217 W m2 over 349 

the observation period, with short-term (<5 days) variability of the order of 200 W m2 over the 350 

study period (Figure 3c). Between DOY 148 and 149, SWin was lowest at 123 W m2, which 351 

corresponded to snowfall and a coincident decrease in Ts to 0°C. In contrast, mean daily LWin 352 

increased from 253 W m2 to 320 W m2 from DOY 143 to 210. Total net incoming radiation 353 

(NRin) was primarily influenced by the pattern of SW in. All three series of radiative energy 354 

displayed synoptic (3-8 days) and short-term (1-3 day) variability. Relative humidity displayed 355 

a seasonally increasing trend from around 60% on DOY 143 to around 95% by the end of 356 

the observation period; this seasonal change was superimposed with shorter-term variability 357 

including a brief increase in relative humidity (to >80%) between DOY 146 and 150, aligned 358 

with the snowfall and snow cover event (Figure 3c). During the snowfall event, total daily 359 

precipitation peaked on DOY 150 at 34 mm, but subsequently remained low until DOY 170 360 

and then, as the monsoon progressed further, the magnitude and frequency of precipitation 361 

events increased (Figure 3d). Increases in total daily precipitation were typically concurrent 362 

with decreased SWin and increased LWin and relative humidity. 363 

 364 

5. Timeseries Analyses  365 

A Kolmgorov-Smirnov normality test showed that none of the temperature timeseries (Ts or 366 

Ta) were normally distributed at 95% confidence level. Therefore, non-parametric analyses 367 

were required to interrogate these data further.  368 

 369 



 

 

5.1. Comparison of time series 370 

The overall average of mean and standard deviation of Ts for all timeseries was 9.2 ±1.3°C, 371 

or 9.6 ±1.2°C if the data considered less representative of T s were excluded. Analytical tests 372 

indicated that the mean Ts timeseries was highly correlated with both TaP (Spearman’s r = 373 

0.85, p < 0.05) and TaG (r = 0.78, p < 0.05) but was significantly higher than both the two Ta 374 

timeseries.   375 

 376 

The broad similarity in the individual Ts timeseries (Figure 3a,b; Figure 4) was highlighted by 377 

strong and significant correlation coefficients for the majority of site pairs (Table 2). The 378 

generally high correlation (r ≥ 0.88) between timeseries indicated that all sites exhibited a 379 

broadly similar general pattern in both periodicity and seasonal trend. However, further 380 

comparison using a Kruskal-Wallis test (which tests whether samples originate from the same 381 

distribution) showed the Ts populations were significantly different (2 = 308.9, or 2 = 201.1 382 

excluding the timeseries that were less representative of Ts, both p << 0.05). To explore the 383 

underlying nature and causes for these differences, we (i) examined the temporal variability 384 

in the Ts series, (ii) conducted a more detailed assessment of the spatial differences between 385 

timeseries, and (iii) explored any associations between Ts and the local meteorological and 386 

site-specific data. Each of these three sets of analyses are detailed in the following sections. 387 

 388 

5.2. Temporal variability in near-surface debris temperature 389 

The similarity in the daily Ts means and their seasonal pattern, with the exception of the 390 

period of snowfall (DOY 146–152), was underlain by a marked reduction in the daily 391 

amplitude of variability in Ts at all sites over the study period (Figure 3b). To test this 392 

observation further, regression analysis was employed, with omission of data from the 393 



 

 

snowfall period. Sites 1, 4, 7, 10, 12 and 16 showed a significant (p < 0.05) decrease in daily 394 

mean Ts over the observation period, while all other sites showed no such temporal trend 395 

(Table 3). However, all sites showed a statistically significant increase in daily minimum Ts 396 

during the monsoon season, averaging 0.08 °C  d-1; and with the exception of Site 13, all sites 397 

also showed a significant decrease in daily maximum temperature (mean –0.19 °C d -1). The 398 

concomitant increase in minimum and decreasing maximum Ts between timeseries was 399 

reinforced by the significant decreasing trend in daily amplitude by a mean of –0.26°C d -1 400 

over the monsoon period at all 16 sites (Table 3). These changes were in contrast to air 401 

temperature trends, where daily minimum and mean TaG increased by 0.1°C d -1 and 0.04°C 402 

d-1. No significant trend in mean daily maximum TaG, was present, although daily amplitudes 403 

decreased by –0.1°C d -1. 404 

 405 

To further examine these seasonal trends in Ts amplitude, and to ascertain if there was 406 

systematic change in the diurnal pattern of Ts fluctuation, we adopted the approach 407 

commonly used to analyse synoptic climatology (e.g. Brazel et al., 1992; Davis and Kalkstein, 408 

1990), hydrological timeseries (e.g. Hannah et al., 2000; Swift et al., 2005, Irvine-Fynn et al., 409 

2005) and ground surface temperature (e.g. Lundquist and Cayan, 2007). These previous 410 

published analyses used Principal Components Analysis (PCA) to classify patterns of change 411 

or modes of variation in diurnally fluctuating timeseries. Here, rather than analyse all 16 Ts 412 

timeseries, and given the high correlation between all sites (excluding timeseries less 413 

representative of Ts) (Table 2), a ‘representative’ timeseries from the data set was used. The 414 

most representative Ts timeseries was identified using a Nash-Sutcliffe efficiency coefficient 415 

(E) typically used to determine the fit of modelled to observed data (e.g. Krause et al., 2005; 416 

Legates and McCabe, 1999). E was calculated for each Ts pair and then summed and 417 

averaged for each individual site (Table 2). The timeseries with the highest similarity to all 418 



 

 

other Ts series was from Site 14 (E = 12.4, mean E = 0.83), and was therefore considered 419 

representative. 420 

 421 

Debris temperature data from Site 14 were divided into individual diurnal periods of 24 422 

measurements commencing at midnight (00:00). Diurnal periods in which Ts was consistently 423 

0°C (DOY 146 to 152) due to lying snow cover were omitted from the an alysis. The resultant 424 

61 diurnal data series were reduced and simplified into a number of ‘modes’ of variation, or 425 

principal components (PCs), using PCA without rotation. The first two PCs provided the 426 

primary modes of diurnal variation in Ts (Figure 5a). PC1 accounted for 81.3% of the variance 427 

and PC2 for 8.8%. The remaining PCs were discounted as ‘noise’ because they represented 428 

less than 10% of the total variance in the data set (e.g. Hannah, 2000; Irvine-Fynn et al., 429 

2005). Although absolute loadings were relatively weak (<0.5) for both PCs, a total of 30 days 430 

were described best by PC1 and 19 days associated with PC2. A total of 11 days were very 431 

weakly related to either PC1 or PC2 (absolute loadings of < 0.09), and were considered to 432 

have an undefined diurnal Ts cycle (Figure 5b,c). Of note were the 11 days described by 433 

negative loadings on PC2, which contrasted to the consistently positive loadings for PC1, 434 

and were suggestive of lagged relationships between the mode of variation and true diurnal 435 

Ts pattern. Days associated with PC1 predominantly occurred during the former half of the 436 

observation period (76% before DOY 176), whilst 78% of days associated with PC2 and 90% 437 

of days with an undefined cycle both occurred following DOY 176 (Figure 5c). 438 

 439 

The contrast between the days assigned to the two main PC and the undefined diurnal cycles 440 

were illustrated through a comparison of descriptive statistics (Table 4). The mean diurnal Ts 441 

was greatest for those days defined by PC1 at 10.9°C , whilst the mean maximum 442 



 

 

temperature and diurnal amplitude was highest compared to days with an undefined Ts 443 

variation and those associated with PC2. Days that were best described by PC2 exhibited 444 

relatively low mean daily amplitude, and mean and maximum diurnal temperatures. The 11 445 

days that were less well defined by PCs had lowest mean, maximum and amplitude in Ts. 446 

Days described by PC1 were characterised by a lower mean minimum Ts (0.9°C) while all 447 

other days experienced similar minimum values of Ts. The mean time at which Ts peaked for 448 

each group of days associated with the PCs varied by less than one hour (Table 4).  449 

 450 

Subtle variation in diurnal patterns was present in the Ts timeseries. There was a clear 451 

progressive shift during the monsoon season towards Ts exhibiting a lower daily mean, 452 

maximum and amplitude, but with a seasonal increase in the minimum Ts. The combination 453 

of E and PCA analyses explored this further, showing that all sites displayed a regular diurnal 454 

pattern of Ts during the former part of the monsoon, while there was a systematic shift to 455 

more variable and delayed diurnal cycles in the latter half of the observation period. These 456 

shifts in magnitude of Ts were aligned with the observed seasonal changes in meteorological 457 

conditions, specifically with increased precipitation, relative humidity and LWin from around 458 

DOY 180. 459 

 460 

5.3. Spatial variability in debris surface temperature 461 

With evidence of spatial variability between sites most clearly evidenced by the differences 462 

in diurnal amplitude between the Ts timeseries, further exploration of the spatial contrasts 463 

was undertaken. Following the identification of significant difference by a Kruskal-Wallace 464 

test, a signed rank pairwise Wilcoxon test provided further detail on spatial variations by 465 

comparing pairs of timeseries populations. The representative series from Site 14 was the 466 



 

 

most similar to all other timeseries, being statistically dissimilar to only Sites 1, 3, 4 and 16 467 

(Table 2). Removal of the timeseries considered as less representative of Ts made relatively 468 

minimal difference to the analysis, suggesting that even the outlying data (Sites 2, 9, 11, 13) 469 

were broadly similar to the remaining Ts despite the uncertainty arising from varying depth of 470 

sensors. A further set of Wilcoxon tests were undertaken on the positively skewed distribution 471 

series of maximum, minimum and mean diurnal amplitude of Ts. The results of the site 472 

comparison data showed 86% and 89% of site pairs had significantly different diurnal 473 

amplitudes and maximum Ts from one another (p < 0.05), whilst 39% of the site pairs 474 

displayed significantly different minimum Ts (p < 0.05). 475 

 476 

Daily mean minimum Ts for all timeseries varied by –1°C to –4°C between sites, whilst daily 477 

mean maximum Ts varied between 10°C and 17°C. Whilst non-parametric correlation 478 

coefficients (r) suggested minimal variability between sites with 86% of correlations 479 

displaying r ≥0.90 (Table 2), such correlations only reveal similarity in timeseries patterns 480 

rather than magnitude (Borradaile, 2013). Consequently, notwithstanding the sensitivity of 481 

the efficiency criterion (Krause et al., 2005), E was used to compare the strength of each 482 

relationship with regards to similarity in both value and pattern for the Ts timeseries (Table 483 

2). The E values displayed high variability and ranged from –0.42 (Sites 5 and 9) to 0.96 484 

(Sites 7 and 12). The timeseries less representative of Ts displayed predominantly lower E 485 

values, particularly in their relationships with each other. Spatial variability between the sites 486 

appeared relatively small with 84% of E values ≥0.75, suggesting a good similarity in pattern 487 

and magnitude between pairs of Ts timeseries. For sites located in close proximity to one 488 

another (Sites 7–13, omitting those that were less representative of Ts) all the site pairs 489 

displayed r ≥0.87 and 80% of these site pairs displayed an E value ≥0.81. However, the 490 

contrast in E between timeseries suggests subtle spatial variability in Ts did exist between 491 



 

 

study sites. The correlations between Ts remained high (>0.87) even when they were 492 

detrended to remove diurnal cycles (following Kristoufek, 2014). This further shows that Ts 493 

exhibited similar short-term and seasonal variations despite varying sensor locations. 494 

 495 

Cross-correlation between the detrended timeseries was used to identify any lag between Ts 496 

(Table 5). Lag times were present for Sites 1 and 2 and a number of other different sites, and 497 

with both Sites 8 and 15 for a number of sites. All sites lagged the timeseries at Site 8 by 1 498 

or 2 hours, whilst Site 15 displayed a 1-hour lag with 7 sites. Site 8 and 15 were located under 499 

0.010 m and 0.042 m of debris, neither of which are sites where mean clast size, and 500 

therefore burial depth, were greatest, and neither sites had been identified as less 501 

representative of Ts or statistically dissimilar. With regards to the site characteristics, Site 8 502 

was placed in the most northerly aspect and lowest elevation of all iButton locations, whist 503 

Site 15 had one of the highest elevations and roughness metrics (Table 2). Despite a broad 504 

statistical similarity in the Ts data, there were a number of contrasts in the magnitude, 505 

distribution and timing between timeseries. The analysis of the Ts data suggested subtle 506 

spatial variability in Ts was primarily manifested in variability in diurnal Ts amplitude, which 507 

was principally controlled by variability in maximum Ts between sites.  508 

 509 

5.4. Controls on temporal and spatial variability in near-surface debris temperature  510 

To investigate whether meteorological conditions and site characteristics were associated 511 

with controlling Ts, and particularly maximum Ts, assessment of the influence of 512 

meteorological drives and site-specific traits was undertaken using multivariate analysis 513 

techniques.  514 

 515 



 

 

5.4.1. Controls on temporal variability in near-surface debris temperature 516 

Controls on temporal variability in Ts over the monsoon season were investigated for all 517 

hourly timeseries, omitting the period of sustained 0°C in T s in which the debris surface was 518 

snow covered. Analysis was undertaken using Stepwise Multilinear Regression (SMR), with 519 

meteorological time series as predictor variables, to determine the control and combined 520 

control of meteorological variables on Ts. SMR iteratively adds and removes variables 521 

included in the model based on their statistical significance in regression (Draper et al., 1998), 522 

therefore enabling the relative importance of meteorological variables to be identified. This 523 

method is superior to simply regressing individual variables against Ts as it can give insight 524 

into the extent to which different combinations of meteorological variables control Ts. 525 

Assessment of the meteorological data demonstrated none of the timeseries were normally 526 

distributed, as for all Ts and Ta data. Consequently, to transform the Ts and meteorological 527 

variables to more approximately normal distributions, a simple natural logarithmic conversion 528 

was applied. The multivariate models described *Ts (where * reflects a log-transform) as a 529 

function of *SWin, *LWin, *TaG, *RH (relative humidity) and *P (precipitation). The output from 530 

the primary SMR is detailed in Table 6 highlighting the relative strength of the relationships 531 

between Ts and each of the meteorological variables between sites. *TaG was ranked as the 532 

most influential predictor of *Ts for all sites, with coefficients of determination between R2 = 533 

0.44 and R2 = 0.67. The addition of *SWin, *LWin, *RH and *P resulted in only minimal 534 

incremental increases in the strength of the correlation between predictor variables and *Ts, 535 

in all cases resulting in an increase in R2 of ≤ 0.1. In all cases, *RH was only the third or fourth 536 

most significant predictor variable. *P was not significant in terms of contributing to improving 537 

prediction of *Ts for any site, and was therefore omitted from the model and not included in 538 

the first set of results (SMR1) in Table 6. Typically, the sites with the weakest SMR model 539 



 

 

were those classed as less representative of Ts, although Site 16 had similarly low results 540 

relative to all sites. 541 

 542 

One of the potential weaknesses in the first pass SMR models is the collinearity between 543 

variables, particularly SW in and Ta, for which r = 0.84 (p << 0.05). There is typically a positive 544 

relationship between incident solar radiation and Ta, due to the direct influence SW in has on 545 

Ts (Hock, 2003), and the strong covariant relationship present between Ts and Ta (Foster et 546 

al., 2012; Shaw et al., 2016). Consequently, the SMR analyses were re-run with *TaG 547 

removed from the model to explore whether additional variables influence Ts independent of 548 

TaG (Table 6: SMR 2). Results highlighted that, in the absence of TaG, all models exhibited 549 

*SWin as the dominant predictor for Ts, but with coefficients of determination much reduced 550 

(0.17 ≤ R2 ≤ 0.40). Inclusion of the other meteorological variables, while increasing the 551 

models’ performance (with R2 increasing to ≤0.49) maintained less than 50% efficacy in 552 

predicting Ts (Table 6). Colinearity between P and RH, or between LW in and RH may also be 553 

present but due to the minimal influence of these predictor variables on the SMR results 554 

identifying whether such colinearity existed here would be challenging, and so has not been 555 

considered further. Conflating the radiation terms (SW in and LWin) into ‘net incident radiation’ 556 

(NRin) and continuing the omission of TaG in a third set of SMR analyses (SMR 3) yielded 557 

similar results to SMR 2, with *NRin being the dominant predictor variable; moreover, opting 558 

for inclusion of ‘rate of change in TaG’ (dTa) for the preceding hour, and cumulative radiation 559 

variables (SWin and LWin) and ‘time since precipitation’ (tP) as a potential drivers for Ts in 560 

SMR 3 showed similarly incremental improvements but only to R2 = 0.51. In all cases in SMR 561 

3, dTa was the second most significant predictor variable.  A final SMR model (SMR 4) 562 

excluded all radiation terms and utilised *RH, *P and tP. Despite the close association 563 



 

 

between incident radiation and Ta, the multivariate models using SWin, LWin and NRin were 564 

less effective in describing Ts change over the monsoon season. 565 

 566 

To gain a deeper understanding of the extent to which Ts and TaG were related, and whether 567 

the two parameters have a varying temporal relationship, Ts and TaG was also investigated 568 

for daytime (06:00–17:00) and night-time (18:00–05:00) periods separately. A number of 569 

previous studies have investigated the seasonal and diurnal variability of TaG (e.g. Brock et 570 

al., 2010; Steiner and Pellicciotti, 2015), and in some cases its relationship to Ts (e.g. Fujita 571 

and Sakai, 2000). As elsewhere, days when Ts was consistently 0°C (DOY 145 –153) were 572 

excluded from the correlation analysis. The relationship between Ts and TaG varied across 573 

the study period for both day and night (Figure 6). The relationship between Ts and TaG was 574 

predominantly stronger at night (r = 0.86) than in the day (r = 0.75). Daytime Ts-TaG 575 

correlations varied between r = –0.01 (DOY 190) and r = 0.97, whilst night-time correlations 576 

varied between r = 0.48 (DOY 188) and r = 0.99 (DOY 199). The seasonal and diurnal 577 

variation in the relationship between Ts and TaG therefore suggests that TaG was the dominant 578 

driver of Ts but that the strength of this relationship varied across a diurnal period and 579 

seasonally, due to diurnal and seasonal variation in additional incident or outgoing energy 580 

fluxes that also influence Ts. 581 

 582 

5.4.2. Controls on spatial variability in near-surface debris temperature 583 

To determine whether statistically significant relationships between site characteristics and 584 

between timeseries existed, as suggested by contrasting diurnal amplitudes and the lags 585 

between Ts timeseries, a two-step process of analysis was undertaken. Initially, stepwise 586 

generalised linear models (SGLMs) were explored to investigate possible controls on 587 



 

 

variability in Ts. SGLMs were undertaken rather than SMR due to the small sample size, and 588 

therefore the need to relax the assumptions of normal distribution of each timeseries. The 589 

SGLMs examined debris temperature metrics that included means for daily mean Ts, 590 

maximum Ts, minimum Ts and the daily mean amplitude of Ts for each site as the dependent 591 

variables. Site characteristics were used as predictor variables, including elevation, slope, 592 

aspect, mean clast size, lithology, terrain curvature and terrain roughness. A simple linear 593 

model was used, and potential interactions between site characteristics were not included. 594 

The less-representative timeseries (1, 2, 9, 11, 13) were omitted from the SGLMs, and 5% 595 

significance levels were used to eliminate weaker predictors. Secondly, following 596 

identification of the possible important predictor variables on influencing Ts identified by the 597 

SGLM, linear bivariate regression (LBR) analysis was undertaken between Ts variables and 598 

the debris variables identified as important in the SGLMs. Whilst the SGLM results give an 599 

insight into the combinations of debris characteristics that control the temperature variables, 600 

the LBR analysis enable the relationship between the predictor and Ts variables to be 601 

analysed in isolation.  602 

 603 

Results of the SGLMs are given in Table 7, which includes variables that were identified as 604 

statistically significant in prediction of Ts. None of the models were improved through inclusion 605 

of site curvature or roughness, which may be due to the resolution of the DEM causing 606 

specific site metrics to be less than exact. The combination of clast size, lithology and slope 607 

played significant roles in the SGLMs, with coefficients of determination of around 0.9 for 608 

mean, maximum and amplitude Ts. Aspect was only considered important for predictions of 609 

minimum Ts, in which elevation was also critical. The LBR analysis results (Table 8) show 610 

that the relationship between Ts variables and debris characteristics identified as influential 611 



 

 

in the SGLMs were not statistically significant in isolation. The exception was minimum Ts 612 

and elevation, which had an R2 of 0.44 (p = 0.02).  613 

 614 

Consequently, although clast size, lithology and slope are influential to Ts metrics in 615 

conjunction with one another, they have little influence on Ts independently. Specifically, 616 

debris size and lithology are considered to impact on the absorption and transfer of solar 617 

radiation through a debris layer through their influence on albedo, porosity and moisture 618 

content, while slope is a critical factor influencing solar radiation receipt. The southerly aspect 619 

of the majority of the sites reported here may undermine identification of the merit in 620 

describing Ts metrics using aspect. Additionally, the lack of prediction of minimum Ts by the 621 

debris variables except for elevation suggests that minimum Ts may be independent of the 622 

majority of variables considered, but may be most appropriate for identification using a lapse 623 

rate. While the sample set was relatively small, the SGLMs illustrated the potential for 624 

physical site characteristics to modulate Ts, the importance of considering a suite of debris 625 

characteristics and their combined influence in control of Ts. 626 

 627 

6. Discussion 628 

The timeseries analyses detailed above identified a number of key aspects in the variability 629 

in Ts for thick (>1 m) debris on the debris-covered ablation area of Khumbu Glacier. A 630 

seasonal trend of decreasing maximum and mean Ts was identified at the majority of sites, 631 

while an increase in minimum Ts was in contrast to seasonal changes in Ta. A systematic 632 

shift from a dominant smooth diurnal cycle in Ts early in the monsoon season to a lagged 633 

cycle as the monsoon progressed occurred, alongside which meteorological conditions 634 

became more varied. In terms of spatial contrasts, there was evidence of subtle differences 635 



 

 

between sites, illustrated by disparities in how closely the Ts timeseries paralleled each other, 636 

and short term (≤2hr) lags in Ts between sites. Exploring these differences through 637 

consideration of meteorological drivers and potential site characteristic controls enabled 638 

identification of a dominant association between Ta and Ts and the influential role of clast 639 

size, lithology and slope on Ts metrics at each site. Here, we discuss the processes that may 640 

underlie the observed variability in Ts on a debris-covered glacier. 641 

 642 

6.1. Temporal variability in near-surface debris temperature  643 

The near-surface debris temperature (Ts) time series were notably perturbed between DOY 644 

145 and 153, during which a period of sustained 0°C occurred foll owing an observed major 645 

snowfall event. Following the period of 0°C, short-term variab ility on timescales of around 3–646 

8 days and a seasonal trend in decreasing maximum Ts were observed in all Ts timeseries. 647 

The timing of short-term variability in Ts and SWin, LWin, RH and precipitation was 648 

simultaneous, whilst the seasonal decrease in maximum Ts occurred alongside a trend of 649 

decreasing SWin, increasing Ta, LWin and RH, and increased frequency of precipitation 650 

(Figure 3). The coincidence of the seasonal trends in meteorological variables provide a 651 

strong indication of increased cloudiness over the study period (Mölg et al., 2009; Sicart et 652 

al., 2006; Van Den Broeke et al., 2006).  653 

 654 

Increasing cloud cover results in a decreasing amount of SWin reaching the debris surface, 655 

causing maximum Ts to decrease, which occurs in all timeseries presented here, and a delay 656 

in the time at which maximum Ts is achieved as the incoming energy flux to the debris surface 657 

is reduced and the debris therefore takes longer to heat up. Consequently, such an increase 658 

in cloudiness over the study period would have resulted in the decrease in the diurnal 659 



 

 

amplitude of Ts, and a delay in the timing of peak diurnal Ts, both of which are observed in 660 

changing modes of variation in Ts identified in the PCA (Figure 4). An additional control on 661 

decreasing SWin would be that following midsummer (DOY 172) regional SW in and solar 662 

angle would decrease, reducing the intensity and duration of SW in a debris surface would 663 

receive. However, the decrease in SWin was initiated before DOY 172, suggesting this trend 664 

was primarily dependent on increasing cloud cover.   665 

 666 

A seasonal increase in cloud cover, relative humidity and the frequency of precipitation would 667 

also increase the moisture content of the debris layer. Moisture content of the debris layer 668 

has the potential to affect Ts considerably (Collier et al. 2014), but is challenging to quantify 669 

and not reported here. The presence of moisture in a debris layer affects its effective thermal 670 

conductivity and therefore the energy needed to increase bulk temperature. An increased 671 

amount of energy would therefore be needed to heat water-filled pores to the same 672 

temperature as air-filled pores within the debris layer (Collier et al., 2014; Evatt et al., 2015). 673 

Consequently, as incoming energy to the debris surface decreased during the monsoon 674 

season, and the amount of energy needed to maintain debris layer temperature would 675 

increase due to presence of moisture- rather than air-filled pores, and mean Ts would 676 

decrease. Additionally, an increasingly moist debris layer would have decreased Ts due to 677 

enhanced latent heat exchange and subsequent loss of heat through evaporation in the 678 

debris surface layer (Cuffey and Paterson, 2010; Takeuchi et al., 2000). These trends in Ts 679 

are observed in the timeseries presented here, and alongside the precipitation timeseries, 680 

suggest debris moisture content is considered to have been a factor in controlling Ts. 681 

However, direct collection of data for moisture content is needed to confirm the link between 682 

Ts and debris moisture content.  683 

 684 



 

 

Whilst the 1–3 day cycles are considered to be the passing of localised weather systems in 685 

the Khumbu valley, the 5–8 day cyclic perturbations of Ts were synchronous with periods of 686 

markedly lower SWin, higher LWin and relative humidity, and higher P. These perturbations 687 

suggest the intensity of cloud cover was also temporally variable, resulting in periods of Ts 688 

with decreased diurnal amplitude and lower maximum Ts. The perturbations of Ts were 689 

increasingly frequent in the latter half of the study period, evidenced by the majority of days 690 

loaded to PC2 present in this period. These perturbations suggest that alongside seasonal 691 

increase in cloud cover due to progression of the monsoon, more localised weather patterns 692 

still contribute to variability in meteorological parameters that also affect Ts.  693 

 694 

6.2. Spatial variability in near-surface debris temperature 695 

Despite the period of asynchronous snow melt and subsequent spatial variation in Ts between 696 

sites for the period DOY 145–153, for the majority of the study period all Ts data displayed 697 

high similarity, evidenced in the r and E values for the raw data and the r values for the 698 

detrended timeseries. E values suggested subtle variability did exist between sites, which 699 

was primarily manifested in the amplitude and magnitude of temperature recorded at each 700 

site rather than the pattern of Ts.  701 

 702 

Variability in sensor depth may have caused some variability in E between site pairs. 703 

Although sensor depth variability was accounted for using the temperature gradient through 704 

a debris layer, which was calculated by Nicholson and Benn (2006), their gradients were a 705 

mean of a day (24-hour) period. As mentioned previously, applying a daily gradient to 706 

determine uncertainty in Ts due to depth does not reflect the diurnal variability of temperature 707 

with depth, which would affect the magnitude and pattern of Ts recorded between sites 708 



 

 

(Nicholson and Benn, 2006). However, after the sites identified as less representative of Ts 709 

were omitted, sensor depth varied by <0.03 m, which would have produced a maximum 710 

uncertainty of 0.44°C between sites (excluding less representative sites) even for th e 711 

steepest gradients previously identified (at 13:00 by Nicholson and Benn, 2006). Variability 712 

of Ts between sites reached up to 10°C throughout the study period, which ex ceeds 713 

discrepancies exclusively due to sensor depth and so instead suggests other drivers of 714 

spatial variability in Ts between sites.  715 

 716 

6.3. Controls on variability in near-surface debris temperature  717 

Coincident trends in Ts and meteorological variables suggest a high level of interconnection 718 

between meteorological variables and Ts. TaG explained the majority of the relationship 719 

identified between meteorological variables and Ts through SMR for all sites (e.g. Petersen 720 

et al., 2013), while the other meteorological variables identified to be statistically significant 721 

in the SMR1 model (SWin, LWin and RH) were less effective as predictors (Table 6). Omission 722 

of TaG in SMR models identified SW in, LWin and RH as contributory drivers of Ts, and thus 723 

reiterates the complexity of the energy balance at a debris-covered surface where all of 724 

meteorological parameters play some role in controlling Ts. However, within the SMR models, 725 

the strongest relationship between TaG and Ts was R2 = 0.67, and inclusion of additional 726 

variables only improved model performance to a maximum R2 of 0.68 (Table 6), suggesting 727 

TaG is the most important driver of Ts, and that temperature-index melt models that calculate 728 

Ts from TaG will account for at least two thirds of temporal variability in energy input to the 729 

debris surface. 730 

 731 



 

 

Identifying a hierarchy of potential controls on temporal variations in Ts is challenging using 732 

the data collected here due to a lack of information on moisture content and thermal 733 

conductivity of the debris layer. Consequently, despite the minimal influence of additional 734 

meteorological variables to TaG in the relationship with Ts, the occurrence of this relationship 735 

at all suggests that to increase the accuracy of temperature-index melt models they should 736 

at least also include SWIn (e.g. Carenzo et al., 2016) or NRin, as these variables were 737 

identified to account for around a third of the relationship between Ts and the meteorological 738 

variables independently of TaG (mean R2 = 0.28 and mean R2 = 0.32, respectively).  739 

 740 

Due to the covariate relationship between TaG and Ts a high correlation between the two does 741 

not conclusively identify TaG as the primary driver of Ts, but does suggest that temperature-742 

index melt models based on the relationship between TaG and Ts are appropriate for areas of 743 

debris-covered glaciers where the debris layer is thicker than 1 m. A similar study to this 744 

should be undertaken on debris <1 m to identify whether the same exists for thin debris 745 

layers. Unravelling the relationship between TaG and Ts is complex, as the two variables are 746 

interdependent from one another (Shaw et al., 2016), particularly when Ta is collected below 747 

the standard height of 2 m above the glacier surface in the surface boundary layer (e.g. Reid 748 

et al., 2012; Wagnon et al., 1999). Critically, here, TaP and TaG were highly correlated (r = 749 

0.72, p < 0.05), but accounting for the elevation difference using a lapse rate of –0.0046°C 750 

m-1 appropriate for the monsoon season on Khumbu Glacier (Shea et al., 2015) and a 751 

standard lapse rate of –0.0065°C m -1, exhibited mean residuals between TaP and TaG of –752 

1.9°C and –1.3°C , evidencing the observation that TaG was consistently significantly higher 753 

than TaP. This on-/off- glacier contrast is due to heat loss from the thick supraglacial debris 754 

layer to the near-surface atmosphere through turbulent heat exchange (Takeuchi et al., 755 

2000). Our results mirror those of Steiner and Pelliccioti (2015) where TaP from equivalent 756 



 

 

elevations was consistently lower than TaG over a debris-covered surface, highlighting the 757 

need to use off-glacier temperature records with caution when driving numerical models of 758 

glacier ablation, and wherever possible use on-glacier measurements.  759 

 760 

The influence of specific meteorological controls of Ts was also spatially variable (Table 6).   761 

Although a difference in elevation between the Ts sensors and the Ta sensor existed, 762 

variability in the relationship between TaG and Ts is predominately attributed to spatial 763 

variability between the sites at which Ts was recorded. The maximum elevation variation 764 

between Ts and TaG sensors was 47 m, which, using the range of lapse rates described 765 

above, would result in variations in TaG of up to 0.3°C across the study site, which is below 766 

the TaG sensor uncertainty. Differences between Ta and Ts were greater than 0.3°C for all 767 

sites. The spatial variability in Ts is therefore attributed to variation in a combination of slope, 768 

lithology and clast size between sites, variables found to be important for variability in 769 

maximum Ts between sites, which would result in varying effective thermal conductivity 770 

between sites.  771 

 772 

The results of the SGLM analysis support previous work on debris-free and debris-covered 773 

glaciers, and in permafrost environments, where topographic controls including aspect, slope 774 

(e.g. Gao et al., 2017; Gubler et al., 2011; Guglielmin et al., 2012; Hock and Holmgren, 1996; 775 

Strasser et al., 2004), albedo and surface roughness (considered a factor due to the 776 

importance of clast size; e.g. Brock et al., 2000; Mölg and Hardy, 2004) were found to 777 

influence spatial variability in the incoming energy flux to the ground surface, and would 778 

therefore be anticipated to control Ts. The most dominant variables describing Ts metrics from 779 

each site on Khumbu Glacier were slope, clast size and lithology. These variables would be 780 



 

 

expected to control incident radiation receipt through solar geometry and albedo, moisture 781 

content and evaporation, and affect local thermal conductance. However, these debris 782 

properties were only found to influence Ts metrics in conjunction with one another and were 783 

not found to independently control Ts. Without further data such as site-specific moisture 784 

content and SWin values for each site, the exact controls on such variability cannot be 785 

identified. Additionally, elevation and aspect were only found to influence minimum Ts. The 786 

majority of sites reported here were south facing and therefore provide a systematic bias, 787 

hindering ultimate identification of the influence of this variable. However, the relatively 788 

strong, and statistically significant, relationship between the elevation and minimum Ts 789 

suggests estimation of minimum Ts using lapse rates, and potentially night time temperatures 790 

when Ts is at its minimum, to estimate spatial variability in Ts would be appropriate.   791 

 792 

The diurnal and seasonal variability in the relationship between TaG and Ts identified here 793 

builds on the conclusions of Steiner and Pellicciotti (2015), who identified a variation in 794 

relationship between the two parameters between night and day and with differing climatic 795 

conditions. The occurrence of a seasonal influence in this variable relationship is attributed 796 

to variability in meteorological parameters, with decreased strength of relationship between 797 

TaG and Ts occurring concurrently with perturbations in SWin, and peaks in LWin and RH (e.g. 798 

around DOY 173).  Such variability is attributed to differences in the capacity of air and debris 799 

to hold thermal energy, and the addition of moisture in either or both environments, causing 800 

the relationship to vary between TaG and Ts seasonally as well as diurnally. Understanding 801 

the importance of the high RH values and precipitation is also important for understanding 802 

the effect of turbulent heat flux on glacier ablation for these monsoon-influenced debris-803 

covered glaciers (Suzuki et al., 2007). The correlation coefficients for the Ts–TaG relationship 804 

presented here also reinforce the findings of Steiner and Pellicciotti (2015), displaying 805 



 

 

stronger relationships at night due to Ts increasing at a greater rate and magnitude than TaG. 806 

Consequently, temperature-index melt models with a sub-daily time, which rely on the 807 

relationship between TaG and Ts, need to consider additional controls on Ts such as diurnal 808 

and seasonal fluctuations in incoming radiative fluxes, particularly for monsoon-influenced 809 

debris-covered glaciers which experience large variability in seasonal weather patterns. 810 

Ultimately, there is not a direct relationship between TaG and Ts and using a numerical 811 

modelling procedure that assumes as such should be avoided. Consequently, these finding 812 

give further weight to the importance of using enhanced temperature-index melt models that 813 

include additional controls such as incoming shortwave radiation (e.g, Carenzo et al., 2016) 814 

or full surface energy balance models to calculate ablation for these complex glacier systems.  815 

 816 

6.4. Implications of variability in near-surface debris temperature 817 

Whilst the results of this study provide an interesting insight into the extent of temporal and 818 

spatial variability in Ts for thick (>1 m) supraglacial debris layers, there is a need to carry out 819 

a similar study on thinner debris layers as debris-covered glaciers exist in a range of climatic 820 

conditions. Following such studies, a development of surface energy balance models to 821 

incorporate spatiotemporal variations in debris properties would be appropriate for modelling 822 

ablation, and also for constraining surface energy balance models used for estimating debris 823 

thickness (e.g. Foster et al., 2012; Rounce and McKinney, 2014). Our findings advocate the 824 

use of a surface energy balance approach for calculating debris layer thickness rather than 825 

a direct empirical relationship between Ts and debris layer thickness as used by Mihalcea et 826 

al. (2008a; 2008b) and Minora et al. (2015). The latter of these approaches oversimplifies the 827 

relationship between Ts and debris thickness, and omits additional factors such as the 828 

influential relationship between SWin and Ts, and spatial variability of Ts due to varying slope, 829 

lithology and clast size of the debris layer. However, the results of this study suggest that the 830 



 

 

simplified energy balance approaches for calculating debris thickness used by Foster et al. 831 

(2012) and Rounce and McKinney (2014) need to undergo substantial developments to 832 

provide accurate estimations of debris layer thickness, in line with surface energy balance 833 

models such as those produced by Reid and Brock (2010), Collier et al. (2014) and Evatt et 834 

al. (2014), to include such site characteristics as slope and aspect and debris characteristics 835 

such as moisture content, porosity, lithology and thermal conductivity. It is only once a 836 

comprehensive consideration of all controls on Ts is incorporated into estimations of debris 837 

thickness calculated from Ts that debris thickness maps will exhibit a much-reduced 838 

uncertainty.  In the meantime, both methods used to estimation debris thickness (empirical 839 

and energy-balanced methods) should identify the possible uncertainty involved in 840 

disregarding spatial variability in debris properties and compare their debris thickness 841 

estimates with direct field measurements of debris thickness.   842 

 843 

7. Conclusions 844 

This study presents the most comprehensive analysis of near-surface debris temperature 845 

(Ts) data for a Himalayan debris-covered glacier to date. The timeseries presented extend 846 

beyond describing the influence of debris layer thickness on near-surface debris temperature, 847 

and confirm both temporal and spatial variability in Ts on Khumbu Glacier. 16 sites across 848 

Khumbu Glacier’s debris-covered ablation area displayed a marked daily cycle in Ts, 849 

overlying seasonal, short-term and spatial variation in maximum Ts and diurnal amplitude. A 850 

clear transition in the mode of diurnal variation was associated with increasing cloud cover 851 

and precipitation; the latter considered to control debris moisture content. Differences in the 852 

magnitude and range of variation in Ts were apparent between sites, and were indicative of 853 

contrasts in response of Ts to meteorological or environmental variables. A close association 854 



 

 

between on-glacier air temperature (TaG) and Ts was evident while radiative energy had a 855 

lesser influence on Ts. Analyses of these timeseries also demonstrated the role that the site 856 

characteristics slope, lithology and clast size hold in controlling spatial variability in Ts when 857 

in conjunction with one another, but have little controlling influence on spatial variability of 858 

maximum Ts in isolation, and that minimum Ts is influenced by elevation and aspect. 859 

Consequently, this study specifically identified the variables controlling temporal and spatial 860 

variability in Ts for debris-covered glacier surface with a debris layer thickness of over 1 m.  861 

 862 

Our results reinforce the complexity and interconnected nature of the surface energy balance 863 

at a supraglacial debris surface, identifying that energy fluxes such as ambient air 864 

temperature and incoming radiative flux at the debris surface, as well as debris characteristics 865 

such as lithology and clast size to a degree, regulate debris surface temperature but are not 866 

independent of one another. Hence, these results suggest that, although temperature-index 867 

melt models can be useful for estimating supraglacial debris thickness or ablation, these 868 

models should follow an enhanced approach in which additional aspects of energy exchange 869 

such as incoming solar radiation are included (e.g. Carenzo et al., 2016). These models also 870 

need to consider spatial and temporal variation in the controlling variables used (e.g. air 871 

temperature and incoming solar radiation), and use on-glacier air temperature to reduce 872 

uncertainties in estimates of ablation. Studies that simulate ablation or derive debris thickness 873 

should consider including spatial variability in Ts and debris thickness in model calibrations, 874 

and consider the influence of variability in site characteristics on these results, in particular 875 

with regards to their influence on bulk effective thermal conductivity of the debris layer. 876 

Finally, the data presented here were limited to debris layers >1 m thick, and future studies 877 

should assess the role of debris characteristics and local topography in defining the energy 878 



 

 

exchange and Ts across thinner debris layers to enable the variability of and controls on 879 

surface temperature to be understood across an entire debris-covered glacier surface.  880 
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Figure captions 1167 

Figure 1. Study site location: (a) in a regional context; (b) in relation to Mt Everest, displaying 1168 

the extent of Khumbu Glacier and location of the meteorological stations (Changri Nup and 1169 

Pyramid) used in this study, including the extent of Changri Nup and Changri Shar 1170 

(reproduced from Vincent et al., 2016); (c) the study area and locations of temperature 1171 

sensors, with corresponding temperature sensor ID, and on-glacier air temperature location 1172 

(TaG).  1173 

 1174 

Figure 2: Site photos before installation of temperature sensors: (a) Site 11: Consolidated 1175 

medium sand with medium pebbles; (b) Site 3: Small cobbles to large boulders with a medium 1176 

to coarse sand matrix; and (c) Site 15: Small granite and schist cobbles to small boulders 1177 

with course sand to medium pebble matrix.  1178 

 1179 

Figure 3: (a) Mean diurnal Ts for all temperature sensor sites, alongside on- and off-glacier 1180 

air temperature timeseries, (b) Daily amplitude in Ts at all sites, (c) Mean daily incoming 1181 

shortwave, longwave and total radiation (SWin, LWin and NRin, respectively), (d) Total daily 1182 

precipitation and mean daily relative humidity across the study period. 1183 

 1184 

Figure 4: Box plots of mean, interquartile range, maximum and minimum near-surface debris 1185 

temperature for each of the time series. Red box plots are the time series identified as 1186 

timeseries less representative of Ts, greyed plots are timeseries identified as significantly 1187 

different from the statistically representative Site 14. Outliers are considered to be values 1188 

outside of the range between the 25th and 75th percentiles.  1189 

 1190 



 

 

Figure 5: (a) The two modes of variability in Ts for Site 14, described by PC1 and PC2, (b) 1191 

plot to identify days described by PCs 1 or 2, filled circles identify days with a negative or 1192 

lagged relationship to PC2 and greyed circles mark days not described by either dominant 1193 

PC, (c) Ts timeseries for Site 14 highlighting each day’s mode of variation. 1194 

 1195 

Figure 6: The correlation coefficient values (r) for the relationship between on-glacier air 1196 

temperature (TaG) and near-surface debris temperature (Ts), for (a) each daytime cycle 1197 

(06:00–18:00) and (b) night-time cycle (18:00–06:00) over the study period, c) presents the 1198 

across-sites mean r-values for day and night. 1199 

 1200 

Supplementary material: Figure S1 : Temperature differences recorded by free and 1201 

contained iButton sensors (black), and Tinytag sensors (grey), for (a) air, (b) water and (c) 1202 

ice in laboratory conditions.  1203 

 1204 

 1205 



 

 

Table 1: Topographic and debris characteristics for iButton temperature sensor sites. Mean Ts uncertainty calculated for the near-1206 

surface placement of temperature sensors under representative clasts at each location. Rows highlighted in grey are timeseries 1207 

identified to be less representative of Ts. 1208 

Sensor 
ID 

Elevation 
(m a.s.l.)  

Debris description 
 

Mean 
clast 

size (m)  

Lithology 
(% Granite)  Slope (°) Aspect (°) Curvature 

 
Roughness 
(× 10-2; m) 

Mean Ts 
uncertainty 

(°C) 

1 4949 Large cobbles with medium sand matrix 0.058 100 10 202 -0.65 0.05 0.87 

2 4952 Large cobbles with medium sand matrix 0.099 100 9 100 1.38 0.09 1.49 

3 4945 Small to large cobbles with medium to 
coarse sand matrix 0.028 50 5 132 -0.82 0.19 0.42 

4 4948 Small to large cobbles with coarse sand 
matrix 0.020 40 2 321 -1.46 0.09 0.3 

5 4947 Large cobbles with medium to coarse 
sand matrix 0.029 50 5 285 -1.22 0.14 0.44 

6 4952 Medium grained sand with < 5 % medium 
granite pebbles 0.002 100 3 173 -1.21 0.04 0.03 

7 4949 Medium pebbles to large cobbles with 
medium sand matrix 0.020 50 5 224 -0.80 0.20 0.30 

8 4903 Very coarse pebbles with medium sand 
matrix 0.010 95 12 290 0.17 0.04 0.15 

9 4938 Small cobbles to large boulders with 
medium to coarse sand matrix 2.930 100 6 86 0.05 0.10 4.39 

10 4938 Coarse pebbles to large boulders with 
consolidated medium sand matrix 0.027 50 6 266 0.88 0.04 0.41 

11 4946 Small to large cobbles with consolidated 
medium to coarse sand matrix 0.055 70 5 103 0.57 0.11 0.83 

12 4942 Small to large cobbles with medium to 
coarse sand matrix 0.016 60 6 125 0.49 0.03 0.24 

13 4935 Small cobbles to large boulders with 
coarse sandy matrix 2.890 90 6 170 0.33 0.06 4.34 

14 4937 Small cobbles to small boulders with 
coarse matrix 0.027 60 5 131 -1.15 0.30 0.41 

15 4950 Very coarse pebbles to large cobbles 
with consolidated medium matrix 0.042 50 7 206 0.03 0.20 0.32 

16 4949 Small cobbles to large boulders with 
medium to coarse sand matrix 0.030 50 8 274 0.11 0.15 0.30 

1209 



 

 

Table 2: A matrix of Spearman rank correlation coefficient (r) and Nash-Sutcliffe efficiency coefficient (E) for each pair of raw (hourly) 1210 

Ts timeseries. All correlations displayed p < 0.05. The greyed rows (Sites 1, 2, 9, 11 and 13) are those identified as being less 1211 

representative of debris surface temperature due to site clast size. Correlation between each raw Ts series and the mean Ts is shown, 1212 

along with the sum and average E for each.  1213 

 1214 

  Spearman’s correlation coefficient (r) 
  

 Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean  
Ts 

E
ffi

ci
en

cy
 c

rit
er

io
n 

( 
E

 )
 

1  0.96 0.96 0.98 0.97 0.97 0.97 0.92 0.94 0.96 0.95 0.97 0.96 0.97 0.94 0.98 0.98 

2 0.30  0.96 0.95 0.97 0.94 0.95 0.88 0.97 0.95 0.97 0.96 0.96 0.98 0.98 0.97 0.97 

3 0.93 0.69  0.97 0.94 0.97 0.98 0.95 0.92 0.98 0.99 0.98 0.92 0.99 0.96 0.97 0.99 

4 0.91 0.52 0.92  0.95 0.97 0.97 0.95 0.91 0.97 0.96 0.98 0.94 0.97 0.93 0.97 0.99 

5 0.93 0.80 0.84 0.63  0.95 0.96 0.88 0.95 0.94 0.93 0.96 0.94 0.96 0.96 0.98 0.96 

6 0.80 0.81 0.75 0.39 0.87  0.99 0.95 0.9 0.98 0.96 0.99 0.9 0.97 0.94 0.97 0.99 

7 0.91 0.63 0.94 0.91 0.86 0.82  0.95 0.91 0.98 0.96 0.99 0.92 0.98 0.95 0.98 0.99 

8 0.82 0.57 0.84 0.75 0.77 0.80 0.79  0.84 0.96 0.93 0.95 0.86 0.93 0.89 0.91 0.96 

9 -0.12 0.65 -0.17 -0.36 -0.42 -0.04 -0.28 -0.19  0.92 0.93 0.92 0.95 0.94 0.94 0.93 0.93 

10 0.92 0.72 0.94 0.81 0.90 0.89 0.87 0.87 0.53  0.97 0.99 0.92 0.98 0.95 0.97 0.99 

11 0.66 0.90 0.68 0.16 0.77 0.84 0.35 0.45 0.70 0.75  0.97 0.93 0.98 0.97 0.96 0.98 

12 0.90 0.66 0.94 0.91 0.86 0.80 0.96 0.81 0.44 0.93 0.77  0.93 0.99 0.96 0.98 1.00 

13 0.37 0.86 0.20 -0.48 0.58 0.60 -0.33 -0.11 0.75 0.35 0.81 -0.20  0.94 0.92 0.94 0.94 

14 0.87 0.84 0.90 0.66 0.91 0.88 0.80 0.66 0.60 0.90 0.91 0.85 0.80  0.98 0.98 0.99 

15 0.65 0.92 0.65 0.13 0.83 0.84 0.40 0.32 0.71 0.70 0.92 0.47 0.80 0.89  0.97 0.96 

16 0.90 0.65 0.94 0.89 0.86 0.78 0.92 0.70 0.41 0.88 0.75 0.94 0.64 0.91 0.78  0.99 
 E 10.75 10.52 10.99 7.75 10.99 10.83 9.55 8.85 3.21 11.96 10.42 11.04 5.64 12.38 10.01 11.95  
 Mean E 0.72 0.7 0.73 0.52 0.73 0.72 0.64 0.59 0.21 0.8 0.69 0.74 0.38 0.83 0.67 0.8  

 1215 



 

 

Table 3 : Results of regression analyses to identify seasonal trends in minimum, mean, maximum Ts and the associated daily 1216 

amplitude. Seasonal trend slope (b, in °C d -1) is given with the associated p-value, and statistically significant slopes are indicated in 1217 

italic. The greyed rows are those identified as timeseries less representative of Ts. 1218 

 Daily minimum T s Daily mean T s Daily maximum T s Daily amplitude T s 

Sensor  ID b p b p b p b p 

1 0.06 << 0.05 -0.03 < 0.03 -0.22 << 0.05 -0.28 << 0.05 

2 0.07 << 0.05 -0.01 0.53 -0.11 << 0.05 -0.18 << 0.05 

3 0.08 << 0.05 -0.03 0.06 -0.22 << 0.05 -0.30 << 0.05 

4 0.08 << 0.05 -0.05 < 0.05 -0.28 << 0.05 -0.36 << 0.05 

5 0.07 << 0.05 -0.02 0.07 -0.20 << 0.05 -0.27 << 0.05 

6 0.08 << 0.05 -0.01 0.60 -0.19 << 0.05 -0.27 << 0.05 

7 0.10 << 0.05 -0.06 << 0.05 -0.37 << 0.05 -0.47 << 0.05 

8 0.10 << 0.05 -0.01 0.55 -0.17 << 0.05 -0.27 << 0.05 

9 0.03 << 0.05 0.00 0.62 -0.09 << 0.05 -0.12 << 0.05 

10 0.06 << 0.05 -0.04 < 0.05 -0.18 << 0.05 -0.24 << 0.05 

11 0.08 << 0.05 0.00 0.80 -0.10 < 0.05 -0.18 << 0.05 

12 0.10 << 0.05 -0.04 < 0.05 -0.26 << 0.05 -0.36 << 0.05 

13 0.05 << 0.05 -0.01 0.61 -0.03 0.11 -0.09 << 0.05 

14 0.08 << 0.05 -0.03 0.06 -0.18 << 0.05 -0.27 << 0.05 

15 0.08 << 0.05 0.00 0.92 -0.11 < 0.05 -0.19 << 0.05 

16 0.08 << 0.05 -0.05 < 0.05 -0.28 << 0.05 -0.36 << 0.05 

Average 0.08 - -0.02 - -0.19 - -0.26 - 

  1219 



 

 

Table 4 : Descriptive statistics for groups of days corresponding to each of the key principal components (PCs) and undefined diurnal 1220 

cycles, identified through PCA. Standard deviations are given in brackets. 1221 

 1222 

Descriptor PC 1 PC 2 Undefined 

Number of days 
represented by PC 30 19 11 

Mean daily T s (°C) 10.9 (1.9) 9.5 (1.8) 7.9 (1.5) 

Mean maximum T s (°C) 29.8 (3.6) 23.3 (6.0) 16.8 (4.4) 

Mean minimum T s (°C) 0.9 (2.5) 3.3 (1.4) 3.4 (1.4) 

Mean Ts amplitude (°C) 28.9 (4.1) 20.1 (6.7) 13.5 (4.1) 

Mean time of peak T s (hrs) 13:06 (±1:12) 13:24 (±1:06) 13:12 (±1:42) 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 



 

 

Table 5 : Correlation coefficient and lag time for pairs of detrended Ts time series for which the persistent 24-hour diurnal cycles have 1230 

been removed. The grey rows are those identified as being less representative of debris surface temperature due to site clast size. 1231 

  Correlation coefficient ( r ) 
 

 Ts1 Ts2 Ts3 Ts4 Ts5 Ts6 Ts7 Ts8 Ts9 Ts10 Ts11 Ts12 Ts13 Ts14 Ts15 Ts16 
 Ts1  0.95 0.98 0.99 0.99 0.98 0.98 0.94 0.95 0.98 0.96 0.98 0.93 -0.97 0.95 0.97 
 Ts2 -1  0.96 0.94 0.96 0.93 0.93 0.84 0.98 0.94 0.98 0.96 0.97 0.98 0.99 0.97 

Ts3 0 0  0.99 0.98 0.99 0.98 0.94 0.94 0.99 0.98 0.99 0.92 0.98 0.97 0.98 

Ts4 0 1 0  0.98 0.99 0.98 0.95 0.94 0.99 0.96 0.98 0.92 0.97 0.94 0.97 
 Ts5 0 0 0 0  0.98 0.98 0.92 0.97 0.98 0.97 0.98 0.94 0.98 0.97 0.98 

Ts6 0 1 0 0 0  0.99 0.96 0.92 0.99 0.95 0.98 0.89 0.96 0.94 0.97 

Ts7 0 1 0 0 0 0  0.95 0.92 0.99 0.96 0.99 0.87 0.97 0.95 0.98 

Ts8 1 2 1 1 1 1 1  0.85 0.96 0.90 0.94 0.82 0.89 0.86 0.90 

Ts9 0 0 0 -1 0 0 0 -1  0.93 0.96 0.94 0.97 0.96 0.96 0.95 

Ts10 0 1 0 0 0 0 0 -1 0  0.97 0.99 0.91 0.97 0.95 0.97 

Ts11 0 0 0 0 0 0 0 -1 0 0  0.98 0.95 0.99 0.98 0.97 

Ts12 0 0 0 0 0 0 0 -1 0 0 0  0.92 0.99 0.97 0.99 
 Ts13 0 0 0 0 0 0 0 -1 0 0 0 0  0.94 0.94 0.93 
 Ts14 0 0 0 0 0 0 0 -1 0 0 0 0 0  0.99 0.99 
 Ts15 -1 0 -1 -1 -1 -1 -1 -2 0 -1 0 0 0 0  0.98 
 Ts16 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0  
 

                                   Lag time (hours)         

  1232 

  1233 



 

 

Table 6: Results of SMR models describing natural logarithm transformed Ts timeseries (*Ts) from meteorological variables and 1234 

additional predictors derived from the meteorological timeseries (see text for full details). Predictive variable importance (e.g. 1, 2 1235 

etc.) or sequence (e.g. variables 1+2, or all indicated by +3+) is shown, with coefficients of determination and root mean squared 1236 

error for each model given in parentheses (R2, RMSE). The grey rows are those identified as being less representative of debris 1237 

surface temperature due to site clast size. 1238 

 SMR 1: raw transformed meteorological variables SMR 2: minus *T aG SMR 3: combined radiation minus *T aG SMR 4: Alternates 
to TaG 

Site *TaG *SWin *LW in *RH *SWin 
*SWin 

+*LWin, 
*RH, *P 

*NR *NR+dTa 

+All *RH, 
SWin, 

LWin, *P, 
tP 

All *RH, *P, tP 

1 1  
(0.59, 0.373) 

2 
(0.60, 0.368) 

3  
(0.60, 0.367) 

4  
(0.62, 0.358) 

1  
(0.33,0.476) 

1+  
(0.45, 0.432) 

1  
(0.37, 0.462) 

1+2 
(0.45, 0.432) 

+3+ 
(0.49, 0.415) 

+3+ 
(0.69, 0.325) 

2 1  
(0.47, 0.313) 

2  
(0.50, 0.304) 

3  
(0.52, 0.298) 

4  
(0.55,0.287 

1  
(0.21, 0.383) 

1+  
(0.39, 0.335) 

1  
(0.26, 0.370) 

1+2 
(0.38, 0.339) 

3+ 
(0.42, 0.328) 

+3+ 
(0.62, 0.265) 

3 1  
(0.55, 0.342) 

2  
(0.57, 0.335) 

3  
(0.57, 0.333) 

4  
(0.59, 0.325 

1  
(0.27, 0.433) 

1+  
(0.40, 0.394) 

1  
(0.32, 0.422) 

1+2 
(0.37, 0.405) 

+3+ 
(0.42, 0.387) 

+3+ 
(0.63, 0.311) 

4 1  
(0.61, 0.362) 

2  
(0.62, 0.360) 

4  
(0.64, 0.349) 

3  
(0.62, 0.357) 

1 
(0.35, 0.466) 

1+  
(0.46, 0.425) 

1  
(0.39, 0.453) 

1+2 
(0.43, 0.438) 

+3+ 
(0.48, 0.418) 

+3+ 
(0.67, 0.334) 

5 1  
(0.53, 0.344) 

4  
(0.57, 0.329) 

2  
(0.55, 0.338) 

3  
(0.56, 0.334) 

1  
(0.28, 0.426) 

1+  
(0.41, 0.385) 

1  
(0.32, 0.412) 

1+2 
(0.42, 0.381) 

+3+ 
(0.45, 0.371) 

+3+ 
(0.65, 0.297) 

6 1  
(0.56, 0.289) 

4  
(0.60, 0.277) 

2  
(0.58, 0.283) 

3  
(0.59, 0.280) 

1  
(0.31, 0.364) 

1+ 
(0.43, 0.329) 

1  
(0.36, 0.350) 

1+2 
(0.40, 0.338) 

+3+ 
(0.45, 0.322) 

+3+ 
(0.62, 0.268) 

7 1  
(0.58, 0.361) 

4  
(0.60, 0.350) 

2  
(0.59, 0.357) 

3  
(0.60, 0.352) 

1  
(0.33, 0.453) 

1+  
(0.44, 0.413) 

1  
(0.38, 0.438) 

1+2 
(0.43, 0.417) 

+3+ 
(0.47, 0.405) 

+3+ 
- 

8 1  
(0.67, 0.279) 

4  
(0.68, 0.275) 

2  
(0.68, 0.277) 

3  
(0.68, 0.276) 

1  
(0.40, 0.376) 

1+  
(0.49, 0.348) 

1  
(0.44, 0.362) 

1+2 
(0.47, 0.355) 

+3+ 
(0.51, 0.342) 

+3+ 
(0.68, 0.273) 

9 1  
(0.44, 0.295) 

2  
(0.50, 0.281) 

3  
(0.50, 0.278) 

4  
(0.52, 0.274) 

1  
(0.17, 0.360) 

1+  
(0.31, 0.328) 

1  
(0.21, 0.351) 

1+2 
(0.31, 0.329) 

+3+ 
(0.36, 0.316) 

+3+ 
(0.60, 0.251) 

10 1  
(0.61, 0.326) 

2  
(0.62, 0.321) 

4  
(0.64, 0.315) 

3  
(0.63, 0.319) 

1  
(0.33, 0.426) 

1+  
(0.43, 0.392) 

1  
(0.37, 0.415) 

1+2 
(0.40, 0.402) 

+3+ 
(0.46, 0.384) 

+3+ 
(0.68, 0.297) 

11 1  
(0.52, 0.332) 

2  
(0.55, 0.319) 

3  
(0.56, 0.316) 

4  
(0.58, 0.308) 

1  
(0.23, 0.420) 

1+  
(0.38, 0.376) 

1  
(0.27, 0.407) 

1+2 
(0.34, 0.388) 

+3+ 
(0.41, 0.365) 

+3+ 
(0.62, 0.293) 

12 1 
(0.59, 0.366) 

2  
(0.60, 0.360) 

3  
(0.60, 0.357) 

4  
(0.62, 0.651) 

1  
(0.31, 0.470) 

1+  
(0.44, 0.426) 

1  
(0.36, 0.454) 

1+2 
(0.43, 0.431) 

+3+ 
(0.46, 0.416) 

+3+ 
(0.67, 0.327) 

13 1  
(0.49, 0.299) 

2  
(0.51, 0.293) 

3  
(0.52, 0.290) 

4  
(0.55, 0.283) 

1  
(0.24, 0.365) 

1+  
(0.39, 0.328) 

1  
(0.29, 0.355) 

1+2 
(0.38, 0.330) 

+3+ 
(0.41, 0.322) 

+3+ 
- 

14 1  
(0.54, 0.349) 

2  
(0.56, 0.341) 

3  
(0.56, 0.338) 

4  
(0.59, 0.328) 

1  
(0.27, 0.439) 

1+  
(0.41, 0.393) 

1  
(0.31, 0.427) 

1+2 
(0.39, 0.401) 

+3+ 
(0.45, 0.381) 

+3+ 
(0.65, 0.304) 

15 1  
(0.54, 0.349) 

2  
(0.56, 0.341) 

3  
(0.56, 0.339) 

4  
(0.59, 0.327) 

1  
(0.18, 0.447) 

1+  
(0.35, 0.397) 

1  
(0.22, 0.434) 

1+2 
(0.35, 0.397) 

+3+ 
(0.42, 0.376) 

+3+ 
(0.62, 0.305) 

16 1  
(0.45, 0.366) 

2  
(0.50, 0.350) 

3  
(0.51, 0.344) 

4  
(0.53, 0.336) 

1  
(0.27, 0.466) 

1+  
(0.40, 0.421) 

1  
(0.31, 0.453) 

1+2 
(0.41, 0.419) 

3+ 
(0.45, 0.405) 

+3+ 
(0.64, 0.327) 

1239 



 

 

Table 7 : Stepwise generalised linear models (SGLMs) for describing debris temperature 1240 

metrics based on environmental variables for the iButton sensor sites. Models detail the 1241 

coefficients for each significant (p < 0.05) predictor variable, and summarise the model 1242 

performance using the coefficient of determination and root mean square error (R2, RMSE). 1243 

 1244 

Ts 

metric  
K 

(constant)  
Elevation 

(m) 
Clast size 

(m) 
Lithology 

(% granite)  Slope (°)  Aspect (°)  R2 RMSE 

Min. Ts -106.460 0.022    0.004 0.58 0.292 

Mean Ts 19.590  -165.260 -0.111 0.259  0.82 0.514 

Max. Ts 55.461  -566.370 -0.354 1.087  0.93 0.969 

Amplitude 
Ts 50.819  -555.460 -0.342 1.185  0.93 0.992 

 1245 

 1246 

 1247 

 1248 

 1249 
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 1252 

 1253 

 1254 

 1255 

 1256 

 1257 

 1258 

 1259 

 1260 



 

 

Table 8: Linear Bivariate Regression (LBR) analysis results (R2) for debris metrics and debris 1261 

characteristics for iButton sensor sites, excluding the less representative sites. All p values 1262 

were >0.05 and so were not statistically significant, except for minimum Ts and elevation (p 1263 

= 0.02). 1264 

Ts 

metric  
Elevation 

(m) 
Clast size 

(m) 
Lithology 

(% granite)  Slope (°)  Aspect (°)  

Min. Ts 0.44    0.01 

Mean Ts  0.05 <0.01 0.05 
 

 

Max. Ts  0.07 <0.01 0.10  

Amplitude 
Ts  0.07 <0.01 0.12  

 1265 

  1266 



 

 

  1267 



 

 

Temperature sensor assessment 1268 

Previous studies have established that iButton sensors are not waterproof (Lewkowicz, 2008) 1269 

and so mitigated against device failure by sealing the sensors in laminate pouches (e.g. 1270 

Gubler et al., 2011). However, these studies either overlooked the potential effect of 1271 

waterproof casing on temperature measurements, or did not test the sensors in such 1272 

waterproof casing in extreme environments (e.g. Roznik et al., 2012; Minder et al, 2010). We 1273 

therefore tested the effects of a waterproof casing on measurement accuracy and precision 1274 

under extreme conditions prior to sensor deployment in the field. The iButton sensors were 1275 

tested in controlled environments alongside TinyTag sensors (Plus 2 TGP-4520) to 1276 

determine the accuracy of the iButton sensors with and without a waterproof casing, following 1277 

a similar procedure to Minder et al. (2010). Three pairs of iButton sensors were placed in 1278 

polycarbonate plastic containers (0.2 × 0.2 × 0.1 m in size) of free-flowing air, water and water 1279 

ice for 62 days (340 hrs), along with TinyTag sensors placed in the same air and water 1280 

containers for comparison. A Tinytag sensor was not placed in water due to a restriction on 1281 

equipment available, and so preference was given to the two environments the iButtons were 1282 

most likely to experience during a monsoon season on the debris-covered surface of Khumbu 1283 

Glacier. In each case, one iButton was encased in a polyethylene bag and one was not. The 1284 

containers of air and water were placed outside in indirect solar radiation, while the container 1285 

of ice was stored in a laboratory freezer at –26°C, to replicate the potential range of conditions 1286 

which may occur on a mountain glacier. All sensors recorded ambient temperatures at hourly 1287 

intervals (Figure S1).  1288 

 1289 

The TinyTag sensors measured temperature to a greater accuracy than the iButton sensors 1290 

(a resolution of ±0.4 °C  rather than ±1.0 °C ), resulting in smaller variations in temperature 1291 

measured by these sensors. A consistent offset in measured temperature was observed 1292 



 

 

between the iButtons encased in a waterproof bag and those that were not. The encased 1293 

iButtons recorded temperatures commonly around 0.5°C lower than those in free-flowing air, 1294 

and recorded temperatures typically around 0.5°C higher in the water and ice experiments 1295 

(Figure S1). The mean difference in temperature series between iButtons were 0.23 ± 0.11 1296 

°C in air and –0.33 ± 0.23 °C in water; the mean contrast between unenclosed iButtons and 1297 

the TinyTag data was –0.12 ± 0.22°C for air and 0.14 ± 0.22°C for water. Although 1298 

temperatures measured between free iButtons, encased iButtons and Tinytag temperature 1299 

sensors varied, all variations were <1°C; this uncertainty is below the manufacturers’ stated 1300 

accuracy (1.0°C). The higher deviations for the iButtons in ice suggested that there was the 1301 

potential for elevated uncertainties of  around 1°C if sensors were in direct contact with ice. 1302 

Nonetheless, the use of a combination of iButton and Tinytag temperature sensors, and of 1303 

polyethylene bags as waterproof casing for the iButtons (as Tinytag sensors have a 1304 

waterproof design) was deemed appropriate for field measurements. The continued function 1305 

of iButtons not encased and placed in water or ice also suggested the iButtons exceeded the 1306 

water resistance stated by the manufacturer. 1307 

 1308 

 1309 

  1310 


