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Quantifying Uncertainty in Simulation
of Sewer Overflow Volume

Ambuj Kumar Sriwastava1; Simon Tait2; Alma Schellart3; Stefan Kroll4; Mieke Van Dorpe5;

Johan Van Assel6; and James Shucksmith7

Abstract: Environmental regulators frequently stipulate the modeling approaches required for water utilities managing sewer networks to

demonstrate regulatory compliance. The performance of drainage systems with regard to combined sewer overflow (CSO) discharges is

required to be assessed using urban drainage models to prove compliance before large investments can be authorized. However, as far

as the authors are aware, the modeling approaches to demonstrate regulatory compliance currently provide no opportunity for considering

model uncertainty. This paper therefore addresses a knowledge gap in the role of model uncertainty in environmental compliance studies by

describing an objective uncertainty quantification process that enables the water utilities to evaluate and report the uncertainty in their mod-

eling predictions and that is also transparent enough to satisfy regulators. The sewer network was modeled in InfoWorks CS software using a

design storm defined by the regulator to test the performance of CSOs. Uncertainty in the model and input parameters was propagated using

Monte Carlo simulations with Latin hypercube sampling, and the results were presented to show the trade-off between the infrastructure

investment and the risk of spilling. DOI: 10.1061/(ASCE)EE.1943-7870.0001392. This work is made available under the terms of the

Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Environmental protection; Model uncertainty; Regulatory compliance; Sewer overflows; Uncertainty propagation.

Introduction

Decision making in sewer network infrastructure management is

strongly influenced by the desire to comply with regulatory require-

ments while also attempting to satisfy budgetary constraints. For

example, combined sewer overflows (CSOs) intermittently spill
wastewater into receiving water bodies due to the lack of sewer

capacity during rainfall events. The operation of these overflows

needs to comply with the environmental permits issued by regula-

tory authorities to deliver a defined standard of protection, for ex-

ample, the Urban Pollution Management Manual in the UK, which

specifies the allowable frequency and duration of the reduction in

the dissolved oxygen (DO) level and of the levels of pollutant

concentrations in the receiving water after the CSO spill events

(Foundation for Water Research 2012). Frequently, water utilities

risk paying financial penalties and/or suffering reputational damage

if they fail to comply with regulatory requirements, for example,

the outcome delivery incentives set by the Water Services Regula-

tion Authority (OFWAT) in the UK (OFWAT 2014). Compliance

risks can be managed by investing in new infrastructure and/or

applying new system management strategies, such as real-time

control. Investment decisions are based on the assessment criteria

that are defined to fairly compare alternative schemes and identify

an optimal solution. The assessment criteria are often required to

be tested using hydrodynamic network models to simulate the

hydraulic performance of alternative schemes (Delelegn et al.

2011). Because the hydrodynamic network models can contain

considerable uncertainty (Thorndahl and Willems 2008; Vezzaro

et al. 2013), it is understood that uncertainty in the model predic-

tions can affect the outcome of the asset management decision-

making process. However, the current methods used by researchers

to assess the uncertainty in model simulations are, as far as the

authors are aware, not commonly used by modelers simulating

the hydraulic performance of schemes for water utilities.
Probability theory has been applied by several researchers to

quantify aspects of uncertainty in model calculations. Refsgaard

et al. (2007) classified uncertainty in modeling into input data,

model parameter, and structure uncertainties. Thorndahl and

Willems (2008) studied the impact of the uncertainty in rainfall es-

timation on the risk of failures of urban drainage systems, Willems

(2008) investigated the model input and model structure uncer-

tainty in water quality modeling. There have been few studies

on the urban drainage systems where prior parameter distribution

was estimated from field measurements representing the measured

behavior of the parameter. Freni et al. (2008), Korving et al. (2002),

and Vezzaro et al. (2013) assumed that the input and model param-

eters in urban drainage models followed uniform or normal distri-

butions. This might not reflect reality, but the assumption of a

uniform or normal distribution was made due to a lack of the
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relevant data required to statistically quantify the model or the input

parameter uncertainty.
There are several methods to estimate model output uncertainty,

which differ in their computational requirement and complexity

(Vezzaro et al. 2013). Not all these methods are suitable for use

by a water utility. Monte Carlo simulation is one method that does

not require modifications to the hydrodynamic model structure

(and hence can be carried out using commercial software), but it

is difficult to implement for computationally expensive models;

hence, this technique is usually applied to simplified conceptual

models. Korving et al. (2002) quantified the effect of the uncer-

tainty in the sewer-system dimensions on the combined sewer over-

flow volume using Monte Carlo simulations, in which the sewer

system was simplified to a reservoir connected to an external weir

and a pump. Model reduction techniques have often been used for

complex models to enable uncertainty propagation; for example,

Schellart et al. (2010) used a response database before applying

Monte Carlo simulations for the uncertainty propagation of

water-quality parameters in an integrated catchment model. This

model comprised a rainfall generator, a simplified hydrological

model, a computationally expensive sewer hydrodynamic model,

and a simple river impact model to estimate the water quality fail-

ures in a receiving watercourse over an extended time period.

Model reduction introduces additional uncertainty in the realization

of the physical system on top of the model input and parameter

uncertainty.
The applicability of these studies on uncertainty propagation

and quantification is very challenging for the water utilities respon-

sible for the management of urban drainage systems. Infrastructure

investments, for example, for CSO spill control require adherence

to the standard modeling procedures set by the environmental reg-

ulators, and in various European countries, there is a standard mod-

eling procedure specified by the regulators to evaluate the CSO

performance (Dirckx et al. 2011). CSO performance evaluation

by any modeling approach other than the agreed procedure will

not comply with the requirements of the regulator. Hence, an un-

certainty quantification approach that does not conform to the stan-

dard modeling procedure in a transparent and objective way will

not be acceptable to a regulator. Countries have professional organ-

izations that promote the best modeling practice, for example, the

Wastewater Planning Users Group (WaPUG) code of practice in the

UK (WaPUG 2002). However, these guidance documents do not

cover uncertainty analysis.

This paper aims to address the practical and conceptual issues

associated with the previous uncertainty quantification studies that

render them unsuitable for the environmental regulators, either

because they do not use the modeling tools that are specified or

because the proposed uncertainty assessment procedures are not

transparent and objective enough to be accepted by the regulator.

This study aimed to quantify objectively the uncertainty in complex

sewer network hydrodynamic models to a level that will satisfy

environmental regulatory compliance. This study had the following

objectives: (1) to develop an objective practical method to quantify

the uncertainty in the CSO spill volume using a complex hydro-

dynamic network model specified by the regulator in Flanders,

Belgium; (2) to identify the appropriate tools so that the key param-

eters that impact uncertainty can be identified unambiguously;

(3) to demonstrate the ways in which the uncertainty in the input

and model parameters can be robustly defined, either by using the

existing knowledge or by performing analysis of the long-term

data; and (4) to demonstrate a practical method for propagating

the parameter uncertainty in the CSO spill volume predictions

and then demonstrate how such information could be used in a

regulatory process.

In order to comply with the local regulations, a complex hydro-
dynamic model of the sewer system was required to be used with a
specified design storm. Hence, any uncertainty propagation method
that failed to use a complex hydrodynamic model was not appropri-
ate. Therefore, to estimate the uncertainty in the model output, a
small subset of dominant input/model parameters that could explain
the model output variance was selected (Wainwright et al. 2014).
The dominant processes were identified by ranking the parameters
using global sensitivity analysis (GSA). This reduced the computa-
tional cost by including only the significant parameters in the un-
certainty analysis. The Monte Carlo technique was selected to
propagate the uncertainty over other available techniques, such as
differential analysis using a Taylor series approximation and re-
sponse surface–based techniques, because it does not require modi-
fication in the model structure and provides a direct estimation of the

probability distribution of the simulated model outputs (Helton and
Davis 2003). Because it is a sampling-based technique, using an ef-
ficient sampling method such as the Latin hypercube sampling
(LHS) can ensure a full coverage of the sample space. Helton
and Davis (2003) and Melching and Bauwens (2001) maintained
that LHS provided a faster convergence than a random sampling
applied to Monte Carlo simulations. LHS is also easier to implement
than the stratified sampling method because it does not require the
definition of strata in the sample space and the corresponding strata
probabilities (Helton and Davis 2003). Hence, in this study, LHS
was applied to generate samples from the parameter space.

Although the methods applied for sensitivity and uncertainty
analyses are not new, their application to a modeling study satisfy-
ing environmental regulatory guidelines is new. As far as the au-
thors are aware, GSAmethods such as the Morris screening method
(Morris 1991) and Monte Carlo simulations with Latin hypercube
sampling (Helton and Davis 2003) have not been applied to sim-
ulation results obtained from a detailed sewer hydrodynamic
network model. The methodology to quantify uncertainty in the
CSO spill volume laid out in this study can be implemented by
water utilities for other regulatory guidelines with a different rain-
fall input.

Methodology

This study was conducted in three steps. First, the Morris screening
approach was used to identify the input/model parameters that con-
tribute the most to the uncertainty of the predicted sewer overflow
volume in an urban catchment in Flanders, Belgium. Second, the
uncertainty in the estimation of the shortlisted input/model param-
eters was quantified. For one of the input/model parameters, the
process of estimating the prior parameter distribution using the
available field measurements was demonstrated. In the third step,
the uncertainty in the CSO spill volume was quantified by propa-
gating the shortlisted input/model parameter uncertainty through
Monte Carlo simulations on the output from a detailed hydrody-
namic sewer network model. LHS was used to draw realizations
of model inputs and parameters from their distributions, which re-
sulted in a set of the CSO spill volume values. This set of model
output values could be considered random samples of its distribu-
tion (Uusitalo et al. 2015). Although the GSA provided information
about the significant parameters for a selected model output, this
information was also assessed for the contribution of each of the
important parameters to the overall model output uncertainty.

Catchment Model

The hydrodynamic model used in this study was a subsystem of an
InfoWorks CS model for the municipality of Herent in Belgium. It

© ASCE 04018050-2 J. Environ. Eng.
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served around 2,100 inhabitants with a total contributing area of

about 87 ha. The urban residential sewer system was gravity-
driven; 60% of its pipes had a slope from 0 to 2% and a small

number of pipes (around 3% of the total number of pipes) had a

slope of 10% or higher. The pipes with a high slope were usually
short-length pipes connecting adjacent manholes. The catchment

was selected for this study because of the available 5- and

10-year-long flow survey data that enabled the calculation of
uncertainty in the pipe hydraulic roughness. The sewer network

and catchment model was a detailed model built and calibrated
using InfoWorks CS; this software was selected because it is

the standard modeling procedure agreed upon by Aquafin and

the environmental regulators in Flanders, Belgium. The sewer
network and catchment model could be built using alternative

software, such as MIKE URBAN or the storm water management

model (SWMM). As the underlying hydrological and hydraulic
principles are the same, any of these software packages should

be able to provide similar predictions of the CSO spill volume
when they are appropriately calibrated. However, the aim of this

study was to demonstrate an objective uncertainty quantification

process that enabled the water utilities to evaluate and report the
uncertainty in their modeling predictions and that was transparent

enough to satisfy the regulators. The uncertainty quantification

process demonstrated in this study is independent of the choice
of the model.

Individual physical components of the sewer system, such as

manholes, pipes, weir, and so forth, were well represented in this

model, as were the runoff processes from the catchment. In the
InfoWorks CS model, the runoff volume after the initial losses

was calculated by applying a fixed runoff coefficient, and the

double linear reservoir (Wallingford) model (Sarginson and Nussey
1982) was used to model the runoff routing. Due to the lack of

the measured data required to calibrate a catchment scale runoff
routing model, the double linear reservoir (Wallingford) model

available in InfoWorks CS was selected, as per the Aquafin’s in-

ternal modeling code of practice (Aquafin 2017). The modeling
of sewer hydraulics was governed by the equations of de Saint-

Venant as described by Yen (1973). InfoWorks CS used a

Kindsvater and Carter equation (Kindsvater and Carter 1959) to
model the flow over the weir.

Sensitivity Analysis

Several methods have been used for performing sensitivity analy-
ses; they can be broadly classified as GSA or local sensitivity

analysis (Saltelli et al. 2000). Local sensitivity analysis studies

the effect of small input perturbations on the model output and
is performed around a point in the parameter space, whereas a

GSA is performed over the whole parameter space of the model
inputs (Borgonovo and Plischke 2016; Gamerith et al. 2013;

Iooss and Lemaître 2014). A GSA should be performed if the ob-

jective is to identify the important input/model parameters influenc-
ing the model output under uncertainty (Borgonovo and Plischke

2016). GSA is performed using various approaches, for example,

the standard regression coefficients (SRC) (Saltelli et al. 2008), the
extended FAST method (Saltelli et al. 1999), the Morris screening

method (Morris 1991), and the Sobol indices (Sobol 2001).

Vanrolleghem et al. (2015) preferred the extended FAST over
the SRC andMorris screening method for water quality simulations

using a conceptual model, and stated that the extended FAST
method provided an overall better compromise between the com-

putational burden and the results’ reliability. However, for a water

quantity output, they concluded that the Morris screening provided
the same results as the extended FAST method with approximately

57% fewer simulations required for convergence, satisfying a 3.5%
precision threshold band. Kroll et al. (2016) further demonstrated
that the Morris screening performed on a par with the extended
FAST method in ranking the influence of parameters on the CSO
volume.

It can be concluded that Morris screening is an appropriate
method for performing the GSA because it is computationally
cheap and it performs at a level similar to more computationally
expensive methods. The Morris screening method uses multiple
one-at-a-time (OAT) perturbations of the inputs/parameters to de-
rive the sensitivity measures. Morris screening as a GSA method
can be used to identify the inputs/parameters affecting the model
output variance, which can greatly reduce the uncertainty in the
model output. In addition, it allows fixing the values of those
inputs/parameters that are noninfluential and do not affect the

model output uncertainty if they are varied across their uncertainty
range.

Data: Global Sensitivity Analysis

The input/model parameters selected for the GSA were the initial
loss value, fixed runoff coefficient for impervious surfaces,
Colebrook-White (CW) roughness in the pipes, headloss coeffi-
cient in the pipes, the primary and secondary discharge coefficients
of the weir, the weir crest level, and the weir width in the CSO.
These parameters were selected because they were expected to in-
fluence the flow quantity from the catchment surfaces, the flow in
the pipes, and the flow over the weir at the CSO structure, thus
overall affecting the estimation of the CSO spill volume.

A GSA using the Morris screening method for this catchment

was first outlined in Sriwastava et al. (2016). The frictional hy-
draulic losses in the pipes were represented by the CW roughness
(ks). In this study, the upper bound was set at 6 mm (Lind 2015),
but the roughness may reach higher values due to the sediment dep-
osition or major pipe defects [discussed in CW roughness (ks)].
During the GSA, the CW roughness values of all the pipes were
varied simultaneously. Because the measured data on the initial
losses to runoff in the Herent catchment were not available, these
values were obtained from studies that modeled the runoff from res-
idential urban catchments. Thorndahl et al. (2006) reported a range
of 0.4–1.0 mm for initial loss values, whereas Vanrolleghem et al.
(2015) considered a range of 0.22–1.5 mm. A conservative esti-
mate of the uncertainty in the initial loss values from Vanrolleghem
et al. (2015) was used for the Herent catchment. The calibrated
model had its fixed runoff coefficient set at 0.8 for the impervious
surfaces, which was found to be in accordance with the runoff co-
efficient values for streets and roofs (BASMAA 1999; McCuen
1998). Because the fixed runoff coefficient represents the effects
of a natural random process, it was assumed to have a symmetrical
variation around the value of 0.8, which resulted in a physical upper
limit of 1.0 and a lower bound of 0.6. In InfoWorks CS, the extra
headloss due to the angle of approach of a pipe to a manhole was
represented by a headloss coefficient. The default value of this
multiplying factor was 1, which meant no additional headloss
due to the angle of approach. The headloss coefficient values could
increase up to 6.6 for an angle of approach at 90° to the flow di-
rection, which was taken as its upper bound, with the lower bound
set at 1.0. The experimentally determined values for the weir dis-
charge coefficient from the British (BS) and International (ISO)
standards [BS ISO 1438:2008 (BS EN 2008)] were used to define
a range for the primary discharge coefficient of the weir at the CSO
structure. The InfoWorks CS model used an additional discharge
coefficient, termed a secondary discharge coefficient, when the

water level reached the roof of the CSO. The authors considered
a symmetrical range of �50% for the secondary discharge

© ASCE 04018050-3 J. Environ. Eng.

 J. Environ. Eng., 2018, 144(7): 04018050 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Sh

ef
fi

el
d 

on
 0

6/
19

/1
8.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



coefficient, as it included the discharge coefficient values given in
the British, European (EN), and International standards [BS EN
ISO 5167-2:2003 (BS EN 2003)]. The weir crest level and width
were varied by �10 cm to account for potential measurement
errors.

For the GSA, the parameter values were sampled from a uni-
form distribution within their respective ranges.

Morris Screening Results

Table 1 presents the results of the Morris screening in the form of
the Morris screening sensitivity measures, the absolute mean (μ�),
and the standard deviation (σ) (Campolongo et al. 2007). Higher
values of μ� suggest a higher influence of the model parameters on
the model output, and a high value of σ suggests a nonlinear rela-
tionship or interactions with other parameters. The ranking of the
parameters was based on their respective μ� values. The fixed run-
off coefficient was found to be the single most important parameter;
it also had a high standard deviation, suggesting a dependence on
other parameters. The weir crest level was identified as the second
most significant parameter, followed by the CW roughness, which
also had a relatively higher standard deviation. The model output
was found to be insensitive to the remaining parameters.

Previous studies (Vanrolleghem et al. 2015) have defined a cut-
off threshold of μ� ¼ 0.1 in selecting the important parameters to
be included in the uncertainty analysis. On the basis of this guid-
ance, the fixed runoff coefficient, weir crest level, and CW rough-
ness were selected for inclusion in the uncertainty quantification
and propagation analysis.

Characterization of Uncertainty in Input/Model
Parameters

This section describes the process of uncertainty quantification for
the selected significant input/model parameters.

Fixed Runoff Coefficient (Impervious Surfaces)

The calibrated model calculated runoff from the impervious surfaces
using a fixed runoff coefficient of 0.8 to represent the runoff losses.
This value was in accordance with McCuen (1998), which recom-
mended a value of 0.85 for roofs, 0.80 for brick pavements, and 0.85
for asphalt and concrete pavements. McCuen (1998) suggested the
typical ranges of the runoff coefficient to be 0.75–0.95 for roof sur-
faces and 0.70–0.95 for asphalt and concrete pavement. It was stated
that these values were applicable for events with 5- to 10-year return
periods and that higher values of the runoff coefficient should be
considered for less frequent, higher-intensity events.

In the absence of field measurements, any continuous probabil-
ity distribution type can be assumed to represent the uncertainty in
the fixed runoff coefficient. Because runoff from the catchment sur-

faces is a natural process and there was no available information
about the mode of the distribution, a symmetrical normal

distribution with the mean value of 0.8 was selected. The assumed
normal distribution was truncated at the upper physical limit for the
fixed runoff coefficient, that is, 1. Because the composite design storm
used in this study had a much lower return period than 5- to 10-years,
values smaller than 0.70 should be taken into account in the fixed
runoff coefficient. A standard deviation of 0.1 was assumed, with
the mean of the normal distribution set at 0.8. The normal distribution
was truncated with a lower bound 0 and upper bound 1.

Weir Crest Level

The absolute weir crest level was set at 35.35 m (at 1.6-m elevation
with respect to the bottom of the pipe upstream to the weir) in the
calibrated model based on survey data. The measurement errors in
surveying the weir crest level can be assumed to have a random
variability. Hence, a symmetrical normal distribution was used
to represent the uncertainty in the measurement of the weir crest
level. The standard deviation of the normal distribution was chosen
on the basis of a range of �10 cm for the potential error in estimat-
ing the weir crest level, so that 3σ ¼ 10 cm.

Colebrook-White Roughness (ks)

The uncertainty in the CW roughness was quantified using long-
term flow survey data. This data set was used to estimate the prob-
ability distributions of the CW hydraulic roughness parameter.
Colebrook-White Equation. The CW equation for flow in parti-
ally filled circular pipes (Swaffield and Bridge 1983) can be written

1
ffiffiffi

f
p ¼ −2log10

�

ks

14.83R
þ 2.52

R
ffiffiffi

f
p

�

ð1Þ

where f = Darcy-Weisbach resistance constant; ks = CW
roughness parameter (m); R = hydraulic radius (m); and R =
Reynolds number. For partially filled circular pipes, the hydraulic
radius R can be calculated using the diameter of the pipe D and the
measured flow depth h. If a cross section of the circular pipe
was considered with θ as the angle made by the intersection of
the water surface and the circumference of the pipe at the center
of the circular cross section, the hydraulic radius R can be
expressed (Barr 1986)

R ¼ Dðθ − sin θÞ
4θ

ð2Þ

The Darcy-Weisbach resistance constant f was calculated using
the Chezy equation given in Swaffield and Bridge (1983), which
argued that it can be applied for moderately smooth channels. The f
can be expressed

f ¼ 8gRS

V2
ð3Þ

where V = mean velocity of flow (m=s); S = hydraulic gradient; and
g = acceleration due to gravity (m=s2). The slope of the pipe was
taken to be the hydraulic gradient, as uniform flow conditions were
assumed at the measurement locations during the dry-weather
period. For wet-weather conditions, the rapidly changing nature
of the flow would result in a nonuniform flow. This would also
mean that the assumption underlying the CW equation would be
invalid. The Reynolds number was calculated

R ¼ 4VR

ν
ð4Þ

where ν = kinematic viscosity of water (m2=s). The inclusion of R
in this equation made the calculation of R suitable for partially

filled circular pipes. The year-round average temperature of waste-
water in the Flanders region was taken as 15°C on the basis of the

Table 1. Morris screening results and ranking of input/model parameters

Parameter

Absolute

mean (μ�)
Standard

deviation (σ) Rank

Fixed runoff coefficient 0.974 0.055 1

Weir crest level 0.196 0.019 2

CW roughness 0.098 0.048 3

Headloss coefficient 0.019 0.008 4

Primary weir discharge coefficient 0.001 0.002 5

Weir width 0 0 6

Initial loss value 0 0 7

Secondary weir discharge coefficient 0 0 8

© ASCE 04018050-4 J. Environ. Eng.
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in-sewer temperature observations collected in the study by Abdel-

Aal et al. (2015). The value of the kinematic viscosity of water

(v ¼ 1.139 × 10−6 m2=s at 15°C) was used for the wastewater.
Data. There were long-term measurements of the flow depth (m),
velocity (m=s), and derived flow rate (m3=s) from 9 different lo-

cations in the catchment. Table 2 presents a summary of the data

set. The data set was filtered to identify the suitable monitoring

locations and periods for the calculation of the hydraulic roughness,

as defined in Eq. (1). Eq. (3) assumed that the pipe slope was equal

to the hydraulic gradient and hence selected the monitoring loca-

tions needed to have uniform flow conditions. On the basis of this

criterion, the data from locations M1 and M6 were found to be

unsuitable because the invert levels of the two connecting pipes

were different. M2 and M109 were discarded due to 0 or near-0

pipe slope values; M4 was discarded due to the presence of a pipe

junction (making nonuniform flow likely); and M8 and M9 were

discarded due to slope and pipe diameter changes close to the

measurement section.
For the locations M3 and M5, a data-filtering procedure was

followed to remove the erroneous data and extract only the dry-

weather flow measurements. The process for data selection con-

sisted of the following steps.
1. Ensuring reliable flow measurements: The data was filtered to

remove water depths less than 0.02 m (the minimum submerged
depth of the sensor) and the negative velocity readings caused
by backflow or probe malfunction.

2. Removing wet-weather flow periods: The calculation of the CW
roughness requires estimation of the hydraulic gradient in the
sewer pipe [Eqs. (1) and (3)]. In a hydraulic resistance equation
such as the CW equation, the key assumption is a uniform flow,
that is, S has the same value all along a pipe. Hence, only dry-
weather flow measurement data was used, with an assumption
that flow in the pipe would be uniform during dry weather. This
enabled using the slope of the pipe as a proxy for the hydraulic
gradient. For wet-weather conditions, the rapidly changing nat-
ure of the flow would result in nonuniform flow. This would
also mean that the assumption underlying the CW equation
would be invalid. A regular survey of these measurement loca-
tions in the sewer network indicated little evidence of sedimen-
tation. Hence, it was anticipated that the calculation of CW
roughness using dry-weather flow measurements would not
be an overestimation in this particular case. Dirckx et al.
(2009) reported a threshold of the 70th percentile to identify
the number of rain days through a standardized cumulative
curve of daily inflow. The rain days were described as the days
with a surface runoff contribution. Because the study by
Dirckx et al. (2009) was also based in Flanders, Belgium,
where the catchment from the current study is located, a
threshold of the 70th percentile on the daily average flow depth

values was assumed to remove the wet-weather days. In order
to apply the threshold, percentiles of the daily average flow
depth values were obtained for the whole duration of the flow
survey.

3. Identifying blockage of the sensors: Blockage of the sensors can
result in fluctuations in errors. These can be identified through
substantial variations in the daily average flow trend. These var-
iations remain stable for some time ranging from a few hours to
1–2 days. These anomalies along with the instrumentation errors
were identified using the covariance values between the flow
depth and the velocity.

4. Outlier detection: Outliers were identified and removed using a
covariance method between the flow velocity and the flow depth
values. In uniform flow conditions, the water depth and flow
velocity in the pipes are expected to have a positive correlation.

Flow measurements displaying any discrepancy in this relation-
ship might arise from a blockage or malfunctioning of the
sensors.
The study used the robustcov function available in MATLAB

R2016a software. The robustcov function uses the minimum covari-

ance determinant (FAST-MCD) method (Rousseeuw and Van

Driessen 1999) to generate robust estimates of bivariate location

and scatter. Nguyen and Welsch (2010) and Peña and Prieto

(2001) argued that the FAST-MCD method provides a better esti-

mate of multivariate location and scatter than other classical methods

such as the maximum likelihood estimation-based methods, because

such methods rely on the assumption of normality in the data and the

presence of outliers induces a bias to such estimators. In order to

detect outliers, the Mahalanobis distance values were calculated us-

ing the robust covariance estimates that follow a chi-square distri-

bution (Filzmoser et al. 2005). In this bivariate case, the

Mahalanobis distance values had two degrees of freedom and the

outliers were identified by setting a cutoff of the 97.5% quantile

of the chi-square distribution. The data validation resulted in an ap-

proximately 55% removal of data for measurements taken at the lo-

cation M3 and a 41.6% removal of data at the location M5.
Distribution of Calculated ks Values. The ks values are calculated
from the filtered data at the locations M3 and M5 using Eq. (1).

Figs. 1(a and b) show the histograms of the ks values calculated

at the locations M3 and M5. It was clear that the ks values at these

locations followed a heavy-tailed probability distribution (Fig. 1).

Hence, a variety of continuous heavy-tailed distribution types such

as gamma, generalized pareto, loglogistic, lognormal and Weibull

distributions were tested to identify the most appropriate distribu-

tion type to describe the CW roughness. Because the flow survey

durations at the two locations were different, the best-fitted prob-

ability distributions were obtained independently for each location.

The R software package fitdistrplus was used to fit these distribu-

tions using the maximum likelihood estimation (Delignette-muller

Table 2. Details of flow survey data

Location

name

Measurement

start date

Measurement

end date

Pipe

shape

Pipe dimensions

(mm)

Pipe

material

Pipe slope

(m=m)

M109 August 25, 2015 January 24, 2016 Circular 1,000 Concrete 0.00011

M9 January 9, 2009 September 16, 2015 Circular 800 Concrete 0.00094

M8 January 9, 2009 January 24, 2016 Circular 500 Concrete 0.00135

M6 November 22, 2007 January 9, 2009 Circular 800 Concrete 0.00074

M5 August 10, 2005 January 25, 2016 Circular 600 Concrete 0.00088

M4 August 17, 2005 January 9, 2009 Circular 1,000 Concrete 0.00250

M3 March 14, 2005 January 8, 2009 Circular 1,400 Concrete 0.00389

M2 March 14, 2005 August 10, 2005 Circular 500 Concrete 0.00000

M1 March 14, 2005 May 30, 2005 Circular 970 Concrete 0.00133
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and Dutang 2015). The Bayesian information criterion (BIC) was
used as the goodness-of-fit statistic because the BIC avoids over-
fitting by penalizing distributions with a greater number of param-
eters and also because the use of the maximum likelihood as the
estimation method is consistent with the BIC because it is based on
the log-likelihood (Vose 2010). A lower BIC value was considered

a better fit. Table 3 provides the results of the distribution fitting for
the two locations, with the rank in parentheses. For both M3 and
M5, the loglogistic distribution provided the best fit with the lowest
value of the goodness-of-fit statistic BIC (Table 3). This suggested
consistency in the form of the uncertainty for the CW roughness
parameter. However, in order to propagate this uncertainty in Info-
Works CS simulations, a single probability density function (PDF)
for ks was needed. Between the two locations, the loglogistic dis-
tribution parameters obtained for the location M5 were assumed to
represent better the uncertainty in the CW roughness due to the
considerably longer flow survey (10 years) at this location.

However, in reality, the CW roughness of each pipe may follow
a loglogistic distribution with different parameters, similar to the
M3 and M5 locations. Table 4 provides the parameters of the
loglogistic distribution for the CW roughness values calculated
at M3 and M5. The PDF of the two-parameter loglogistic distribu-
tion can be written

fðx;α; βÞ ¼
�

β
α

�

ðx
α
Þβ−1

ð1þ ðx
α
ÞβÞ2 ; x > 0 ð5Þ

where α > 0was the scale parameter and represented the median of
the distribution; and β > 0 was the shape parameter.

Uncertainty Propagation

The PDF of the output CSO spill volume can be calculated via

propagation of the input/model parameter distributions defined

in the previous sections through Monte Carlo simulations. In Flan-

ders, the design criteria for the CSO include a threshold on the an-

nual overflow frequency (Dirckx et al. 2011). A composite design

storm f7 was selected as the rainfall input instead of the historical

rainfall data in order to reflect the design guidelines set by the

Flanders Environment Agency (VMM) (Coördinatiecommissie

Integraal Waterbeleid 2012). The VMM regulations for CSO

structures state that the CSO should not spill for the specific design

storm f7. The composite design storm event f7 had an average fre-

quency of occurrence of 7 times per year. The composite storm was

developed by Vaes et al. (1996) using a historical rainfall series

from 1967 to 1993 with a time step of 10 min measured at the rain

gauge at Uccle in Belgium. For a frequency of 7 years, all intensity/

duration relationships were included in the single composite f7

design storm.
Monte Carlo simulations with LHS were performed considering

the parameter distributions of the fixed runoff coefficient (rc), weir

crest level (wc), and CW roughness (ks) and keeping other param-

eters constant as defined in the calibrated model. To draw n samples

using the LHS method, the uncertain range of each input/model

parameter was divided into n intervals of equal probability. This

was followed by drawing a random sample from each of these

n intervals. Assuming that the input/model parameters were inde-

pendent of each other, the n samples for the individual input/model

parameters were combined randomly to generate the sample space

(Helton and Davis 2003). For the Latin hypercube sampling, the

function randomLHS in the R package lhs was used to draw the

samples.
The sufficiency of the sample size was tested by analyzing the

convergence of the respective sample mean, standard deviation,

scale, and shape parameter estimates (Fig. 2). Figs. 2(a, b, d,

and e) show the convergence in the sample mean and the sample

(a) (b)

Fig. 1. Histograms of ks calculated at location: (a) M3; and (b) M5.

Table 4. Parameters of fitted loglogistic distribution

Location α (mm) β

M3 6.035 0.926

M5 1.490 1.749

Table 3. Distribution fitting BIC values for ks

Probability

distribution(s)

Bayesian information criterion

M3 M5

Gamma 3,239,694 (5) 5,764,741 (3)

Generalized pareto 3,098,093 (2) 5,792,316 (5)

Loglogistic 3,097,110 (1) 5,705,864 (1)

Lognormal 3,110,213 (3) 5,745,767 (2)

Weibull 3,157,747 (4) 5,787,913 (4)

Note: Ranking of distributions for fitting ks values is provided in

parentheses.
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standard deviation for the fixed runoff coefficient and the weir
crest level; the sample size was increased from 50 to 2,000.
Figs. 2(c and f) show a plot of the variation in the sample scale
and shape parameter, respectively, for the loglogistic distribution
fitted for CW roughness. It was evident that a stable conver-
gence (0.5% of the maximum variation) was achieved with a
sample size of 1,000 for all three parameters. Hence, a sample
size of 1,000 using Latin hypercube sampling was considered
sufficient.

The uncertainty propagation was performed in two steps. First,
the uncertainty in the three selected parameters was propagated
through 1,000 simulations, resulting in 1,000 values of the model
output CSO spill volume for the defined design storm. In the sec-
ond step, the contribution of the individual parameters toward the
overall uncertainty in the CSO spill volume was assessed by propa-

gating the uncertainty in only two parameters and keeping the third
parameter constant. Here, the term overall uncertainty means the
uncertainty in the CSO spill volume caused by the uncertainty in all
three parameters.

Results and Discussion

Overall Uncertainty

Fig. 3(a) shows the PDF of the CSO spill volume obtained as a
result of propagating the uncertainty in the fixed runoff coefficient,
weir crest level, and CW roughness. The calculated CSO spill
volume values were described by a normal distribution truncated
at 0 as the lower bound [Fig. 3(a)] with the mean 117.9 m3 and
standard deviation 50.8 m3. The exceedance probability (EP)
curve [Fig. 3(b)] gives the information about the probability that
the CSO spill volume exceeded a certain value with the f7 design
storm. The slope of the EP curve can be used to find the rate of
reduction in the risk from spills when additional storage capacity

was planned upstream of the CSO. The benefit of adding extra

storage capacity was less for the plot regions where the slope

of the EP curve was high. As shown in Fig. 3(b), there was a 50%

probability that the CSO spill volume would exceed 116.9 m3;

however, to ensure that the system capacity was exceeded with

a probability of only 10%, the total required basin storage volume

was only 184.4 m3. This meant that the practitioner was likely to

reduce the probability of a CSO spill from 50 to 10% by investing

in additional basin storage in a quantity as small as 67.5 m3.

Therefore, by incorporating uncertainty into the model-based per-

formance evaluation of the CSO, the practitioners could achieve

greater protection against the risk of CSO spills with efficient

investment.

Contribution of Individual Parameters

Additional Monte Carlo simulations were performed to propagate

the uncertainty in any two out of the three selected parameters.

The value of the third parameter was kept constant, as in the cali-

brated model. This resulted in three distinct scenarios: the fixed

runoff coefficient + CW roughness (rcþ ks), the fixed runoff

coefficient + weir crest level (rcþ wc), and the weir crest level +

CW roughness (wcþ ks). Fig. 4 shows the PDFs obtained for

the CSO spill volume in the three cases and the PDF representing

the overall uncertainty shown in Fig. 3(a). Although the PDFs

shown in Fig. 4 represented an underestimation of the overall true

uncertainty in the CSO spill volume, they provided very useful in-

sights for decision making. For example, comparing the PDFs from

the two-parameter uncertainty propagation with the PDF from the

three-parameter uncertainty propagation [Fig. 3(a)] gives informa-

tion on how much each parameter affects the overall uncertainty in

the modeled CSO spill volume.
Similarly to the overall uncertainty in the CSO spill volume

[Fig. 3(a)], the uncertain pairs rcþ ks and rcþ wc resulted in a

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a and b) Variation (expressed in percentage) in the sample mean for fixed runoff coefficient and weir crest level; (c) sample scale parameter ᾱ

(median) for CW roughness; (d and e) sample standard deviation for fixed runoff coefficient and weir crest level; and (f) sample shape parameter β̄ for

CW roughness with increasing sample size.

© ASCE 04018050-7 J. Environ. Eng.

 J. Environ. Eng., 2018, 144(7): 04018050 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Sh

ef
fi

el
d 

on
 0

6/
19

/1
8.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



normally distributed CSO spill volume with the left tail truncated at

0; however, the uncertainty in the CSO spill volume caused by the

pair wcþ ks was found to be best described by a Weibull distri-

bution. Table 5 presents a summary of the results of these three

scenarios and the overall uncertainty, in the form of the mean

and standard deviation obtained for the CSO spill volume. The

PDF of the CSO spill volume with a constant weir crest level,

rcþ ks, was almost identical to the overall uncertainty PDF, which
suggested that the effect of uncertainty in the estimation of the weir

crest level was negligible on the overall uncertainty in the CSO spill

volume. Similarly, when the uncertainty in the CW roughness was

introduced, its contribution to the uncertainty in the CSO spill vol-

umewas found to be insignificant. Therefore, it can be deduced that

the contribution of the CW roughness to the overall uncertainty was

of a similar magnitude to that of the weir crest level. This meant that

the ranking obtained as a result of the Morris screening was not

clearly evident in the uncertainty quantification results for the

input/model parameters with low Morris sensitivity measures. In
the GSA, only the absolute mean μ� was used to rank the param-

eters. The sensitivity measure, standard deviation σ, of the CW

roughness in the GSA analysis was higher than that of the weir

crest level, which indicated that roughness had a nonlinear relation-

ship with the CSO spill volume and/or it interacted with other

parameters to a higher degree than the weir crest level did. There-

fore, the significance of σ as an indicator of the contribution of

input/model parameters to the output uncertainty needs to be inves-

tigated further, so that the relative importance of the input/model

parameters with low sensitivity measures, such as the weir crest

level and CW roughness, can be quantified.
It was evident from Fig. 4 and Table 5 that the fixed runoff co-

efficient was the largest contributor to the overall model uncertainty

in the CSO spill volume. Assuming that the true value of the fixed

runoff coefficient was known, the CSO spill volume followed a

Weibull distribution with a considerably smaller standard deviation.

In this case, there was a 50% probability that the CSO spill volume

would exceed 119.4 m3, which was close to the value of 116.9 m3

at a similar probability in the case of the overall uncertainty. How-

ever, to reduce the risk of CSO spills from 50 to 10%, additional

storage of at least 14.3 m3 was required. This required additional

storage was significantly smaller than the required additional stor-
age of around 67.5 m3 when the overall uncertainty was considered

for decision making.

With this additional available information on the individual

contributions of the input/model parameters, a practitioner might

evaluate the trade-offs between investing resources in reducing

the uncertainty in the estimation of important parameters and

Fig. 4. PDF curves of CSO spill volume representing the uncertainty

in the combinations of the fixed runoff coefficient, weir crest level,

and CW roughness; fixed runoff coefficient and CW roughness; fixed

runoff coefficient and weir crest level; and weir crest level and CW

roughness.

(a) (b)

Fig. 3. (a) Probability density curve of CSO spill volume representing the overall uncertainty; and (b) exceedance probability curve for CSO spill

volume.

Table 5. Summary of uncertainty analysis results

Parameter

Probability

distribution

type

Mean

(m3)

Standard

deviation

(m3)

Weir crest level + CW roughness Weibull 117.9 13.4

Fixed runoff coefficient + CW

roughness

Truncated normal 117.9 50.3

Fixed runoff coefficient + weir

crest level

Truncated normal 119.5 49.6

Fixed runoff coefficient + weir

crest level + CW roughness

Truncated normal 117.9 50.8
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 J. Environ. Eng., 2018, 144(7): 04018050 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Sh

ef
fi

el
d 

on
 0

6/
19

/1
8.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



investing in larger basin storage to cope with the overall uncer-

tainty. For example, the uncertainty in the estimation of the runoff

coefficient could be reduced by gathering more information on the

runoff surfaces through a survey campaign. The usefulness of such

a campaign could be assessed by comparing the cost of the survey

and the benefit gained as a result of the smaller basin storage

required.

Conclusion

This paper demonstrated a methodology to incorporate probabilis-

tic uncertainty in a standard modeling procedure used by a water

utility to conform to regulatory guidelines. The physical character-

istics of different subprocesses such as rainfall-runoff, in-sewer

flow, and weir flow were represented as potential sources of model

uncertainty. Morris screening identified the fixed runoff coefficient,

the weir crest level, and the CW roughness as the most significant

parameters. Following the Morris screening, the authors were able

to propagate the uncertainty in the three most significant parameters

through Monte Carlo simulations using Latin hypercube sampling

and to quantify the uncertainty in the CSO spill volume. Both

Morris screening and LHS based Monte Carlo simulations proved

to be reliable methods and easy to implement within the constraints

of the modeling guidelines. Because the InfoWorks CS model and

the rainfall input used in this study satisfied the regulatory model-

ing guidelines, any random sample from the probability distribution

of the CSO spill volume obtained as a result of the uncertainty

propagation could be used to represent the performance of a com-

pliant CSO.
For the CW roughness, this paper demonstrated a process to

quantify the parameter uncertainty using extensive flow survey

data. The CW roughness values were found to have a heavy-tailed

distribution, and a loglogistic distribution was found to be the best

fit. This study is the first in which the uncertainty in the CW rough-

ness for sewer pipes has been defined on the basis of in situ field

measurements. It is expected that the probability distributions

obtained for the CW roughness in this paper are representative

and that their distribution shape and spread can be used in future

studies.
The resulting uncertainty in the CSO spill volume indicated that

the impact of uncertainty in the fixed runoff coefficient was much

higher in comparison with the other parameters, which was in

agreement with the results obtained from the global sensitivity

analysis. It is imperative that the uncertainty in such dominating

parameters should be carefully defined and quantified, as it was

demonstrated in this study that the shape of the probability density

function for the fixed runoff coefficient largely influenced the shape

of the uncertainty in the model output CSO spill volume.
After the uncertainty in the CSO spill volume has been quanti-

fied, the results can be processed to be used for decision-making

purposes. For example, the information available from the exceed-

ance probability curve for the CSO spill volume can be used to

develop a trade-off analysis between the provision of additional

storage volume and the consequent risk of predicted spill volumes

given this additional storage volume, while considering any budget

constraints. In this study, the risk of the predicted spill volume’s

exceeding the storage capacity could be reduced from 50 to 10%

by increasing the provision of additional storage from 116.9 to

184.4 m3.
However, it should be noted that the uncertainty in the CSO spill

volume obtained through this study is still an underestimation of

the overall modeling uncertainty in the CSO spill volume, as only

a small number of the more significant sources of uncertainty were

considered. This study used a single design rainfall event in order
to follow the requirements of the local environmental regulator;
however, to capture the dynamics of the rainfall-runoff process,
the spatial and temporal variability of the rainfall should also be
represented in the uncertainty propagation. This would require
changes in the current regulatory framework. Furthermore, the run-
off from the permeable areas is not taken into account; it is assumed
that it infiltrates the soil, but this may not be the case when there
have been extensive antecedent wet weather conditions. Therefore,
this is another source of uncertainty not taken into account in the
current modelling approach; as stated, the paper aimed only to
quantify uncertainty in the current approach.

Another possible future line of investigation could be the use of
analytical probabilistic urban drainage models (Adams and Papa
2000) as an alternative to the practice of computationally expensive

urban drainage models. This would require a change in the way
water utilities are regulated in Belgium and other European coun-
tries where, as far as the authors are aware, the regulatory frame-
work does not permit the use of probabilistically based modeling
approaches. Therefore, it is expected that the water utilities may be
able to adopt the methodology demonstrated in this paper to ac-
count for model uncertainty as they comply with the modeling
requirements of their regulator.
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