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United Kingdom, 2Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital,  
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Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing 

beta cells in the pancreas by the innate and adaptive immune systems, beta cell death 

being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important 

in T1D progression. The thymus of mice and man also contains B cells, and lately they 

have been linked to central tolerance of T cells. The role of thymic B cells in T1D is unde-

fined. Here, we show there are abnormalities in the thymic B cell compartment before 

beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we 

document that preceding T1D development, there is significant accumulation of thymic 

B cells-partly through in situ development- and the putative formation of ectopic germinal 

centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ 

binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epi-

thelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic 

autoantibodies are detectable in animals not genetically predisposed to developing T1D. 

Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including 

insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in 

B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target 

certain mTECs for destruction. Furthermore, we observe that these thymic B cell-asso-

ciated events correlated with an increased prevalence of premature thymic emigration of 

T cells. Together, our data suggest that the thymus may be a principal autoimmune target 

in T1D and contributes to disease progression.

Keywords: type 1 diabetes, thymic B cells, autoreactive antibody, non-obese diabetic, medullary thymic epithelial 

cells

inTrODUcTiOn

The thymus is a primary lymphoid organ involved in shaping the T cell repertoire. Sequential com-
partmentalization of developing T cells into the cortical region of the thymus, and subsequently the 
medulla enable the effective positive and negative selection events, respectively, that are integral in 
generating an immature T cell repertoire enriched to respond to pathogens but not self-tissue—termed 
central tolerance (1). Central to this role for the thymus are the medullary thymic epithelial cells 
(mTECs) (2, 3); capable of autoimmune regulator-driven expression of peripheral tissue-specific 
antigens (TSAs) (4) and presentation in the context of MHC class I or class II molecules, they trigger 
events that lead to apoptosis of developing T cells bearing high affinity receptors for self-peptides.
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Although extensive studies have documented the importance 
of mTECs for negative selection of autoreactive T cells (5), other 
antigen-presenting cell (APC) populations within the thymus 
have also been shown to participate in T cell-negative selection, 
particularly dendritic cells (6). A newer member of this family of 
APCs involved in negative selection is the thymic B cells (7, 8), 
although it is still not clear how significant their role is in nega-
tive selection with respect to that of mTECs and thymic DCs (9). 
Thymic B cells are present both in man and mice; constituting a 
minor population of the thymic cellular pool, they are detectable 
in fetal through to adult mammalians (10, 11). Thymic B cells have 
a similar phenotype to peripheral B2 cells (12, 13), and their thymic 
frequency is stable from birth onward. Interestingly, expansion of 
thymic B cells in myasthenia gravis and systemic lupus erythema-
tosus (SLE) patients (14, 15), or animal models of SLE have been 
linked to disease progression, suggesting thymic B cells may have a 
potential role in breakdown of central tolerance (16).

Type 1 diabetes (T1D) is an autoimmune condition where 
insulin-secreting β cells in the islets of Langerhans are destroyed 
through coordinated attack by both the innate and adaptive 
immune systems; the final assault being perpetuated by CD8+ 
cytotoxic T cells (17–19). Defects in central tolerance are linked 
to emergence of a β cell-specific T  cell repertoire (20), yet 
definitive understanding of the mechanisms underlying defec-
tive central tolerance is unclear. Much of our understanding of 
the immunological events leading to β cell pathology has been 
derived from the non-obese diabetic (NOD) mouse, a murine 
model that spontaneously develops T1D with many similarities 
to those seen in man (21). Studies in NOD mice show T1D is a 
progressive condition, with priming of the T  cell repertoire to 
β cell antigens in early life followed by infiltration of islets with 
immune cells (termed insulitis), a period of regulation of the 
autoreactive response, but ultimately an aggressive and sustained 
attack on the β cells. It is not clear what immunological event 
triggers this final stage of the disease.

B cells, too, are known to be important in the T1D process 
both in man and in NOD mice; abnormally high numbers of 
islet-infiltrating B cells are linked to rapid progression to T1D in 
young children (22), and increasing diversity of serum antibodies 
for β cell antigens increases substantially the risk factor of devel-
oping T1D genetically predisposed children (23). In NOD mice, 
genetic or immunological ablation of B  cells protects against 
T1D development (24, 25), and in both diabetic NOD mice and 
diabetic patients, depletion of B cells can resolve the condition 
albeit transiently (26, 27). To date, the role for B cells in T1D pro-
gression has been linked to their peripheral APC function—their 
ability to present β cell antigens to β-reactive CD4+ T cells (28) 
enhances CD4+ T helper cell activation of CD8+ T cells, and in 
islets B cells provide survival signals for activated CD8+ T cells 
enabling a sustained cytotoxic attack on β cells (29).

Here, we provide evidence that the thymus of diabetes-prone 
NOD mice displays evidence of autoreactivity before T1D 
development. We show that the post-insulitic/prediabetic phase is 
characterized by abnormally high thymic B cell development, B cell 
accumulation in follicles at the cortical–medullary junction and the 
emergence of ectopic germinal centers. Intrathymic autoantibod-
ies bind to undefined antigens on selective mTECs. Subsequently 

increased mTECs apoptosis, including insulin-expressing mTECs 
occurs. These events correlate with increased levels of peripheral 
T cells that have an RAG-GFP phenotype akin to thymocytes that 
have yet to undergo negative selection, suggesting in NOD mice 
thymic B cells may contribute to decreased efficacy of negative 
selection of autoreactive T cells.

Our data provide new insights into thymic abnormalities that 
precede β cell destruction and highlight the importance of focus-
ing research on these unique thymic B cells as mediators of this 
chronic condition.

MaTerials anD MeThODs

Mice
C57BL/6 (B6), FVB.RAGp2-GFP reporter mice (30), and NOD. 
μMT−/− mice (25) have been described elsewhere. FVB.RAGp2-GFP  
reporter mice were backcrossed 20 generations to either NOD 
mice (NOD.RAGp2-GFP) or NOD.μMT−/− mice (NOD.μMT−/−.
RAGp2-GFP mice). All mice used in this study were maintained 
under specific-pathogen free conditions with a 12 h light–dark 
cycle and fed normal chow. All animal experimental procedures 
were carried out in accordance with the Animals and Scientific 
Procedures Act 1986 were approved by the University of York 
Animal Welfare and Ethics Review Board and conducted under 
UK Home Office License approval conforming to ARRIVE gui-
delines (https://www.nc3rs.org.uk/arrive-guidelines). Diabetes 
development was determined by assessing urine glucose levels 
using Diastix (Bayer, Inc.). All animals used in this study were not 
diabetic. In addition, only female mice were used.

antibodies and Flow cytometry
All antibodies, unless otherwise stated, were purchased from eBio-
science. Single-cell suspensions were incubated with anti bodies 
against CD16/32 unconjugated (93), CD3 FITC (145-2C11), 
CD3 BV421 (17A2; BioLegend), CD4 eFluor450 (RM4-5), CD4 
PE (RM4-5), CD4 BV650 (GK1.5; BioLegend), CD8α FITC 
(53-6.7), CD8β PE-Cy7 (H35-17.2), CD19 eFluor450 (6D5), 
CD19 PE (6D5), CD19 BV421 (1D3; BioLegend), CD21/
CD35 PE (4E3), CD23 PE-Cy7 (B3B4), IgM APC (II/41), IgD 
eFluor450 (11-26c), IgE BV650 (R35-72; BD Biosciences), IgG 
PerCP-eFluor 710 (Polyclonal), IgA PE (11-44-2), biotinylated 
insulin (IBT systems), CD45 PerCPCy5 (30-F11), CD45 BV510 
(30-F11; BioLegend); PD1 (29F.1A12; BioLegend), ICOS APC 
(C398.4A), CD138 BV650 (281-2; BioLegend), CD11b FITC 
(M1/70), CD11c PE (N418), B220 eFluor450 (RA3-6B2), BCL-6 
PerCP-eFluor 710 (BCL-DWN), CXCR5 PE (SPRCL5), IL-21 
PE (mhalx21), and Ki67 PE (B5; BD Biosciences). Intracellular 
labeling of Ki67 was performed using eBioscience kit following 
manufacturer’s guidelines (catalog number 00-5523-00). Cells 
were acquired using a BD LSR Fortessa X-20 (BD Biosciences) 
and data analyzed using FlowJo software® (Tree Star). Doublets 
were excluded using forward light-scatter gating (FSC-A versus 
FSC-W) followed by gating on cells based on FSC-SSC. Dead 
cells were excluded by gating on LIVE/DEAD® Fixable Dead Cell 
Staining (Thermo Fisher) negative cells. The gating strategies are 
described in this article in the main figures and supplementary 
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figures, explicit in the axis or described in detail in figures legends. 
The gates were defined using fluorescence minus one and isotype 
controls: Rat IgG2a eF450 (eBR2a), Rat IgG2a FITC (eBR2a), 
Rat IgG2a PE (eBR2a), Rat IgG2a PE-Cy7 (eBR2a), Rat IgG2a 
APC (eBR2a), Rat IgG2a BV421 (RTK2758, BioLegend), Rat 
IgG2a BV650 (RTK2758, BioLegend), Rat IgG2a PerCP-eFluor 
710 (eBR2a), Rat IgG2b PE (10H5), Armenian Hamster IgG APC 
(eBio299Arm), Rat IgG1 Biotin (eBRG1) and Rat IgG1 BV650 
(RTK2071; BioLegend).

Detection of Thymic B cells Bearing 

insulin-specific receptors
The detection of B cells with receptors that bind insulin has been 
previously described (31). Briefly, single-cell suspensions isolated 
from the thymus were incubated overnight at 4°C in PBS sup-
plemented with 1% fetal bovine serum, 1% anti-CD16/32 antibo-
dies (eBiosciences) and biotinylated insulin (0.1 μg/106 cells, ibt 
systems). Bound insulin was detected with fluorochrome-labeled 
streptavidin Alexa 6470 (Invitrogen) for 30 min at 4°C. The cells 
were subsequently incubated with anti-CD19 PE (6D5; eBio-
sciences), B220 eFluor450 (RA3-6B2; eBiosciences), -CD4 BV650 
(GK1.5; BioLegend), CD8β PE-Cy7 (H35-17.2; eBiosciences), 
-CD45 PerCPCy5.5 (30-F11; eBiosciences) antibodies and LIVE/
DEAD Fixable Dead Cell Stains (Thermo Fisher Scientific) for 
30 min at 4°C, following which the cells were analyzed by flow 
cytometry. B cell gates were defined following exclusion of dead 
cells and T cells (dump channel). All samples were stained with 
insulin-biotin followed by streptavidin or with streptavidin only, 
frequencies of B  cells insulin+ were calculated subtracting the 
background calculated in sample-matched streptavidin only 
control.

soluble Tissue extracts and enzyme-

linked immunosorbent assay (elisa)
Cell-free supernatants from thymic and splenic tissue were 
prepared as described (32). Briefly, single-cell suspension were 
centrifuged at 300 g for 10 min, 4°C then 15 min, 4°C at 3,000 g. 
Cell-free supernatants were collected and stored at −20°C 
until analysis. IL-2 and IL-21 cytokines were detected using 
mouse IL-2 ELISA Ready-SET-Go and mouse IL-21 ELISA 
Ready-SET-Go ELISA kits following manufacturer guidelines 
(eBioscience). Isotype classification of immunoglobulins (Igs) 
in thymic cell-free supernatants or serum was achieved using a 
rapid ELISA Mouse mAb isotyping kit (Thermo Fisher) following 
manufacturer’s guidelines.

cultures
Bone marrow-derived dendritic cells (BM-DCs) were prepared 
from the appropriate mice by standard methodology. Immature 
DCs were pulsed for 16 h with whole insulin (Sigma; 5 µg/ml), 
LPS (Sigma; 10 ng/ml), or proinsulin peptide pB15-23 peptide 
(Thermo Fisher; p4878-1; 5 µg/ml). Thymocytes were prepared 
from mice described in the results and 1  ×  106 thymocytes 
were cocultured in complete RPMI media [10% FCS, 50 µmol/l 
β-mercaptoethanol, l-glutamine, 50 U/ml penicillin and strep-
tomycin (Life-Sciences)] with 3 × 104 BM-DCs only, or 3 × 104 

BM-DCs pulsed with insulin or 3  ×  104 BM-DCs pulsed with 
B15-23 peptide, or anti-CD3 (5 µg/ml) (eBioscience) and anti-
CD28 (2.5 µg/ml) antibodies (eBioscience). The cocultures were 
incubated at 37°C, 5% CO2 for 72 h, following which cell prolife-
ration was assessed by flow cytometry. The stimulation index was 
calculated dividing the frequency of T cells in active proliferation 
(Ki67+) in cells following antigen stimulation by the frequency 
of T cells in active proliferation in paired non-stimulated culture 
(background).

For the detection of IL-21, single-cell suspensions from the 
appropriate tissues were prepared placed in RPMI media (as above)  
supplemented with 50 ng/ml PMA and 1 µg/ml ionomycin for a 
total of 5 h at 37°C, 5% CO2. Brefeldin A (SIGMA) was added to 
the cultures at a concentration of 0.4 mg/ml 1 h after the initiation 
of the culture.

immunofluorescence analysis
Thymi frozen in OCT compound were sectioned (~8  μm) on 
a cryostat. Sections were fixed in 4% paraformaldehyde or ice- 
cold acetone then blocked in PBS supplemented with 0.5% 
BSA. The sections were incubated with unconjugated primary 
antibodies rabbit anti-mouse IgG (Abcam), rabbit anti-mouse 
insulin (Abcam), or rabbit anti-mouse cytokeratin V (Abcam) 
overnight at 4°C. Detection of bound antibody was achieved 
with goat anti-rabbit IgG Alexa 647 or goat anti-rabbit Ig-Alexa 
488 (Invitrogen) or goat anti-rat IgG Alexa 488 (Invitrogen). 
Anti-B220 directly conjugated with Alexa 647 was incubated for 
45 min at room temperature. For detection of apoptosis, following 
incubation with the secondary antibody an in situ apoptosis kit 
was used (Click-iT™ Plus TUNEL Assay, Alexa Fluor™ 647 dye; 
Thermo Fisher) according with the manufacturer instructions. 
Sections were counterstained with DAPI (Molecular Probes) 
and mounted in Prolong Gold anti-fade or Prolong Diamond 
(Invitrogen). Confocal microscopy was undertaken using Zen 
software on a Zeiss LSM 710 fitted on an Axioimager using a 
63× (1.4) Plan-Apochromat or 20× (0.6) Neofluor. Binding of 
autoreactive Ig and TUNEL in microscopy images was quantified 
using StrataQuest V64 software. Individual nuclei were counted, 
and the data were presented as scatterplots of mean fluorescence 
intensity of DAPI versus mean fluorescence intensity of Ig or 
TUNEL positive cells.

rna isolation and real-Time  

rT-Pcr analysis
Thymic tissues were stored at −80°C in RLT. Samples were allo-
wed to thaw, and RNA was carried out using the RNeasy mini 
kits (Qiagen, Manchester, UK), according to the manufacturer’s 
instructions. On-column DNase digestion was carried out to 
remove any contaminating genomic DNA using the RNAse-free 
DNase set (Qiagen, Manchester, UK) according to the manufac-
turer’s instructions. The cDNA syntheses were performed with 
the Superscript II reverse transcriptase system (Invitrogen), 
according to the manufacture’s instructions. The qRT-PCR of 
aicda mRNA expression [activation-induced cytidine deaminase 
(AID) gene] in total thymus was performed with the Taqman 
qPCR Kit (Applied Biosystems, Warrington, UK). mRNA exp-
ression levels were normalized to HPRT1 housekeeping gene 



FigUre 1 | Intrathymic B cell accumulation precedes β cell destruction. Single-cell suspensions were prepared from the respective thymi and all data analyzed on a 

single cell, live gate. (a) Representative dot plots of thymic CD19+ cells: (I) isotype control for CD19 antibody; (II) 12-week-old female B6 mouse; and (III) 12-week-old 

female non-obese diabetic (NOD) mouse. (B) Number of B cells in the thymus of 4- to 6-week-old female B6 mice (n = 11), 12- to 14-week-old female B6 mice 

(n = 25), 4- to 6-week-old female NOD mice (n = 13), and 12- to 14-week-old female NOD mice (n = 25). (c) Number of RAG-GFPhi B cells in the thymus of 4- to 

6-week-old female FVB-RAG-GFP mice (n = 3), 12- to 14-week-old female FVB-RAG-GFP mice (n = 8), 4- to 6-week-old female NOD-RAG-GFP mice (n = 4), and 

12- to 14-week-old female NOD (n = 8). (D) Frequency of Ki67+ B cells in the thymus of 4- to 6-week-old female B6 mice (n = 10), 12- to 14-week-old female B6 mice 

(n = 10), 4- to 6-week-old female NOD (n = 9), and 12- to 14-week-old female NOD mice (n = 8). Data presented as scatter plot, each dot equating to a mouse, the 

bar representing the mean value. Statistical significance determined using the non-parametric Mann–Whitney U-test, significant P values are shown; ns, not significant.
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using ΔΔCt calculations. Mean relative mRNA expression levels 
between control and experimental groups were calculated using 
the 2−ΔΔCt calculations.

statistical analysis
Statistical analyses were performed by parametric or non-para-
metric tests, selected based on the distribution of the raw data. 
The comparisons between experimental groups were performed 
using Student’s unpaired t-test, Mann–Whitney, and one-way 
ANOVA as appropriate. The statistical analyses for fold changes 
were performed using Wilcoxon signed-rank test. All analyses 
were conducted using GraphPad InStat (version 5) software 
(GraphPad).

resUlTs

T1D Progression correlates With 

increased intrathymic B cell numbers  

in nOD Mice
Thymic B  cells normally constitute a small population of cells 
within the murine and human thymus in normal individuals. 
Abnormality in thymic B cell numbers has been linked to certain 

autoimmune conditions (14, 15). To determine whether thymic 
B  cell populations differ between diabetes-prone or non-prone 
mice, we performed time-course flow cytometric studies of age-
matched, sex-match NOD and control C57BL/6 (B6) mice.

Diabetes incidence in our female NOD mouse colony is 95%, 
approximately 3% of mice develop T1D at 12–14 weeks of age, 
85% at 18–20  weeks of age with the remaining 7% of females 
progressing to T1D by 23  weeks of age. Animals not diabetic 
by 23 weeks of age rarely develop T1D. The data are based on a 
cohort of 200 animals (Figure S1A in Supplementary Material). 
This diabetes incidence, combined with the insulitis score—that 
is the degree of immune cell infiltration of islets and degree of 
β cell destruction—as mice age (Figure S1B in Supplementary 
Material) highlight that 12–14 weeks of age in our colony rep-
resents late insulitic–preultimate diabetic stage, a critical time 
when immunoregulation of the autoreactive response starts 
to breakdown. Thus, in our initial studies, we focused on two 
major time points; the pre-early insulitic phase (4–6 weeks) and 
the post-insulitic/prediabetic phase (12–14 weeks) to assess the 
presence of CD19+ thymic B cells. Representative flow cytometry 
plots for the respective mice are shown in Figure 1A. Although 
absolute numbers of CD19+ B  cells remained relatively static 
in the thymi of control B6 mice at the time points investigated 
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(Figure 1B), with perhaps a slight increase at 12–14 weeks of age, 
the absolute numbers of CD19+ B cells increased significantly in 
the later age group of NOD mice in comparison with numbers 
seen either at 4- to 6-week-old NOD mice or 12- to 14-week-old 
B6 mice. Importantly, the number of thymic B cells at 4–6 weeks 
of age was comparable between NOD and control B6 mice.

This increased number of thymic B cells in 12- to 14-week-old 
NOD mice was not related to increased B  cell development in 
the bone marrow, as frequencies of CD19+ B cells in this primary 
lymphoid tissue was comparable between the two strains of mice 
at both time points investigated (data not shown). These data 
show that inappropriate accumulation of thymic B cells precedes 
the overt β cell destruction phase of T1D.

intrathymic signals Trigger enhanced  

B cell Development in nOD Mice
Although previous studies have documented the ability of 
the thymic environment to enable B  cell development in non-
autoimmune-prone mice, other reports suggest thymic B  cells 
accumulate via periphery B cell migration to the thymus (16, 33).  
To determine whether the NOD mouse thymus promotes B cell 
development, we used recombination activation gene green 
fluorescent protein (RAG2p-GFP) reporter mice on a non-T1D-
prone FVB background (hereafter called FVB-RAG-GFP), or 
on the NOD background (hereafter called NOD-RAG-GFP). 
In RAG2p-GFP reporter mice, highest GFP expression occurs 
when RAG genes are active (30). Once recombination of the 
B cell receptors and T cell receptors is complete and RAG activity 
is silenced, GFP expression decreases over a 54  h period (30). 
As such, newly developed B cells can be identified from thymic 
resident/recirculatory B cells based on the expression of GFP.

Since our control RAG2p-GFP transgenic mice are on an 
FVB background, we compared thymic B  cell frequencies and 
numbers of this alternative control murine strain to control B6 
mice or NOD mice. Although frequencies and absolute numbers 
of thymic B cells in the FVB strain were higher than the B6 strain, 
the NOD strain demonstrated significantly greater thymic B cell 
frequencies and numbers to the FVB strain (Figures S2A,B in 
Supplementary Material).

We performed time-course, flow cytometry studies of the two 
strains of mice at the ages shown in Figure 1C, and quantified 
the number of GFPhi B cells. Representative flow cytometry plots 
showing the gating strategy for CD19+GFPhi B  cells is shown 
in Figure S1C in Supplementary Material. Recently developed 
CD19+GFPhi B cells were readily detectable in both strains of mice 
at all time points analyzed (Figure 1C). In control FVB-GFP mice, 
there was no significant changes in B cell development as mice 
aged. In the NOD strain, although there was no significant change 
in B cell development when the two age groups were compared, 
it was clear that thymic B cell development is enhanced as mice 
enter the late insulitic–prediabetic phase of the T1D pathway.

In light of evidence that the late insulitic–prediabetic phase 
is characterized by increased B  cell development, we asked if 
homeostatic proliferation of thymic B cells is also affected as mice 
enter the late insulitic–prediabetic phase. We performed com-
parative flow cytometric studies between NOD and control B6 

mice, assessing for Ki67 expression as a marker for homeostatic 
proliferation. Interestingly, for both strains of mice, the highest 
level of homeostatic proliferation of thymic B  cells is an early 
event, with CD19+Ki67+ B  cell frequencies higher in younger 
mice when compared with older mice (Figure 1D). Furthermore, 
this decrease in homeostatic proliferation in the 12- to 14-week-
old group was more pronounced in NOD mice, although the 
decrease was not significant.

The nOD Thymic environment has 

ectopic germinal center Formation 

Potentiality
To further investigate the phenotype of thymic B cells in NOD 
mice, we assessed their surface markers. B cells undergo a series  
of transitions from the immature stage developing follicular (FO) 
or marginal-zone (MZ) properties. Thus, we qualified the phe-
notype of thymic B cells assessing for FO (IgMloIgD+CD21/35+, 
CD23+) versus marginal zone (IgM+IgDloCD23−CD21/35+). We 
focused our studies on 11- to 14-week-old mice due to the evi-
dence that at this age B cell development is enhanced as are thymic 
B cell numbers in NOD mice when compared with control mice. 
Representative flow cytometric plots for our gating strategies are 
shown in Figure S2D in Supplementary Material.

As shown in Figure 2, the frequency of FO B cells within the 
thymic B cell pool was significantly higher in NOD mice com-
pared with control B6 mice (Figure 2A). This enhancement in 
FO B cells in the NOD mouse thymus was recapitulated when 
absolute number of FO B  cells was calculated (Figure  2B). By 
contrast, although the frequency of B cells with an MZ phenotype 
was significantly decreased in the NOD mouse thymus compared 
with control B6 mouse thymus, the absolute numbers of these 
cells were similar between the two strains of mice.

The increased numbers of FO B cells in NOD mice with res-
pect to B6 control mice led us to investigate whether the thymic 
B cell form follicle-like structures. Immunohistochemical studies 
revealed B  cell follicle-like structures form only in NOD mice 
(Figure 2C). Initially, B cells are detectable at the cortical–medul-
lary junction at 9 weeks of age in NOD mice (data not shown) 
with pronounced accumulation of B  cells into follicle-like str-
uctures in this location by 11  weeks of age. The presence and 
location of B cell follicle-like structures was identical irrespective 
of whether we used anti-B220 or anti-CD19 antibodies to identify  
B cells (data not shown) confirming the accumulating B220+ cells 
are not plasmacytoid DCs. We quantified the number of B cell 
follicle-like structures in the thymus of 9- to 11-week-old NOD 
mice; of 15 individual sections assessed, 90% contained one fol-
licle, 5% two follicles, and 5% no follicles.

The presence of follicle-like structures in the thymus of late 
insulitic–prediabetic NOD mice, but not control B6 mice, lead us 
to ask if the thymic environment could support germinal center 
formation. Of interest was the relationship between IL-2 and 
IL-21, the latter being a key mediator of germinal center formation; 
the cytokine promotes B  cell somatic hypermutation and class 
switching, and the development and maintenance of T follicular 
helper (TfH) cells (34). In NOD mice, IL-21 has been associated 
with T1D progression (35, 36) and CD4+CD45R− T cells isolated 



FigUre 2 | B cells form follicle-like structures at the cortical-medullary junction in non-obese diabetic (NOD) thymi. Flow cytometric analysis of the (a) frequency of 

B cells displaying a follicular (FO) or marginal-zone (MZ) phenotype in the thymus of B6 (n = 10) or NOD mice (n = 13) and (B) absolute number of B cells displaying 

FO or MZ phenotypes in the thymus of B6 (n = 5) or NOD mice (n = 6). Comparisons made between aged-matched, female 11- to 14-week-old mice in a single 

cell, live gate. Data acquired from at least two independent experiments and are presented as scatter plot; P values were calculated using the Mann–Whitney U-test 

analysis; ns, not significant. (c) Representative confocal immunofluorescence microscopy images of thymi sections examined for B220 (yellow), cytokeratin V (green) 

expression, and the DNA-intercalating dye DAPI identified nuclei (blue) from 11-week-old female NOD or B6 mice. A total of 14 sections from eight NOD mice and a 

total of six sections from three B6 mice were analyzed, and there was consistency in the data obtained from the appropriate strains of mice. Confocal fluorescent 

images were obtained with a Plan-Apochromat 20× objective.
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from T1D patients secrete greater quantities of IL-21 than 
quantified from normal individuals (37). We prepared cell-free 
supernatants (32) from the thymi of NOD and control B6 mice 
at the ages shown in Figure  3A and performed ELISA assays.  
As a comparison, we analyzed cell supernatants from the spleens 
of the same mice. The results were tabulated as ratio of IL-21:IL-2. 
No differences were seen in IL-21:IL-2 ratios in splenic prepara-
tions from the two strains of mice. However, the NOD mouse 
thymus had a significant bias in IL-21 concentrations in com-
parison with B6 mice.

In light of this IL-21 bias, we quantified the frequency and 
absolute numbers of CD4SP cells that expressed a TfH cell phe-
notype in the thymus of the two strains of mice. As shown in 
Figures 3B,C, NOD mice exhibited a significant increase in freq-
uencies and absolute numbers of CD4SPPD1hiICOS+ T cells, and 
these cells also expressed transcription factor Bcl-6 (Figure 3D) 
and CxCR5 (Figure S3A in Supplementary Material). In addition, 
approximately 5% of NOD putative thymic TfH cells secreted 
IL-21, a frequency that was comparable to that seen for splenic 
TfH cells from the same mice (Figure S3B in Supplementary 
Material). Furthermore, this increase in thymic TfH cells in  
NOD mice in comparison with B6 control mice correlated with 
an increased number of CD4−CD8−B220low/−CD138+ plasma 
cells in the NOD mouse thymus, although this increased number 
was not significant (Figure  3E; Figure S3C in Supplementary 
Material). Together, these data suggested that ectopic germinal 
centers could be present in the NOD mouse thymus, but absent 
in control B6 mouse thymus. To support this hypothesis, we 
looked for a bona fide germinal center marker; the enzyme 
AID. RNA was prepared from thymi isolated from NOD mice or 
control B6 mice and quantitative real-time RT-PCR performed. 
As an additional control, we included thymic mRNA isolated 
from age-matched, sex-matched NOD-μMT−/− mice. The relative 
expression of transcripts for AID in NOD mice was normalized to 
control B6 mice. As shown in Figure 3F, the NOD mouse thymi 
has enhanced AID expression in comparison with control B6 
mice. Thus, ectopic germinal center formation is likely a feature of 
the NOD thymus and precedes the preultimate β cell destruction 
phase of T1D.

Thymic immunoglobulins Binding 

selective mTecs correlates With  

mTec apoptosis
The presence of AID and enhanced plasma cell frequencies 
in the NOD thymus with respect to control B6 mice, made us  
query the Ig isotype of the thymic B cells and secreted antibo-
dies. Since we previously had investigated the IgM+ B cell thymic 
subtype (Figure 2), this time we focused on class-switched IgM− 
cells. The number of IgM−IgD−IgA+ and IgM−IgD−IgG+ B cells 
was similar in the thymus of both NOD and control B6 mice 
as determined by flow cytometry (Figure 4A). By contrast, the 
number of IgM−IgD−IgE+ B cells was significantly increased in  
the NOD mouse thymus with respect to control mice. Interest-
ing, a unique population of IgM−IgD+ B cells [similar to those 
reported in T1D patients (31)] was detectable in the thymic tis-
sue. These IgM−IgD+ B cells dually expressed IgG, IgE, or IgA with 

the number of dual expressing IgD+IgA+ and IgD+IgG+ B  cells 
being significantly higher in the NOD mouse thymus than the B6 
control mouse thymus, the most significant being the IgD+IgG+ 
isotype (Figure 4B; Figure S4A in Supplementary Material). By 
contrast, no differences in IgD+IgE+ B  cell numbers were seen 
between the two strains of mice. We next assessed the isotype 
of soluble thymic Ig by ELISA, in comparison with serum Ig. 
Only the IgG1 and IgA Ig isotypes were enhanced in the thymi of 
NOD mice in comparison with control B6 mice (Figures 4C,E). 
By contrast, IgG2a, IgG2b, and IgM antibody levels were similar 
in both strains of mice, with IgG3 antibody levels being slightly 
lower in NOD mice than in the thymus of B6 control mice. 
Interestingly, in NOD mice thymus, B cells predominately used 
the kappa light chain, there being a significant decrease in the 
presence of lambda light chains when compared with B6 control 
mice (Figure S4C in Supplementary Material). In addition, this 
isotype pattern documented in the NOD mouse thymus seemed 
unique for this tissue, as similar ELISA-based isotyping of Igs in 
the serum of the two strains of mice revealed little difference in 
levels of each isotype assessed (Figures 4D,F). However, similar 
to the thymus, in the serum, there was a significant decrease in 
lambda light chain usage in NOD mice in comparison with B6 
controls (Figure S4B in Supplementary Material). Quantification 
of the thymic Ig isotypes supported the data that IgG1 and IgA are 
significantly greater in the thymus of NOD mice with respect to 
control B6 mice (Figure S5A in Supplementary Material).

We decided to explore further these thymic B cells to determine 
whether they harbored receptors specific for islet autoantigens, 
focusing on their specificity for insulin (31). Representative gating 
strategy for identifying insulin-reactive B cells is shown in Figure 
S5B in Supplementary Material. Although the frequency of cells 
bearing receptors specific for insulin is significantly less in the thy-
mus of NOD mice with respect to control B6 mice within the B cell 
fraction, absolute numbers of insulin-reactive B cells was similar 
in NOD mice and B6 control mice (Figure S5C in Supplementary 
Material). Thus, insulin-reactive B cell numbers do not correlate 
with T1D susceptibility at this time point. Due to this finding, we 
decided to ask whether thymic B  cells produce antibodies that 
target, as yet, undefined antigens on thymic stroma. Thymic tis-
sue sections from 11-week-old NOD mice were incubated with 
anti-mouse antibodies that would detect any mouse Ig bound 
to thymic stroma in  situ and bound antibodies were detected 
by confocal microscopy. To qualify whether any Igs that bound 
to thymic stroma interacted with mTECs, we included mTEC-
binding anti-cytokeratin V antibodies in the assay. As shown in 
Figure 5A, there was detectable binding of murine Igs to thymic 
stroma in NOD mice, suggesting these cells had murine Igs bound 
to them in situ. Interestingly, intrathymic Igs were bound almost 
exclusively to cytokeratin V+ mTECs, and it appeared that only a 
proportion of mTECs were being targeted by the Igs. In contrast 
to NOD mice, there was substantially less intrathymic Ig in control 
B6 mice interacted with thymic stroma, particularly cytokeratin 
V+ mTECs (Figure 5B). Furthermore, there was no evidence of 
intrathymic Igs bound to thymic stroma, including cytokeratin 
V+ mTECs in B cell-deficient NOD-μMT−/− mice confirming the 
specificity of the anti-mouse antibodies for mouse Igs (Figure S6 in 
Supplementary Material). We quantified the frequency of cells with 



FigUre 3 | The non-obese diabetic (NOD) thymus has the hallmarks of ectopic GC development. (a) Evaluation of IL-2/IL-21 ratio in cell-free supernatants from 

spleen and thymic tissue from 11- to 15-week-old B6 (n = 5) or NOD (n = 4) mice. The data shown are representative of two individual experiments showing similar 

results. (B) Frequency of CD4+ T follicular helper (TfH) cells in the thymus of B6 (n = 12) and NOD mice (n = 17). (c) Number of CD4+ TfH cells in the thymus of B6 

(n = 10) and NOD mice (n = 11). (D) Representative histogram of BCL-6 expression in CD8−CD4+PD1hiICOS+ cells in thymus of NOD (n = 5) and B6 (n = 5) mice. 

(e) Number of plasma cells in the thymus of B6 (n = 15) and NOD mice (n = 15). For panels (B–e), comparisons made between female, age-matched 10- to 

14-week-old B6 and NOD mice. The analysis was performed on a single cell, live gate, and the data are presented as a scatterplot, each dot equating to a mouse, 

the bar represents mean value. P values were calculated using the Mann–Whitney U-test analysis and are shown in this figure; ns, not significant. The data are 

pooled from at least two independent experiments giving similar results. (F) Quantitative-PCR analysis of activation-induced cytidine deaminase (AID) mRNA (aicda 

expression) levels in the whole thymus. Data were normalized to HPRT mRNA as described in Section “Materials and Methods,” and fold change in NOD mice AID 

mRNA when compared with normalized AID mRNA levels for B6 mice. All mice were 11–14 weeks of age, a total of five female B6 mice were compared with five 

female NOD mice. One thymic sample from a female B cell-deficient NODμMT−/− mouse was used as a negative control. The data are pooled from two independent 

experiments and are presented mean ± SEM. P values were calculated using the Mann–Whitney U-test and are shown in this figure; ns, not significant.
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FigUre 4 | The non-obese diabetic (NOD) thymus harbors a unique pattern of immunoglobulin (Ig) isotypes. (a) Number of IgM−IgD−IgA+, IgM−IgD−IgE+, and 

IgM−IgD−IgG+ B cells in the thymus of 11- to 14-week-old female B6 (n = 10) or female NOD mice (n = 10). (B) Number of IgM−IgD+IgA+, IgM−IgD+IgE+, and 

IgM−IgD+IgG+ B cells in the thymus of 11- to 14-week-old female B6 (n = 10) and female NOD mice (n = 10). (c–F) Optical density (OD) values of the respective Igs 

in cell-free tissue supernatants (c,e) or serum (D,F). A total of six female B6 and six female NOD mice were assessed in two independent experiments. Data are 

presented as scatter plot, each dot equating to one mouse and bar representing the mean. P values were calculated using the Mann–Whitney U-test analysis and 

are shown in this figure; ns, not significant.
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murine Ig bound in the thymus of 11- to 14-week-old NOD and 
B6 mice. We selected images that had comparative frequ encies of 
cytokeratin V+ mTECs and counted 2–3 × 104 DAPI+ cells/mm2. As 
shown in Figure 5C, approximately 7% of cells had bound murine 
Ig in the NOD mouse thymus. By contrast, the frequency of cells 
bound by murine Igs in B6 mice was so low as to be undetectable.

Finally, we queried the significance of in  situ binding of 
thymic stroma by Igs, particularly the potential that a selective 

number of mTECs underwent apoptosis. In this regard, we incu-
bated thymic tissue sections from 11-week-old, female NOD 
mice with antibodies specific to cytokeratin V+ and assessed for 
apoptosis by confocal microscopy following TUNEL staining 
(Figure 6A). As controls, we similarly analyzed thymic tissue 
sections from control B6 mice and NOD-μMT−/− mice. The 
inclusion of NOD-μMT−/− mice was important to determine 
whether the diabetes-associated MHC class II molecules unique 



FigUre 5 | IgGs bind to thymic stromal components in non-obese diabetic (NOD) mice. (a,B) Representative confocal immunofluorescence microscopy images of 

thymi sections of NOD [(a), I–III] and B6 mice [(B), I–II] examined for cytokeratin V (red), murine IgG (green), and the DNA-intercalating dye DAPI (white). A total of  

six 11-week-old NOD mice and five 11-week-old B6 mice, two sections per mouse were examined. [(a), I–II] is derived from different NOD mice. The confocal 

fluorescent image in AI was obtained with a Plan-Apochromat 20× objective to give a broader view of the extent of immunoglobulin bound to thymic stroma, arrows 

indicating some of the cells co-positive for cytokeratin V and mouse IgG. The confocal fluorescent images in AII and AIII were obtained with a Plan-Apochromat 63× 

objective. For panel (B), the confocal fluorescent image was obtained using a Plan-Apochromat 20× objective. (c) Quantification of murine Ig-bound to stromal cells 

of age-matched 11-week-old, female NOD or B6 mice. Confocal immunofluorescence microscopy images were subjected to StrataQuest V64 analysis, a total of 

2–3 × 104 DAPI+ cells/mm2 were counted, and the mean fluorescence intensity of DAPI+ cells versus mean fluorescence intensity of anti-Ig is presented as a 

scattergram. The data shown are representative of two independent mice examined giving similar results.
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to NOD mice was sufficient to trigger mTEC apoptosis via 
non-B cell-mediated mechanisms. Thymic tissue sections from 
NOD mice had clear evidence of apoptosis, and such apoptotic 

cells were almost exclusively cytokeratin V+ mTECs. Apoptosis 
of cytokeratin V+ mTECs was also evident in NOD-μMT−/− 
mice, although the proportion of apoptotic cells seemed lower 
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FigUre 6 | Continued



FigUre 6 | Increase in thymic B cells was associated with increased apoptosis of stromal cells. (a) Representative confocal immunofluorescence microscopy 

images of thymi sections from 9- to 14-week-old female non-obese diabetic (NOD), and NOD-μMT−/− and B6 mice examined for cytokeratin  

V (yellow), apoptosis (red), and the DNA-intercalating dye DAPI (white) expression. The data are representative of similar data acquired from six female  

NOD, six female NOD-μMT−/−, and four female B6 mice, three sections per mouse were examined. In all cases, the confocal fluorescent images were  

obtained with a Plan-Apochromat 63× objective. Bar represents 20 µm. (B) Quantification of TUNEL+ stromal cells of age-matched 11-week-old, female  

NOD, NOD-μMT−/− or B6 mice. Confocal immunofluorescence microscopy images were subjected to StrataQuest V64 analysis, a total of 4 × 104  

DAPI+ cells/mm2 were counted, and the mean fluorescence intensity of DAPI+ cells versus mean fluorescence intensity of TUNEL is presented as a scattergram.

12

Pinto et al. Thymic B Cells Promote T1D

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1281

than that for B cell sufficient NOD mice. In contrast to the NOD 
strains, we could not see any apoptotic cells in the B6 control 
mouse thymic tissue section. We quantified the frequency of 
apoptotic cells in the thymic sections of the respective strains of 
mice (Figure 6). We counted a total of 4 × 104 DAPI+ cells/mm2  
per  section, ascertaining similar frequencies of cytokeratin V+  
mTECs for each tissue sections examined. As shown in 
Figure 6B, ~6% of DAPI+ cells were apoptotic in NOD mice. 
This frequency of apoptosis was twofold higher than seen for 
NOD-μMT−/− mice (~3%). In contrast to the NOD strains, <1% 
of cells were apoptotic in control B6 mice. We were curious to 
determine if apoptotic cytokeratin V+ mTECs in NOD mice 
expressed insulin. Thymic tissue sections from 11-week-old 
female NOD mice were incubated with anti-cytokeratin V+ and 
anti-insulin antibodies and apoptosis determined by TUNEL 
staining as before. As a control, we similarly analyzed thymic tis-
sue sections from age-matched, female B6 mice. Interestingly, 
within the apoptotic cytokeratin V+ mTEC pool in NOD mice 
resided cytokeratin V+ mTECs that expressed insulin, although it 
is important to note that some insulin+ cytokeratin V+ mTECs 
were not apoptotic suggesting there is not a complete loss of 
insulin+ cytokeratin V+ mTECs but a reduction in their num-
bers. Similarly, some apoptotic mTECs did not express insulin 
(Figure S7 in Supplementary Material).

Taken together, these data suggest that B cell-mediated auto-
immune targeting of cytokeratin V+ mTECs results in the loss of 
a distinct population of cytokeratin V+ mTECs, some of which 
express insulin, and this key feature occurs before sustained 
autoimmune attack in the pancreas.

Thymic B cells enhance Premature egress 

of T cells From the Thymus
The evidence that thymic stroma had bound autoantibodies and 
the presence of these autoantibodies correlated with increased 
apoptosis of thymic stroma, including some insulin+ mTECs, 
we investigated the impact this may have on thymocytes 
capable of responding to islet antigen, particularly insulin. We 
isolated the thymocytes from NOD mice thymi and cultured 
the cells in the presence of BM-DCs and either whole insulin or 
proinsulin peptide 15:23 (38). The proliferative response to the 
CD4SP and CD8SP thymocytes to the respective stimulants was 
assessed by flow cytometric analysis of Ki67 (Figure 7; Figure 
S8A in Supplementary Material). As controls, we included 
B6 mice stimulated with whole insulin, and B  cell-deficient 
NOD-μMT−/− mice stimulated with whole insulin or proinsulin 
peptide 15:23. For CD4SP cells only those isolated from B cell 
sufficient NOD mice responded to whole insulin, although the 

response was not significant in comparison with control mice 
(Figure  7A). The responses to whole insulin for thymocytes 
from B6 and NOD-μMT−/− mice being close to baseline. By 
contrast, CD4SP thymocytes from NOD mice exhibited a sig-
nificantly increased response to proinsulin P15:23 with respect 
to NOD-μMT−/− mice. The responses of CD8SP thymocytes 
were slightly different; whereas thymocytes isolated from NOD 
mice responded to the whole insulin molecule, the responses 
for individual mice were quite diverse—some responded 
well, others’ response close to baseline levels for B6 control 
mice (Figure  7B). Similarly, CD8SP thymocytes from NOD-
μMT−/− mice had some diversity in responsiveness to whole 
insulin, although it was noted that even the best responders still 
responded weaker than that seen for NOD mice. By contrast, 
CD8SP thymocytes from NOD mice responded far better 
to proinsulin P15:23, than those from NOD—μMT−/− mice, 
although the response was not significantly enhanced. In these 
same mice, the responses to the proinsulin peptide were less 
diverse and above baseline levels.

We initially wondered whether this increased response for 
insulin and proinsulin peptide by NOD thymocytes was repre-
sentative of increased survival of autoreactive T cells, and thus 
a breakdown in negative selection. In particularly, we queried 
whether thymocytes that had very recently rearranged their TcR 
escaped from the thymus before completing negative selection. 
If this held true, we expected an increase in RAG-GFPhi T cells 
in the blood; RAG-GFP levels normally fall during negative 
selection due to the time to complete the process and as such, 
peripheral T  cells are usually RAG-GFPint (30). To test this 
hypothesis, we performed flow cytometry analysis of total GFP  
levels of T  cells in the peripheral blood of NOD-RAG-GFP  
mice in comparison with control FVB-RAG-GFP mice and 
B  cell-deficient NOD-μMT−/– RAG-GFP mice. Representative 
flow cytometry plots showing the gating strategy is shown in 
Figure S8B in Supplementary Material. As shown in Figure 7C, 
in the NOD murine strains, the frequency of total GFP+ T cells  
in peripheral blood was greater than seen for the control FVB 
strain, for NOD mice this increase being significant. Further-
more, this increased frequency of GFP+ T cells in the peripheral 
blood of the NOD strains was almost entirely due to GFPhi cells,  
as GFPint cells were only slightly increased in frequency in 
comparison with control FVB-RAG-GFP mice, again NOD mice  
showing a significant increase. Importantly, although not sig-
nificant, it was clear that the frequency of RAG-GFPhi cells in 
B cell sufficient NOD-RAG-GFP mice was higher than in B cell-
deficient NOD-μMT−/– RAG-GFP highlighting the importance 
of B cells in the early release of T cells from the thymus before 
negative selection.



FigUre 7 | B cells promote premature thymic-release of T cells before negative selection. (a,B) Thymocytes from 11- to 12-week-old B6, non-obese diabetic 

(NOD) and NOD NOD-μMTKO mice were stimulated with insulin or B15:23 peptide (NOD and NOD-μMTKO mice, only) for 72 h and Ki67 expression in CD4SP  

(a) or CD8SP (B) cells as a measure of proliferation was determined by flow cytometry. The frequency of Ki67+ cells for stimulated samples was normalized  

against the frequency of Ki67+ cells in unstimulated samples. (c) Frequency of RTEs (RAG-GFPhi) in peripheral blood of 11- to 12-week-old FVB-GFP (n = 8), 

NOD-GFP (n = 8), or NOD-μMT−/– GFP (n = 5) mice. Data are pooled from two independent experiments, and cells were analyzed on a live, single, CD3+ T cell gate. 

The data are presented as scatter plot, the bar representing the mean value; P values were calculated using the two-way ANOVA followed by Tukey multiple 

comparison test and are shown this figure; ns, not significant.
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DiscUssiOn

Ablation of efficient purging of autoreactive T cells in the thy-
mus and the role of B cells in T1D seem two distinct entities in 
understanding how immunological tolerance is broken in this 
chronic autoimmune condition. Here, we establish that inap-
propriate accumulation of B cells in the NOD mouse thymus is 
a unique feature of the disease process, and these thymic B cells 
may play a role in the egress of pre-negatively selected T cells.

Type 1 diabetes progression in both man and NOD mice occurs 
over time. The initial stages of T1D, where priming of the immune 
response to islet antigen occurs but not overt β cell destruction, is 
characterized by autoantibodies to β antigens (39). It is accepted 
that following priming of the autoreactive T  cell repertoire to 
β cell antigens, the activity of the autoreactive T  cells is kept in 
check by regulatory mechanisms. Ultimately, such regulation 

fails, and leading to β cell destruction. Little is known as to why 
regulation of autoreactive T cells fails over time, although paucity 
of, or dysfunction of, T regulatory cells is speculated to contribute 
to the phenomenon (40–42). Our data add a new dimension to 
our understanding of the immunological changes that occur at 
the late insulitic– prediabetic phase that may tip the autoreactive 
T cell response in favor of β cell destruction; targeted thymic B cell 
autoimmune attack of thymic stroma expressing β cell antigens.

B cells are present in the thymus of mammals from fetal age 
to adulthood, their numbers remaining relatively static in ontog-
eny and equating to those of thymic dendritic cells (5, 11, 13).  
Previous studies in NOD mouse strains documented B cell accu-
mulation in the thymus of aged mice (43, 44). Here, we extended 
on these early studies showing that in NOD mice, thymic B cell 
numbers are not static, their numbers significantly increase at the  
late insulitic–prediabetic phase suggesting the restricted B  cell 
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niche normally present expands. This change in B cell numbers 
occurs at the same time as increased numbers of RAG+ B cells  
are detected in the thymus, but decreased homeostatic prolife-
ration. Together these findings suggest that permissiveness of 
B cell development that can normally occur within the thymus 
(33, 45–47) is enhanced in NOD mice as they age, and the 
increase in B cell numbers potentially reflects this increased rate 
of development rather than in  situ proliferation. Although we 
cannot exclusively discount that peripheral B cells migrating to 
the thymus contribute to the thymic B cell population, we, like 
others, have found peripheral B cells have little propensity to traf-
fic to the thymus [data not shown (47)]. Future studies in how 
the NOD mouse thymic environment potentially nurtures B cell 
development and retention will be informative.

The phenotype of thymic B  cells in NOD mice resembles 
that of thymic B cells in non-autoimmune strains of mice; they 
predominantly express B2 FO cell markers, and have a predo-
minantly activated phenotype with high MHC and costimula-
tory molecule expression [data not shown (45, 48)]. The location  
of thymic B cells in NOD mice is also reminiscent of reports in 
other murine strains- positioned predominantly at the cortico-
medullary junction- but in contrast to non-autoimmune prone 
mice, large B  cell follicles form and this is age-dependent. 
Furthermore, the hallmarks of germinal centers are readily detec-
table in the NOD thymus; IL-21 and TfH cells. Abnormalities in 
levels of IL-21 and TfH cells in peripheral tissues, and blood, have 
been strongly associated with T1D (37, 49). Here, we show similar 
abnormalities exist in the thymus occurring specifically at the late 
insulitic–prediabetic phase of the T1D condition. In addition,  
the thymus of NOD mice has enhanced levels of AID mRNA 
transcripts, suggesting increased in situ somatic hypermutation 
and class switching of the B cell repertoire activity. Plasma cells 
are also increased in the thymus of NOD mice with respect to 
control animals which taken all this information together implies 
ectopic germinal centers are a feature of the NOD thymus, not 
just their pancreas (50). Our evidence that the NOD mouse thy-
mus is populated with significantly increased numbers of B cells  
with IgG, IgA, and IgE receptors with respect to non-autoimmune 
prone mice, as well as enhanced levels of soluble IgG1 and IgA 
antibodies supports our rationale of ectopic germinal center 
formation in this primary lymphoid tissue.

The significance of these unique changes in the NOD mouse 
thymus as mice progress along the T1D pathway, we believe, 
is that they have the potential to impact on the capacity of 
negative selection of autoreactive T cells to occur effectively. The 
importance of mTEC expression of TSAs for efficient deletion of 
developing T cells bearing autoreactive T cell receptors is well 
established (51). Our evidence that a selective population of 
mTECs have autoantibodies bound in situ, and in the presence 
of thymic B cells, a proportion of mTECs undergo apoptosis, a 
number of which express insulin, is likely to have implications 
on negative selection of islet-reactive T  cells. The antigenic 
specificity of the intrathymic autoantibodies target is unknown, 
and we do not believe that they must recognize insulin to 
impact of T1D progression. It is possible that the intrathymic 
autoantibodies recognize and promote apoptosis of particular 

mTECs that express certain TSAs that are associated with other 
autoimmune conditions NOD mice develop (52–54). It follows 
that reduction in insulin-expressing mTECs may happen inad-
vertently. Alternatively, or in addition, it is possible that thymic 
cognate B–T  cell interactions promote survival of developing 
autoreactive T cells as opposed to their deletion (7).

Our data are supportive of the rationale that pre-negatively 
selected T  cells are potentially released from the thymus pre-
maturely. Two-photon microscopy has documented that deve-
loping T cells reside in medulla for 3–5 days to complete negative 
selection (55). In RAG2p-GFP reporter mice, this duration in 
the medulla equates to decreased GFP intensity due to the 54 h 
half-life of the molecule (30). Our evidence that in NOD mice 
CD3+GFPhi cells are significantly enhanced in peripheral blood 
with respective to non-autoimmune prone mice suggests an 
aborted time, or failed entry into, the medulla of GFPhi T cells, 
and as a consequence failed negative selection. It follows that 
the increased export of non-negatively selected T  cells could 
overpower waning regulatory mechanisms in the islets leading to 
the final sustained attack of the β cells.

The fledgling field of thymic B  cell research is starting to 
unravel the importance of this unique population of cells in the 
immune system. Our data highlight a new relationship between 
thymic B cells and T1D development. Future studies that define 
the in  situ developmental pathway and receptor specificity of 
thymic B cells will be important for identifying key therapeutic 
strategies for T1D and other autoimmune conditions in which 
thymic B cells make a contribution.
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