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Abstract

We report a series of experiments that use semantic-based local search within a 

multiobjective genetic programming (GP) framework. We compare various ways of 

selecting target subtrees for local search as well as different methods for perform-

ing that search; we have also made comparison with the random desired operator of 

Pawlak et al. using statistical hypothesis testing. We find that a standard steady state 

or generational GP followed by a carefully-designed single-objective GP implement-

ing semantic-based local search produces models that are mode accurate and with 

statistically smaller (or equal) tree size than those generated by the corresponding 

baseline GP algorithms. The depth fair selection strategy of Ito et al. is found to per-

form best compared with other subtree selection methods in the model refinement.

Keywords Semantic-based genetic programming · Local search · Multiobjective 

optimization · Model selection

1 Introduction

It is well established that genetic programming (GP) exhibits good performance on 

the empirical modeling of complex systems [41]. Nonetheless, traditional GP still 

has the limitation that since it acts at the syntactic level, a small syntactic modifi-

cation can produce a dramatic change in program fitness, which can harm search 

efficiency.

To address these issues, the integration of local search into GP has attracted sig-

nificant attention [20, 45]. At a wider level, the hybridization of population-based 

global search with heuristic local search—often termed a memetic algorithm 
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[35]—has achieved notable successes [37] although remains comparatively little 

used in GP. Typically, existing GP memetic algorithms may include hill climbing 

local search over the coefficients or the model structures of the GP solutions.

In GP, semantics usually refers to the vector of output values a program pro-

duces over the training data [50] and has been the subject of much recent research. 

Experimental results to date suggest that awareness of semantics is a great help 

both in maintaining population diversity and improving search power. Among these 

approaches, semantic-based local search methods [13, 50] have exhibited promising 

performance. Based on semantics, Pawlak et al. [40] have implemented a novel ran-

dom desired operator (RDO), which decomposes the search task into a series of sub-

tasks. By backpropagating the desired semantics to individual subtrees, the fitness of 

a solution can be improved by seeking to replace a selected subtree with a subtree 

better matching the desired semantics. Since replacement subtrees are selected from 

a (pre-computed) library, it is unclear whether RDO is a local search method or a 

(global) crossover method as claimed in [40]; clarifying this question is a part of the 

motivation for the present paper.

Local search inevitably adds to the computational burden and runtime of GP, 

which seemingly makes many practitioners wary of local search-based approaches. 

For this reason, we have restricted the present paper to local search—where 

employed—for tuning the solutions at the end of a conventional GP run. We believe 

this approach thus closely fits with the conventional memetic algorithm formulation 

[35] (although some may argue that in a memetic algorithm, the local search would 

be embedded within the global search). The principal contribution of this paper is an 

investigation of the performance of GP approaches when supplemented by semanti-

cally-aware local search methods. In particular, this paper extends consideration of 

the effectiveness of local search to a multiobjective (MO) GP framework since this 

explicitly trades off goodness-of-fit against model complexity, a key requirement in 

the empirical modeling of data [10, 30]. For the reasons stated in the preceding par-

agraph, we also make comparison with the RDO approach. We specifically constrain 

the scope of this work to local search methods that modify the morphologies of the 

GP trees rather than approaches described in Sect. 2 that fine-tune node functional-

ity. Local search methods that change the tree morphologies are comparatively little 

explored.

2  Related work

2.1  Semantically‑aware methods in GP

The study of semantics in GP has been an active topic since the term was first pro-

posed by McPhee et  al.  [33]. As an evolutionary method, GP faces the issue that 

the ‘shapes’ of initial trees can be rapidly lost within a few generations. Tradition-

ally, a diverse initial population, which plays an important role in a successful GP 

run, has usually been obtained with the ramped half-and-half method [25]—diver-

sity here has to be interpreted at the syntactic level. Beadle [3] proposed a seman-

tically-driven initialization algorithm to produce a diverse initial population at the 
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phenotypic level. Compared to the ramped half-and-half method, increased semantic 

diversity seems to have a positive effect on GP search efficiency. Jackson [23], how-

ever, pointed out that it is not sufficient to ensure semantic diversity only in the ini-

tialization stage since a lack of semantic diversity diminishes the exploratory power 

of GP over the whole run. This author concluded that measures to promote syntactic 

diversity produced few gains, but those designed to produce semantic diversity gen-

erated a noticeable performance improvement. Based on the evaluation of behav-

ioral changes caused by structural modification as a result of mutation, Beadle and 

Johnson [4] proposed a semantically-driven mutation operator to prevent the crea-

tion of new offspring with equivalent performance to that of their parents.

Locality in GP [15] measures the effect of a genotypical change on the pheno-

type, which is a crucial prerequisite to prevent evolutionary algorithms from behav-

ing as pure random search. Uy et  al.   [47] compared the roles of syntactic and 

semantic localities of crossover in GP, and pointed out that improving syntactic 

locality reduced tree size and produced a slight improvement in model generaliza-

tion. In contrast, improving semantic locality was more effective in reducing tree 

size and improving model generalization. These authors also proposed a number of 

semantic-based crossover and mutation operators.

Krawiec et  al.  [28] proposed the approximately geometric crossover (AGC), 

which combined a geometric crossover operator with semantic backpropagation. 

The semantics were used for guiding the crossover operation during evolution; these 

operators were further generalized in [40]. The recently-proposed RDO and approxi-

mately geometric semantic crossover (AGX) operator use semantic backpropagation 

to identify intermediate subtasks during the evolution process, and then solve these 

using an exhaustive search method. When compared with other semantic-aware 

operators and standard genetic operators, RDO and AGX were shown to exhibit 

improved performance on a series of symbolic regression and boolean benchmark 

problems. Though generating promising performance, a major weak point of these 

algorithms is that the child solutions are typically larger than their parents, which 

may lead to unacceptably slow fitness evaluations after a few generations. In this 

paper, we adopt the semantic backpropagation strategy of [40] for producing the 

desired output vectors of subtrees to serve as a basis for selecting better-performing 

replacements.

Geometric Semantic Genetic Programming (GSGP) has aroused the interest of 

an increasing number of researchers. Moraglio et  al. [34] introduced a novel set 

of semantically-aware genetic operators to search the underlying semantic space 

directly. GSGP, however, has a major shortcoming in that the size of the individuals 

grows exponentially during the evolution, which makes it impractical for complex, 

real-life applications. Vanneschi et al. [49] overcome this limitation by introducing 

new, efficient geometric semantic operators. Castelli et  al. [6] proposed geometric 

semantic genetic operators that enabled them to solve complex, real-world prob-

lems efficiently. Moreover, Ruberto et al. [43] presented a new genetic programming 

framework by introducing two concepts: optimally aligned, or optimally coplanar, 

individuals, which outperformed the standard GSGP. Nevertheless, Ruberto et  al. 

omitted problems for which they were unable to find aligned or coplanar individuals 

and the generalization to unseen data was not clear. Gonçalves et al. [17] addressed 
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these questions by using a geometric semantic hill climber to explore the search 

space.

This work provided a new insight into the relationship between program syntax 

and semantics, and allows for the principled, formal design of semantic operators for 

various problems.

2.2  Local search in GP

The combination of local search and evolutionary global search [16, 18] has been 

widely studied and shown to be a powerful strategy for improving search efficiency 

although this is less commonly employed in GP. Local hill climbing has been inte-

grated into GP either for tuning numerical coefficients [1, 20, 27, 45, 54, 56], or 

fine-tuning the model structure [2, 13, 19, 26, 29, 31, 53, 55]. Interleaved with 

global search, the parameters of solutions in each generation have been optimized 

via: relabeling [20], genetic local search [27], gradient descent [45, 56], and linear 

scaling [1, 2].

Many hill climbing local search methods have been embedded in standard GP 

for model structure optimization. Harries and Smith [19] proposed a non-evolu-

tionary based GP with several genetic operators to evolve solutions in a hill climb-

ing manner. Later, a co-evolving memetic algorithm [26] was introduced to pro-

duce solutions for the comparison of protein structures by integrating co-evolving 

local searches with GP. Wang et al. [53] optimized decision trees using a splitting 

operator to divide the whole sample space into subspaces, and then conducted a 

hill-climbing tuning process. Zhang et al. [55] introduced the new crossover opera-

tor, called looseness control crossover, to find good building blocks by continually 

crossing over selected parents in a hill climbing manner. Looseness values assigned 

to each link between adjacent nodes prevent disruption of good building blocks in 

subsequent operations.

As the traditional crossover operator has often been criticized for being less pow-

erful in forming good offspring solutions, Majeed [31] proposed a semantic context-

aware crossover operator for breeding better child solutions with high fitness gain. 

This operator identified the best possible crossover point in each selected subtree by 

examining all possible contexts in which a subtree can be grafted, finally selecting 

the site where the highest fitness is attained.

Azad and Ryan [2] proposed a method to tune the internal nodes of trees one-at-

a-time by trying all possible nodes with the same arity, and retaining the modifica-

tion if a change of node improved the fitness. Although the method demonstrated 

performance improvements, this is an extreme form of local hill climbing that is 

unable to modify the ‘shape’ of a tree.

Since it is only able to explore syntactic space, canonical GP is deficient at deter-

mining the (implicit) parameters of a particular program. In order to address this 

deficiency, Z-Flores et al. [54] developed a Lamarckian memetic GP incorporating a 

local search strategy to optimize parameters embedded in the nodes of the GP trees. 

These authors concluded that incorporating local search improves convergence and 

performance while reducing code growth. As with the work in [2], the approach of 
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Z-Flores et al. does not use local search to modify the functional form (‘shape’) of 

the tree although whether this approach is effective due to also modifying selec-

tive pressures within the population is possible but as yet unexplored. The work in 

[54] was extended in [24] by hybridization with the neuro-evolution of augmenting 

topologies (NEAT) method.

For combining the exploration ability of semantic genetic programming and the 

exploitation ability of local search, Castelli et al.  [7] integrated semantic mutation 

operators [34] with a local search method of solving a problem in energy consump-

tion forecasting. This case study resulted in good model accuracy with a speeded-

up search process. In order to accelerate convergence, Castelli et  al. [8] proposed 

a hybrid algorithm combining GSGP and the above method. The results show this 

hybrid method allows the search to converge quickly while also exhibiting a note-

worthy ability to limit overfitting.

Inspired by the RDO algorithm, Ffrancon and Schoenauer [13] proposed a local 

tree improvement (LTI) operator within a standard local search framework to find 

the best possible semantic match between all subtrees in a parent tree and all pro-

grams in a pre-constructed library. This semantic-aware method performed well on 

several boolean benchmark problems.

La Cava et  al.  [29] claimed that the performance of stack-based GP can be 

improved by embedding local search using epigenetic instructions to specify active 

and silent genes. In contrast to tree-based GP, stack-based GP is “syntax-free” and 

syntactic validity is guaranteed no matter how the epigenetic instructions change.

Very recently, Trujillo et  al.  [46] have argued that local search is necessary to 

allow GP to reach its full potential; these authors also note that local search seems 

comparatively little utilized by the GP community.

3  Experimental methodology

3.1  Evolutionary framework

In the context of empirical modeling using GP, Le et al. [30] have recently reviewed 

the use of complexity measures, and point out the critical importance of trading off 

goodness-of-fit to the training data against model complexity; see also [36, Chap 

7]. To explicitly address this trade-off here, we have used a global multiobjective 

GP formulation in this work with conventional tree-based individuals where the sin-

gle population was sorted according to Pareto dominance. We have employed both 

the sorting approach and selection method of Fonseca and Fleming [14]. We have 

employed both generational and steady-state evolutionary strategies for ‘global’ 

search followed—optionally—by local search over the final populations; we make 

detailed comparisons below.

Experimental details of the basic evolutionary algorithm are shown in Table 1. 

This, we believe, is a fairly standard configuration except we have used the ana-

lytic quotient operator [38] instead of protected division to avoid near-singularities 

in the solutions. We have employed the straightforward complexity measure of tree 

node count in our multiobjective formulation since this gives a direct measure of the 
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computational burden of evaluating a tree. The imposition of evolutionary pressure 

to reduce node count is also an effective way of controlling tree bloat.

Using the normal definition of semantics as the indexed output vector of tree 

responses over the training data, the semantics of each node within the tree were 

estimated recursively and stored when it was evaluated for the first time. The cal-

culation of the desired semantics starts from the root node and propagates along 

all paths to all leaves. Since the desired output of the root node of a tree is known, 

the desired semantics of each child node in the tree can be calculated assuming that 

its siblings have the correct structure. If the backpropagation process yields multi-

ple possible values, one is chosen arbitrarily; if the value is undefined, it is ignored 

in the subsequent calculations of semantic distances between subtrees. See Pawlak 

et al. [40] for further details.

We have considered the basic evolutionary GP algorithm followed by one of a 

number of different local search methods; the aim in each case was to reduce the 

Euclidean distance between the subtree’s actual and desired outputs. We investigated 

a number of strategies for selecting subtrees for replacement that we detail below. 

Local search has been restricted to the final population in order to keep the computa-

tion times within practical limits.1 In addition, we also include results from the basic 

GP without local search as a baseline case.

Since it is a prominent example of semantic-based search, we have also included 

the RDO operator [40] as a comparator. This method uses a library of semantically-

unique programs, and when a subtree in a parent is selected during the evolution-

ary process, a new offspring is generated by replacing the selected subtree with the 

library program exhibiting the closest match to the subtree’s desired semantics. (This 

Table 1  Evolutionary parameters used in this work

Parameter Value

Population size 100

Initialization method Ramped half-and-half; maximum tree depth = 6

Number of evolutionary generations 222

Function set + , −, × , Analytic quotient [38]

Terminal set Input variables; constants in 0.1, 0.2..., 0.9

Conventional GP Elitism Top 10 solutions survive

Conventional GP operators Point crossover + point mutation (tree depth ≤ 4)

RDO-based GP Elitism None

RDO-based GP search operator Static library (maximum tree depth = 4)

Subtree selection method Equal node probability OR

Equal depth probability OR

Ito depth-fair selection [22]

1 Additionally, we have observed (unpublished) that, apart from significantly increasing the computa-

tion time, applying local search to every generation is ineffective because the conventional evolutionary 

operators of crossover and mutation are so highly disruptive. These results will be published elsewhere.
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strategy has the disadvantage that growth in the overall size of the parent tree is not 

explicitly constrained.) We have used only a static library of trees up to a predefined 

size limit, precomputed before the evolutionary process commences since this has 

been shown to yield superior performance to the alternative of a dynamic library 

[40]. Further, we have used more modest library sizes compared to the 100,000 

used by Pawlak et  al. because we are concerned with the practical application of 

the method, and therefore its runtime; even with a reduced library size of 1000, the 

runtime of the RDO-based method was typically 30 times longer than that of the 

baseline GP approach. Static libraries were generated with a maximum tree depth 

of 4, and an initial library size of 1000 that was then reduced by removing semantic 

duplicates; typically 5% of the library individuals were removed at this stage. Within 

RDO, we have explored a range of subtree selection approaches—see Sect. 3.3 for 

full details. The algorithm settings are shown in Table 1.

3.2  Local search methods

We have applied one of a number of local search approaches to the final popula-

tion obtained from the baseline GP algorithm. These comprise two key elements: 

(1) the method for selecting a target subtree upon which local search acts, and (2) 

the method for generating a (potentially) better subtree. Local search was applied 

to every individual in the final population generated by the baseline GP algorithm. 

Note that we have not selected a final, single model for evaluation until after local 

search was applied to the whole population. See Sect. 3.5 below for further details 

on the numbers of times local search was applied.

3.3  Subtree selection

We have employed three different subtree selection methods in this work.

– Equal Node Probability. Selection where each node in the parent tree is chosen 

with equal probability to be the root of the target subtree; algorithms using this 

subtree selection method are denoted with a ‘1’.

– Equal Depth Probability where the selection method first chooses a depth value 

in the range zero (i.e. the parent’s root node) to the maximum depth of the par-

ent tree, with uniform probability. At this point, one of the nodes at the selected 

depth is chosen with equal probability. Algorithms using this strategy are denoted 

with a ‘2’.

– Ito’s Depth-fair Selection. Node selection using the depth-fair selection method 

of Ito et  al.  [22]. This method is similar to (2) above except that the probabil-

ity of selecting a given depth halves for every increase in tree depth (subject to 

the usual normalization condition that the sum of depth selection probabilities is 

unity). This approach gives nodes at the higher levels of a tree a greater chance 

of being selected. Algorithms employing this method are denoted with a ‘3’.
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All three methods of subtree selection embody different biases as to how nodes 

(i.e. target subtrees) are chosen.

3.4  Algorithm comparisons

Clearly a fundamental objective in this work has been to make fair comparisons 

between some quite different algorithms. To compare the baseline generational GP, 

steady-state GP and RDO global algorithms is fairly straightforward: we allowed 

each to run for the same number of local search tree evaluations. This allows each 

algorithm to make the same number of ‘moves’ in its search, leading to a reason-

able basis for comparison although we restate that the runtime of the generational 

RDO algorithm with subtree selection method ‘1’ above (GenRDO-1) was typi-

cally 30 times longer than for the baseline generational GP (GenGP). Establish-

ing a fair basis for comparison with the various local search algorithms, however, 

is more problematic. We have addressed this by measuring the process time of the 

GenRDO-1 algorithm on each benchmark problem, and then limiting the total runt-

ime of one of the local search-based algorithms that uses generational global search 

followed by generational GP local search with Ito depth-fair selection2 to this fig-

ure. The total number of tree evaluations in this algorithm was noted and used as a 

limit for all the other local search methods. Local search was continued by cycling 

over the population, attempting to improve one subtree in every individual per cycle, 

until the allowed number of local search tree evaluations was exhausted. Thus all 

algorithms were compared on the basis of being allowed equal amounts of computa-

tional ‘effort’ as gaged by numbers of tree evaluations.

3.5  Subtree generation and replacement

In conjunction with different methods of subtree selection, we have used a num-

ber of different methods to generate candidate subtrees to use as replacements. In 

all cases, the objective was to generate a replacement subtree with semantics more 

closely matched to the desired (back-propagated) semantics than those of the origi-

nal selected subtree:

– Generational GP to Generate New Subtrees. A single objective generational GP 

was used to search for a tree better matching the desired semantics; apart from 

the objective function and restricting the local search GP to 100 generations, the 

evolutionary parameters were as detailed in Table 1. A hard limit was placed on 

the number of tree nodes in the local search GP. This limit on replacement sub-

tree sizes was set equal to the node count of the original target tree to be replaced 

in order to prevent code growth in the parent. Candidate replacement subtrees 

were thus, at worst, the same size as the originals they sought to replace. (This is 

in quite deliberate contrast to the RDO operator [40], which is ambivalent about 

2 Designated as algorithm ‘GenGP-GenGP-3’ below.
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code growth.) If an evolved subtree had a smaller mean squared error (MSE) 

over the semantic target, it was used to replace the original subtree; otherwise, 

the parent tree remained unaltered.

– Steady-state GP to Generate New Subtrees. Similarly, a single-objective steady-

state GP with hard limit on replacement subtree sizes was applied for tuning sub-

trees so as to better approximate the desired semantics.

– Random Generation of New Subtrees. Randomly generating replacement sub-

trees of the same or smaller node count than the original target subtree; again, 

this size restriction was designed to prevent growth of the parent tree. For a given 

parent tree, one cycle of local search comprised first selecting a target subtree, 

and then randomly generating a sequence of candidate replacement subtrees with 

randomly-generated node counts less than or equal to the node count of the tar-

get subtree. If a candidate subtree produced a closer semantic match than the 

original subtree, it was immediately used for replacement and the random subtree 

generation sequence terminated. The number of attempts at replacing a given 

subtree was limited to a maximum of 100, and if no suitable replacement was 

generated, the subtree was left unchanged. This search procedure was continued 

by cycling over the population, attempting to improve a single selected subtree in 

each individual, until the limit on the number of tree evaluations was reached.

– Using RDO as local search operator to Generate New Subtrees. We have also 

investigated using RDO as a local search method to improve the final population 

generated by the baseline global search algorithms—essentially, replacing the 

local search by random subtree generation with selection of replacements from 

an RDO-style static library. The RDO operator selects a program that exhibits the 

closest match to the desired semantics of a selected subtree. We have observed, 

however, that, when using RDO as a local search method, search over the static 

library does not necessarily yield a candidate replacement subtree with better 

semantics than the original target subtree. Consequently, we have employed two 

different criteria for accepting tree modification by a subtree identified from the 

static library: firstly, we always accept a best-matching candidate subtree (“Best 

matching subtree”). Second, we only accept a candidate subtree if it both has 

better-matching semantics to the selected target subtree, and the modified tree 

Pareto-dominates the original parent tree, i.e. it achieves a lower MSE and/or 

lower node count (“Better matching subtree”). As above, local search cycled over 

the population attempting to improve one subtree at each pass.

In what follows, we adopt the naming convention for describing a particular 

experimental configuration of:

– Global multiobjective search paradigm either generational(‘Gen’) or steady-state 

(‘SS’).

– The global search method, either GP, or RDO.

– Local single-objective search method: generational(‘Gen’) GP, steady-state 

(‘SS’) GP, random tree generation (‘Ran’), or RDO (‘RDO’).

– The method for selecting the subtree for replacement: equal node probability 

(‘1’), equal depth probability (‘2’), or Ito’s depth fair selection (‘3’).
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Thus, “SSGP-GenGP-2” indicates a steady-state global GP followed by genera-

tional GP local search using equal depth probability method of subtree selection. 

“GenGP” and “SSGP” refer to the baseline global searches with no local search. In 

addition, for the reasons explained above, we have included two different acceptance 

strategies when using RDO as a local search operator: “Best matching subtree” and 

“Better matching subtree”. These lead to additional variants, labeled ‘4’, ‘5’ and ‘6’ 

only for global GP followed by RDO-based local search.

Summaries of the experiments conducted are shown in Table  3 for the methods 

employing generational global search, and in Table 4 for methods using steady-state 

global search.

3.6  Test functions

Although the subject of regression test functions for GP has received detailed consid-

eration [32], we have employed a series of commonly-used benchmark univariate sym-

bolic regression problems—see Table 2-previously used in the GP literature. For each 

function, we generated 250 independent training sets each containing 20 data uniformly 

sampled over the domain; the independent test set for each function comprised 10,000 

data. The best test mean squared error (MSE) obtained from the final population (after 

any local search procedures) was taken as a measure of generalization performance, 

this being equivalent to the general procedure in single-objective GP.

3.7  Statistical testing

We have made detailed statistical comparisons of the results obtained. Since we 

cannot make any distributional assumptions about the results, we have used the 

Table 2  Test functions

Problem Function Domain

F1:Automatic French curve [52] y = 4.26(exp−x −4 exp−2x +3 exp−3x) [0⋯ 3.25]

F2:Sextic polynomial [48] y = x
6
+ x

5
+ x

4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F3:Uy5 [48] y = sin x
2
× cos x + 1 [−1⋯ + 1]

F4:Uy6 [48] y = sin x + sin (x + x
2) [−1⋯ + 1]

F5:Vladislavleva [51] y = 8 exp−x
x

3 cos x sin x(cos x sin2
x − 1) [0⋯ + 10]

F6:Chebyshev polynomial [39] y = 3 cos (3 cos
−1

x) [−1⋯ + 1]

F7:Scaled sinc function [39] y = 5 sin x∕x (0⋯ + 10]

F8:Cubic polynomial [48] y = x
3
+ x

2
+ x [−1⋯ + 1]

F9:Quartic polynomial [48] y = x
4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F10:Quintic polynomial [48] y = x
5
+ x

4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F11:Uy7 [48] y = log (x + 1) + log (1 + x
2) [0⋯ + 2]

F12:Uy8 [48] y =

√

x [0⋯ + 4]

F13:Seventh order polynomial [39] y = 23.7(x + 0.9)(x − 0.9)(x − 0.6)(x − 0.6)

(x + 0.8)(x + 0.4)(x + 0.3)

[−1⋯ + 1]



1
 3

G
e

n
e

tic P
ro

g
ram

m
in

g
 an

d
 Evo

lvab
le

 M
ach

in
e

s 

Table 3  Summary of experimental protocols used: generational global search

Genetic search operator Subtree selection method Local search method

Standard 

xover + muta-

tion

RDO 

static 

library

Equal node (1) Equal depth (2) Ito depth-fair (3) GenGP SSGP Random 

generation

RDO

Better match-

ing subtree

Best 

matching 

subtree

GenGP ✓

GenRDO-1 ✓ ✓

GenRDO-2 ✓ ✓

GenRDO-3 ✓ ✓

GenGP-GenGP-1 ✓ ✓ ✓

GenGP-GenGP-2 ✓ ✓ ✓

GenGP-GenGP-3 ✓ ✓ ✓

GenGP-SSGP-1 ✓ ✓ ✓

GenGP-SSGP-2 ✓ ✓ ✓

GenGP-SSGP-3 ✓ ✓ ✓

GenGP-Ran-1 ✓ ✓ ✓

GenGP-Ran-2 ✓ ✓ ✓

GenGP-Ran-3 ✓ ✓ ✓

GenGP-RDO-1 ✓ ✓ ✓

GenGP-RDO-2 ✓ ✓ ✓

GenGP-RDO-3 ✓ ✓ ✓

GenGP-RDO-4 ✓ ✓ ✓

GenGP-RDO-5 ✓ ✓ ✓

GenGP-RDO-6 ✓ ✓ ✓
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 3 Table 4  Summary of experimental protocols used: steady-state global search

Genetic search operator Subtree selection method Local search method

Standard 

xover + mutation

RDO 

static 

library

Equal node (1) Equal depth (2) Ito depth-fair (3) GenGP SSGP Random 

generation

RDO

Better match-

ing subtree

Best 

matching 

subtree

SSGP ✓

SSRDO-1 ✓ ✓

SSRDO-2 ✓ ✓

SSRDO-3 ✓ ✓

SSGP-GenGP-1 ✓ ✓ ✓

SSGP-GenGP-2 ✓ ✓ ✓

SSGP-GenGP-3 ✓ ✓ ✓

SSGP-SSGP-1 ✓ ✓ ✓

SSGP-SSGP-2 ✓ ✓ ✓

SSGP-SSGP-3 ✓ ✓ ✓

SSGP-Ran-1 ✓ ✓ ✓

SSGP-Ran-2 ✓ ✓ ✓

SSGP-Ran-3 ✓ ✓ ✓

SSGP-RDO-1 ✓ ✓ ✓

SSGP-RDO-2 ✓ ✓ ✓

SSGP-RDO-3 ✓ ✓ ✓

SSGP-RDO-4 ✓ ✓ ✓

SSGP-RDO-5 ✓ ✓ ✓

SSGP-RDO-6 ✓ ✓ ✓
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nonparametric Friedman test [11] under the null hypothesis that all the ranks of 

the results are drawn from the same distribution and therefore there is no differ-

ence between the varying treatments; we used the significance level of P ⩽ 0.05 

to reject the null hypothesis. When the null hypothesis of the Friedman test was 

rejected, we used the Holm–Bonferroni post-hoc correction [11] to the signifi-

cance level in a Wilcoxon signed ranks test [5, 11] to judge the statistical differ-

ences between pairs of results.

4  Results and discussion

Applying all the optimization approaches detailed in Tables  3 and 4 over each 

of the thirteen benchmark regression problems F1–13 in Table  2, and perform-

ing a Friedman test on the ranks of the best MSEs for all algorithms (treatments) 

and regression problems (subjects) indicated, we reach the conclusion that the 

null hypothesis—that each of the optimization approaches produces identical 

results—can be rejected with P values < 0.0001. There is thus strong evidence of 

differences between the experimental treatments. For obtaining detailed informa-

tion on which algorithms are statistically significantly different from each other, 

we have carried out a series of pairwise tests using the Wilcoxon signed ranks test 

with a Holm–Bonferroni post-hoc analysis to constrain the family-wise error rates 

for the multiple comparisons [11].

Tables 5 and 6 show the mean ranks of test errors and tree sizes, respectively 

aggregated over all benchmark problems and treatments.

As a brief introductory overview, from Table  5 it is clear that the best-per-

forming algorithm overall is SSGP-SSGP-3 followed by SSGP-GenGP-3. By 

contrast, the baseline SSGP algorithm ranks 8th overall, and the baseline GenGP 

algorithm  14th. GenRDO-1 is ranked third along with a number of other algo-

rithms of various configurations. Regarding the significance of the gray-shaded 

cells in this table, there are no statistical differences between any of the 9th 

ranked group SSRDO-1 ...GenGP-Ran-3. On the other hand, there is a differ-

ence between SSRDO-1 and the 10th ranked GenGP-RDO-1, but no difference 

between GenGP-RDO-1 and the group SSGP-RDO-1 ...GenGP-Ran-3. We have 

highlighted this with the gray shading in the 10th column opposite the group 

SSGP-RDO-1 ...GenGP-Ran-3.

As regards node counts—rankings are shown in Table  6 where smaller rank 

denotes smaller trees—there is a broad inverse relationship between the rankings 

on test MSE and tree size. Algorithms involving steady-state approaches tend to be 

associated with larger trees, but tend to have smaller test MSEs. Again in this table, 

gray-shaded cells denote, for example, that there is no difference between any of the 

group SSGP-RDO-4 ...SSGP-SSGP-2, and SSGP-GenGP-1.

(In the more detailed discussion that follows, we use the shorthand terms “larger” 

and “smaller” in the sense of statistically larger (or smaller) at the 95% confidence 

level.)

The principal observations that can be drawn from these results are:
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Table 5  Ranking of the mean squared test errors (MSEs) by algorithm; algorithms listed in the same column display no statistical difference

Overall ranks of MSE values for all the algorithms

Rank ‘1’ Rank ‘2’ Rank ‘3’ Rank ‘4’ Rank ‘5’ Rank ‘6’ Rank ‘7’ Rank ‘8’ Rank ‘9’ Rank ‘10’ Rank ‘11’ Rank ‘12’ Rank ‘13’ Rank ‘14’ Rank ‘15’

SSGP-SSGP-3 5.321

SSGP-GenGP-3 5.807

GenGP-SSGP-3 7.389

GenGP-GenGP-3 7.618

SSGP-SSGP-2 8.567692

SSGP-GenGP-2 8.752308

GenRDO-1 9.851538

GenGP-SSGP-2 11.08538

SSGP-Ran-2 11.63615

SSGP-Ran-1 11.97385

SSGP-Ran-3 13.22385

SSGP-GenGP-1 14.37231

SSGP-SSGP-1 14.62154

GenGP-Ran-1 16.96154

SSGP-RDO-5 17.44308

SSGP-RDO-4 17.46

SSGP-RDO-6 18.29231

GenGP-Ran-2 19.11231

SSGP 19.58538

SSRDO-1 20.47154

SSGP-RDO-1 20.49

GenGP-GenGP-2 20.51615

GenGP-GenGP-1 21.00615

GenGP-SSGP-1 21.56

GenGP-Ran-3 21.62462

GenGP-RDO-1 22.13923

GenGP-RDO-4 25.48154

GenRDO-2 26.14077

GenGP-RDO-5 26.22538

SSRDO-2 27.05846

GenGP-RDO-2 27.47385

SSGP-RDO-2 27.57308

GenGP-RDO-6 28.64077

SSRDO-3 31.67308

GenGP 31.82

GenRDO-3 33.98308

GenGP-RDO-3 34.01308

SSGP-RDO-3 34.03538

Conversely, a statistically significant difference is detected between algorithms in different columns. The gray-shaded cells denote that the algorithms shown to their imme-

diate left column have no statistical difference with the GenGP-RDO-1 algorithm in column 10. The rightmost column shows the actual mean rank values
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Table 6  Overall ranking of node counts by algorithm; algorithms listed in the same column display no statistical difference

Overall ranks of tree sizes for all algorithms

Rank ‘1’ Rank ‘2’ Rank ‘3’ Rank ‘4’ Rank ‘5’ Rank ‘6’ Rank ‘7’ Rank ‘8’ Rank ‘9’ Rank ‘10’ Rank ‘11’ Rank ‘12’ Rank ‘13’ Rank ‘14’

SSRDO-3 6.314

GenGP-Ran3 8.910

GenRDO-3 8.919

SSRDO-2 9.394

GenGP-Ran-2 9.512

GenGP-RDO-3 9.629

SSGP-RDO-3 9.695

GenGP-Ran-1 12.315

SSRDO-1 14.881

GenGP-RDO-6 15.365

GenGP-RDO-5 15.467

SSGP-Ran-2 15.634

GenGP-RDO-4 15.989

SSGP-Ran-1 16.026

GenRDO-2 16.473

GenGP-RDO-2 17.292

SSGP-RDO-2 17.544

SSGP-Ran-3 18.315

GenGP 19.803

GenGP-GenGP-2 20.369

GenGP-SSGP-1 20.567

GenGP-GenGP-1 21.477

GenGP-SSGP-2 21.741

GenGP-GenGP-3 22.775

GenGP-SSGP-3 22.935

SSGP-RDO-5 23.783

SSGP-RDO-4 24.149

SSGP-GenGP-2 24.863

SSGP-SSGP-2 25.014

SSGP-GenGP-1 25.172

SSGP-RDO-6 25.234

SSGP-GenGP-3 25.363

SSGP-SSGP-3 25.463

SSGP-SSGP-1 25.677

SSGP 28.699

GenRDO-1 31.23692

GenGP-RDO-1 34.411

SSGP-RDO-1 34.595

Conversely, a statistically significant difference is detected between algorithms in different columns. The gray-shaded cells denote that algorithms to their immediate left 

show no statistical difference to the algorithms in that column. The rightmost column shows the actual mean rank values
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4.1  Comparison of generational and steady‑state global strategies without local 

search

In the absence of any local search, the global steady-state (SSGP) strategy 

clearly produces smaller test errors than the corresponding generational strat-

egy (GenGP), with mean ranks of 19.585 and 31.820, respectively. The generally 

superior performance of the steady-state strategy has previously been observed in 

the context of multiobjective genetic algorithms by Durillo et al. [12]. The aver-

age tree size of the models created by SSGP, however, is larger than the average 

tree size for GenGP strategy with mean ranks of 28.698 and 19.803, respectively. 

Since we are generally interested in models with smaller test errors and superior 

generalization, the results here suggest that, in the absence of local search, the 

steady-state strategy is better than the much more widely used generational strat-

egy, extending the observations in [12] to another MOEA domain.

4.2  Influence of the global search strategy on the efficacy of a given local search 

method

Following on from the previous observation, we can examine the influence of 

the evolutionary global search strategies on local search methods. It is clear from 

Table 5 that a given local search algorithm following a steady-state global search 

performs better than the corresponding algorithm that uses generational GP local 

search, except for the three pairs: SSGP-RDO-1 versus GenGP-RDO-1, SSGP-

RDO-2 versus GenGP-RDO-2, SSGP-RDO-3 versus GenGP-RDO-3, between 

which no statistically significant differences were detected. (It is noteworthy that 

all six algorithms in this ‘no difference’ category use RDO as the local search 

method; we observe below that RDO does not appear to be particularly good as 

a a local search technique. Thus it seems likely that these six algorithms are not 

representative results.) Since the starting point for all local search is the final pop-

ulation produced by the global search strategy, there seems strong evidence that 

the generally superior population produced by the steady-state strategy facilitates 

more productive local search, regardless of the local search algorithm employed. 

It seems logical that starting from a ‘better initial position’ will help the subse-

quent local search to find superior solutions.

At the same time, comparing the average tree sizes generated by the various 

algorithms, the trees generated by generational global search are statistically 

smaller on a like-for-like basis than those created by a steady-state GP, again 

except for the three pairings listed above for which no statistically significant dif-

ferences can be detected. As pointed out above, however, if presented with this 

trade-off, most practitioners would favor the methods yielding the smaller gener-

alization errors.
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4.3  Comparing RDO in generational and steady‑state global strategies

Algorithms using RDO as the genetic operator exhibit different performances 

when used with generational compared to steady-state evolutionary strategies. 

Compared to the baseline GenGP, the RDO genetic operator used in a genera-

tional strategy yields performances that range from the seventh best performer 

(GenRDO-1) via a middle-ranking performer (GenRDO-2) to rapid deterioration 

to one of the worst algorithms (GenRDO-3). GenRDO-3 performs even worse 

than the baseline GenGP due to the fact that the population in these runs invari-

ably collapsed to a single or small number of identical individuals, thereby dra-

matically damaging the searching ability of the algorithm due to lack of diversity.

4.3.1  The role of evolutionary strategy with global RDO

The general performance of RDO as a search operator in a steady-state strategy, 

however, shows a great difference. The average test errors of all the SSRDO algo-

rithms are statistically worse than those of the baseline SSGP. The inference is that 

subtree replacement from the randomly-initialized static library harms the search 

efficiency of a steady-state GP. A possible reason for this might be that the RDO 

operator, which replaces selected subtrees with specific randomly-generated library 

programs, induces significant disruption during a steady-state evolution process. The 

evolution process of a generational GP is itself highly disruptive since the majority 

of chromosomes in each new generation are produced through crossover operations; 

in this circumstance, the RDO operator appears to improve the search efficiency 

and generates more accurate trees than the baseline GenGP. The steady-state strat-

egy, however, relies on a continual advancement towards the Pareto front that RDO 

seems to repeatedly disrupt leading to poor overall search performance.

4.3.2  The role of subtree selection strategy with global RDO

From the perspective of the subtree selection approach used with RDO, for both 

generational and steady-state strategies, algorithms selecting subtrees with equal 

node probability generate more accurate models than those using the equal depth 

selection method. Ito’s depth fair subtree selection method produces the worst 

results. This suggests that the performance of the RDO operator is sensitive to the 

method of selecting subtrees.

4.4  The role of the generational and steady‑state strategies for local search

From Table 5, clearly the SSGP-SSGP-3 is the best performer among all the algo-

rithms. Unlike the previous observation that the global search ability of a steady-

state GP is always better than a generational GP, when GP is used as a local search 

operator, the steady-state GP does not exhibit any consistent advantage over the gen-

erational GP.
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When compared by subtree selection methods, however, algorithms using Ito’s 

depth fair method produce the most accurate models. Algorithms selecting subtrees 

with equal node probabilities are ranked lowest among all the GP-based local search 

algorithms. This suggests that a subtree with a shorter path to the root node of its 

parent tree is likely to be more influential on the entire tree in the overall evaluation; 

this conclusion is consistent with a hypothesis proposed by Igel et al. [21]. To verify 

this, we investigated the relationships between success rate and MSE reduction with 

the normalized depth of selected subtrees. The normalized depth of each subtree 

is calculated by dividing the depth of a selected subtree from the root node by the 

full depth of the whole tree. All the selected samples were divided into ten groups 

according to their normalized depth with increments of 0.1. A illustrative group of 

five of the above thirteen benchmark functions were used, and the corresponding 

graphs of the relationships between successful subtree replacement rate (Fig. 1) and 

MSE reduction (Fig. 2) with normalized depth of selected subtrees.

From the graphs in Fig. 1, the success rates are roughly constant with increasing 

normalized depth values, which shows that subtrees of different normalized depths 

have almost identical probabilities of being successfully replaced. This suggests that 

the good performance of algorithms using Ito’s depth fair subtree selection method 

is not caused by more frequent modification of subtrees near the root node of a GP 

tree. From the graphs in Fig. 2, an inverse relationship between the magnitudes of 

MSE reduction with the normalized depth of selected subtrees can be observed. This 

implies that a more efficient optimization of GP trees can be achieved by selecting 

subtrees with shorter path to the root node. In other words, an improvement of sub-

trees near the root node is more likely to have a larger beneficial effect on the whole 

tree. We consider this the main reason that causes good performances of algorithms 

using Ito’s depth fair selection method.

4.5  Influence of the number of cycles of local search

Whether it is possible to achieve comparable results with fewer generations of 

global GP search and/or less effort on the local search is of great practical interest. 

Taking the best performing SSGP-SSGP-3 algorithm as an example, we conducted 

an experiment to further explore the balance between these factors. Typically, the 

CPU runtime of one local search cycle over all the trees in a final population takes 
∼ 12 s (on a given computer), which is far longer than that of the baseline steady-

state global search (SSGP) lasting ∼ 4 s. Thus by far the greatest proportion of the 

computational effort is spent on the local search process. The influence of the num-

bers of local search cycles on the model accuracy is presented for five representative 

test functions Fig. 3.

From Fig. 3, it is clear that the test error reduces with increasing numbers of local 

search cycles. This reduction, however, slows significantly after 2 or 3 cycles of 

local search. In a sense, this is very welcome since local search is so time consum-

ing—it appears that only a little local search is needed beyond which the benefits 

diminish rapidly.
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4.6  Influence of local search on expected tree sizes

Considering the tree size comparisons in Table 6, all the evolutionary local-search 

methods based on either steady-state or generational global search produce trees 

that are either smaller or statistically the same size as the trees produced by their 

Fig. 1  Relationship between successful replacement rate with normalized subtree depth over five bench-

mark functions
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corresponding baseline algorithms. Thus, for example, local search following SSGP 

tends to produce smaller trees than SSGP without local search.

Intriguingly, the observation that local search tends to reduce tree sizes seems 

counterintuitive given that the local search methods were designed only to prevent 

code growth, not to produce more parsimonious structures—see Sect. 3.5.

Fig. 2  Relationship between MSE reduction with normalized subtree depth over five benchmark func-

tions
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For a given parent tree in the final population, we observed that local GP search 

almost invariably reduced the size of the tree—namely, GP local search seems effec-

tive at finding smaller trees better matched to the desired backpropagated subtree 

(a) (b)

(c) (d)

(e)

Fig. 3  Relationship between test MSE and the number of local search cycles of SSGP-SSGP-3 over five 

benchmark functions; the number following ‘LSCycle’ denotes the number of local search cycles in the 

local search process
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semantics. Now the final population generated by the baseline algorithm comprises 

an (approximation to) the Pareto set of equivalent solutions ranging from underfit-

ted solutions with high training MSE/few nodes through to overfitted solutions with 

small training MSE/large numbers of nodes; as a rough rule, the solution yielding 

the best test MSE tends to lie around the middle of the Pareto front. Although it 

tends to shrink the size of the trees, we observe that local GP search rarely improves 

the test error of the best-performing individual produced by the baseline GP such 

that it continues to be the best-performing individual after local search terminates. 

Rather, one of the overfitted individuals tends to be modified in the local search pro-

cedure and is promoted to having a better test error than the best individual pro-

duced by the global search method. This reinforces the approach of applying local 

search to the whole of the final population of the global search algorithm rather then 

just the best-performing individual produced by the global algorithm. Recently, Tru-

jillo et  al.  [46] have made a similar observation for local search in the context of 

single-objective GP. More generally, the same sort of phenomenon has been previ-

ously seen in decision trees, which are typically trained to overfitting and then heu-

ristically pruned to improve generalization [42].

4.7  Performance of random subtree generation as a local search operator

The overall performances of the algorithms that use random tree search is variable. 

The SSGP-Ran-1,2,3 algorithms are all 4th ranked for MSE whereas the perfor-

mances of GenGP-Ran-1,2,3 are more varied: the first two are better than SSGP, the 

last worse than SSGP but on a par with GenGP-GenGP-1,2 and GenGP-SSGP-1. 

The superior performance of the random subtree replacement algorithms that use 

SSGP as a global search algorithm is presumably connected to the general superior-

ity of the steady-state strategy in global search.

Superficially, at least, there appears a similarity between local search by ran-

domly generating replacement subtrees (the GenGP-Ran-1 ...GenGP-Ran-3 family 

of algorithms) and the RDO method. RDO constructs a large library of randomly-

generated subtrees from which one is chosen to replace a target subtree in the parent. 

This generation-by-lookup table process could be viewed as an alternative way of 

randomly generating a subtree. GenRDO-1, however, is statistically better than ran-

dom search implying this approach is not equivalent to random local search follow-

ing global GP; at this point, nonetheless, we sound a note of caution about the size 

effect observed here. The reason for the apparent superiority of RDO-based methods 

is not completely clear and will be the subject of future work.

4.8  The performance of RDO as a local search operator

We have also investigated using RDO as a local search method (SS/Gen-RDO-1 

to SS/Gen-RDO-6) to improve the final population generated by the baseline SS/

GenGP algorithms—essentially, replacing the local search by random subtree gen-

eration with selection of replacements from an RDO-style static library. Again, 

superficially, these could be seen as equivalent processes. The results of using RDO 
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for local search were overwhelmingly negative with little improvement in the popu-

lation generated by the corresponding global SS/GenGP algorithm. We conclude, 

therefore, that RDO functions poorly as a local search method although clearly per-

forms well as a genetic operator (in the generational strategy). Its superficial resem-

blance to a random local search operator would thus appear coincidental.

4.9  RDO compared to global GP + GP local search

One of the principal findings of this work is that using GP as a local search proce-

dure is able to produce generalization performance that is better than the state-of-

the-art GenRDO approach, and does so using trees of significantly smaller sizes; 

this observation applies to all of the thirteen test functions considered. To take a 

typical example, GenRDO-1 with the French curve function produced best test-

error tree sizes in the range 29 to 723 with an average of 196. The SSGP-SSGP-3 

algorithm, on the other hand, yielded trees of 23 to 467 nodes with an average of 

135. We believe this results from the careful implementation of the GP local search 

method to avoid code growth—see Sect. 3.5.

The RDO genetic operator exhibits good search ability in a generational strat-

egy, but with a steady-state strategy, the RDO operator performs even worse than 

the baseline SSGP algorithm. This implies the RDO search operator is sensitive to 

the evolutionary strategy. Moreover, the rapid performance deterioration from Gen-

RDO-1 to GenRDO-3 indicates the RDO genetic operator is also sensitive to the 

subtree selection method. This is a disappointing characteristic of RDO since evo-

lutionary methods are generally considered to be very robust to sub-optimal choices 

of parameters, etc. This robustness does not appear to extend to the RDO approach. 

On the contrary, GP local search appears much less sensitive than RDO to a differ-

ent choice of subtree selection method. The use of Ito’s method that prefers selecting 

target subtrees near the root node seems to encourage model generalization of the 

entire tree.

4.10  Computational complexity resulting from different local search strategies

We have also considered the additional computation resulting from various local 

search methods. Taking the French curve function as as example, and experiments 

run on a computer with a 3.40 GHz processor. The average CPU runtime for the 

baseline GenGP is around 0.68 s and for the baseline SSGP around 3.83 s. Table 7 

Table 7  CPU runtimes for one cycle of local search on the French curve function

Local search algorithm GenGP-1 GenGP-2 GenGP-3 SSGP-1 SSGP-2 SSGP-3

Runtime (s) 3.483 6.942 14.219 39.150 68.942 95.990

Local search algorithm Ran-1 Ran-2 Ran-3 RDO-1 RDO-2 RDO-3

Runtime (s) 7.994 6.749 7.112 2.841 2.558 2.539

Local search algorithm RDO-4 RDO-5 RDO-6

Runtime (s) 2.561 2.599 2.571
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lists the average CPU runtime cost for one cycle of refinement using various local 

search methods. From this table, it is clear that the most time-consuming local search 

is SSGP-3 that also produces the most accurate models. Local search algorithms 

using RDO turn out to be the least time-consuming, but provide minimal improve-

ment to (and are sometimes worse than) the corresponding baseline GP. Clearly, the 

SSGP local search strategies consume more time than their corresponding GenGP 

methods. For both SSGP and GenGP local search, one cycle of optimization of the 

final population using Ito’s depth fair subtree selection method takes longer than the 

equal-depth selection method, and the equal node subtree selection method the least. 

Generally, local search using random subtree generation takes about 7 s.

4.11  Future work and overall discussion

The work described in the paper has been deliberately constrained to local search 

methods that change the ‘shapes’ of GP trees by altering sub-trees. Successful local 

search has also been reported using methods that introduce additional ‘tuning’ 

parameters into the tree nodes—for example, [46]. An obvious area for future work 

is a quantitative comparison between these different approaches to local search, or 

indeed possible hybridization between them.

Although this paper presents a large range of algorithms, methods of local search, 

and their combinations, much future work remains to be done. In carrying out the 

work reported here, we have deliberately adopted a ‘breadth first’ philosophy rather 

than seeking detailed explanations for every observation. That said, a very clear 

and fertile area for future work is to revisit the promising research directions that 

we have identified to gain a fuller understanding of the phenomena involved; in our 

experience, such studies tend to be time-consuming hence we have deferred them to 

future work.

Another area that warrants further study is the extension to more complex, higher 

dimensional test functions. In the present paper, we have employed the univariate 

functions that tend to be regarded as “standard” within the GP community. While 

they represent a valid starting point for a study, these functions have received some 

criticism and other, more challenging datasets have been proposed in the litera-

ture [32]. An important research issue is to establish whether the advantages of 

local search identified in the present paper extend to higher dimensions. In addi-

tion, explicitly considering real-world datasets—which often present different chal-

lenges—would be a major extension of this work.

On the subject of test functions, one of the reviewers suggested that ‘genomic’-

type datasets—characterized by hundreds or thousands of features but only tens of 

records—would be an appropriate subject for study in the present paper; such chal-

lenging datasets have recently been addressed by Chen et al.  [9] using GP. In our 

view, the main research issues when applying GP to ‘genomic’ datasets are two-

fold: firstly, to constrain the complexity of a GP model to prevent overfitting when 

learning in what are effectively ‘empty’ pattern spaces, bearing in mind that one of 

the major advantages of GP is its ability to automatically adjust its own complex-

ity. Secondly, genomic-type datasets are typically characterized by the presence of 
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large numbers of uninformative/redundant features. In the context of such challeng-

ing learning problems, we think there is little reason that local search on its own 

would have much impact on datasets with these characteristics without also explic-

itly addressing the complexity constraint and feature selection challenges.

A further area that might warrant additional investigation is the mechanism of 

semantic back propagation that is the precursor for local search. In common with 

other reports, we have adopted the strategy of back propagating errors from the root 

node of a tree under the assumption that all of a given node’s siblings possess the 

correct structure. Although a reasonable simplification, this would seem to signifi-

cantly constrain the scope of any local search. In this context, we suggest a sensi-

tivity-based approach [44] may improve search efficiency, and this too will be the 

subject of future work.

We have pointed out in Sect. 1 that memetic algorithms combine global explora-

tory search with local exploitative search. We believe our work fits very much within 

this paradigm. Since subtrees for replacement by local search are stochastically 

chosen, it is possible that consecutive passes of local search over a parent tree will 

select exactly the same target subtree leading to inefficient, duplicated search. Our 

use of Ito’s selection strategy (‘3’) that tends to prefer subtrees rooted near the top 

of the parent will exacerbate this effect since there are fewer choices near the tree’s 

root. We suggest improving the efficiency of our method with a tabu-like approach 

whereby subtrees that have been subjected to local search are not then immediately 

re-subjected to it in the next pass of local search. This could easily be implemented 

by tagging nodes with a timestamp of when they are selected as targets, and exam-

ining this timestamp before proceeding with local search; this is an area for future 

work.

Finally, we note that genetic programming has proved an extremely effective and 

practical technique for solving the combinatorial optimization problem of searching 

over a set of possible functions. Local search over the set of possible subtrees in a 

parent GP tree could thus be viewed as a recursive reduction of the overall problem. 

In light of this, it is perhaps logical that GP should perform well as a local search 

strategy.

5  Conclusions

The most significant conclusion from this paper is that semantic-based genetic pro-

gramming local search is able to produce better generalization performance that is 

statistically different from the state of the art GenRDO-1 method of Pawlak et al. 

[40], and achieves this with trees of significantly smaller size. This has obvious 

computational implications. A contributory factor to this reduction in tree size has 

been the careful design of the local search procedure so as to avoid tree growth. We 

observe that our GP local search seems to operate by pruning overfitted trees down 

to the point of best test performance rather than necessarily improving the best test 

case individuals generated by the global SS/GenGP algorithms. Trees generated by 

the (SS/GenGP)-(SS/GenGP)-3 approach tend to be (statistically) smaller than those 
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generated by the corresponding baseline algorithms, while at the same time exhibit-

ing better prediction performance.

We have also found that the RDO operator was obviously effective when used as 

a genetic operator within the generational paradigm. The performance of RDO with 

a steady-state strategy, however, is noticeably worse than with a generational strat-

egy. The trees generated by the steady-state variants of RDO are less accurate than 

even those generated by the baseline SSGP algorithm. We infer that the disruption 

caused by RDO search counteracts the otherwise good search performance of the 

steady-state strategy.

Additionally, we observed significant effects of the method for selecting the sub-

tree for local search. On the basis of the work here, the RDO operator appears sensi-

tive to the choice of selection operator, yielding performance that ranges from the 

seventh best performer (GenRDO-1) via the 12th-ranked performer (GenRDO-2) to 

population collapse and the lowly-ranked performer (GenRDO-3). GP local search, 

on the other hand, appears to display far less sensitivity to the choice of subtree 

selection method. The SSGP-SSGP-3 method ranks top while a less helpful choice 

of subtree selection method only reduces this form of GP local search to a middling 

(3rd or 5th ranked) performer rather than a bottom-ranked performer. The reason 

that the Ito’s depth fair selection method performs best was investigated and it was 

concluded that the optimization of subtrees closer to the root are more influential in 

the improvement of the entire tree. Furthermore, the test error reduces with increas-

ing numbers of cycles of local search although the gains appear modest after only 

two or three cycles of local search.
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