
This is a repository copy of Comparison of semantic-based local search methods for
multiobjective genetic programming.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131886/

Version: Published Version

Article:

Dou, T. and Rockett, P.I. orcid.org/0000-0002-4636-7727 (2018) Comparison of semantic-
based local search methods for multiobjective genetic programming. Genetic
Programming and Evolvable Machines, 19. pp. 535-563. ISSN 1389-2576

https://doi.org/10.1007/s10710-018-9325-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

Genetic Programming and Evolvable Machines

https://doi.org/10.1007/s10710-018-9325-4

1 3

Comparison of semantic‑based local search methods
for multiobjective genetic programming

Tiantian Dou
1
 · Peter Rockett

1

Received: 19 December 2017 / Revised: 1 June 2018

© The Author(s) 2018

Abstract

We report a series of experiments that use semantic-based local search within a

multiobjective genetic programming (GP) framework. We compare various ways of

selecting target subtrees for local search as well as different methods for perform-

ing that search; we have also made comparison with the random desired operator of

Pawlak et al. using statistical hypothesis testing. We find that a standard steady state

or generational GP followed by a carefully-designed single-objective GP implement-

ing semantic-based local search produces models that are mode accurate and with

statistically smaller (or equal) tree size than those generated by the corresponding

baseline GP algorithms. The depth fair selection strategy of Ito et al. is found to per-

form best compared with other subtree selection methods in the model refinement.

Keywords Semantic-based genetic programming · Local search · Multiobjective

optimization · Model selection

1 Introduction

It is well established that genetic programming (GP) exhibits good performance on

the empirical modeling of complex systems [41]. Nonetheless, traditional GP still

has the limitation that since it acts at the syntactic level, a small syntactic modifi-

cation can produce a dramatic change in program fitness, which can harm search

efficiency.

To address these issues, the integration of local search into GP has attracted sig-

nificant attention [20, 45]. At a wider level, the hybridization of population-based

global search with heuristic local search—often termed a memetic algorithm

 * Peter Rockett

 p.rockett@sheffield.ac.uk

 Tiantian Dou

 tdou1@sheffield.ac.uk

1 Department of Electronic and Electrical Engineering, University of Sheffield, Pitt Street,

Sheffield, S1 4ET, UK

http://orcid.org/0000-0002-4636-7727
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-018-9325-4&domain=pdf

 Genetic Programming and Evolvable Machines

1 3

[35]—has achieved notable successes [37] although remains comparatively little

used in GP. Typically, existing GP memetic algorithms may include hill climbing

local search over the coefficients or the model structures of the GP solutions.

In GP, semantics usually refers to the vector of output values a program pro-

duces over the training data [50] and has been the subject of much recent research.

Experimental results to date suggest that awareness of semantics is a great help

both in maintaining population diversity and improving search power. Among these

approaches, semantic-based local search methods [13, 50] have exhibited promising

performance. Based on semantics, Pawlak et al. [40] have implemented a novel ran-

dom desired operator (RDO), which decomposes the search task into a series of sub-

tasks. By backpropagating the desired semantics to individual subtrees, the fitness of

a solution can be improved by seeking to replace a selected subtree with a subtree

better matching the desired semantics. Since replacement subtrees are selected from

a (pre-computed) library, it is unclear whether RDO is a local search method or a

(global) crossover method as claimed in [40]; clarifying this question is a part of the

motivation for the present paper.

Local search inevitably adds to the computational burden and runtime of GP,

which seemingly makes many practitioners wary of local search-based approaches.

For this reason, we have restricted the present paper to local search—where

employed—for tuning the solutions at the end of a conventional GP run. We believe

this approach thus closely fits with the conventional memetic algorithm formulation

[35] (although some may argue that in a memetic algorithm, the local search would

be embedded within the global search). The principal contribution of this paper is an

investigation of the performance of GP approaches when supplemented by semanti-

cally-aware local search methods. In particular, this paper extends consideration of

the effectiveness of local search to a multiobjective (MO) GP framework since this

explicitly trades off goodness-of-fit against model complexity, a key requirement in

the empirical modeling of data [10, 30]. For the reasons stated in the preceding par-

agraph, we also make comparison with the RDO approach. We specifically constrain

the scope of this work to local search methods that modify the morphologies of the

GP trees rather than approaches described in Sect. 2 that fine-tune node functional-

ity. Local search methods that change the tree morphologies are comparatively little

explored.

2 Related work

2.1 Semantically‑aware methods in GP

The study of semantics in GP has been an active topic since the term was first pro-

posed by McPhee et al. [33]. As an evolutionary method, GP faces the issue that

the ‘shapes’ of initial trees can be rapidly lost within a few generations. Tradition-

ally, a diverse initial population, which plays an important role in a successful GP

run, has usually been obtained with the ramped half-and-half method [25]—diver-

sity here has to be interpreted at the syntactic level. Beadle [3] proposed a seman-

tically-driven initialization algorithm to produce a diverse initial population at the

1 3

Genetic Programming and Evolvable Machines

phenotypic level. Compared to the ramped half-and-half method, increased semantic

diversity seems to have a positive effect on GP search efficiency. Jackson [23], how-

ever, pointed out that it is not sufficient to ensure semantic diversity only in the ini-

tialization stage since a lack of semantic diversity diminishes the exploratory power

of GP over the whole run. This author concluded that measures to promote syntactic

diversity produced few gains, but those designed to produce semantic diversity gen-

erated a noticeable performance improvement. Based on the evaluation of behav-

ioral changes caused by structural modification as a result of mutation, Beadle and

Johnson [4] proposed a semantically-driven mutation operator to prevent the crea-

tion of new offspring with equivalent performance to that of their parents.

Locality in GP [15] measures the effect of a genotypical change on the pheno-

type, which is a crucial prerequisite to prevent evolutionary algorithms from behav-

ing as pure random search. Uy et al. [47] compared the roles of syntactic and

semantic localities of crossover in GP, and pointed out that improving syntactic

locality reduced tree size and produced a slight improvement in model generaliza-

tion. In contrast, improving semantic locality was more effective in reducing tree

size and improving model generalization. These authors also proposed a number of

semantic-based crossover and mutation operators.

Krawiec et al. [28] proposed the approximately geometric crossover (AGC),

which combined a geometric crossover operator with semantic backpropagation.

The semantics were used for guiding the crossover operation during evolution; these

operators were further generalized in [40]. The recently-proposed RDO and approxi-

mately geometric semantic crossover (AGX) operator use semantic backpropagation

to identify intermediate subtasks during the evolution process, and then solve these

using an exhaustive search method. When compared with other semantic-aware

operators and standard genetic operators, RDO and AGX were shown to exhibit

improved performance on a series of symbolic regression and boolean benchmark

problems. Though generating promising performance, a major weak point of these

algorithms is that the child solutions are typically larger than their parents, which

may lead to unacceptably slow fitness evaluations after a few generations. In this

paper, we adopt the semantic backpropagation strategy of [40] for producing the

desired output vectors of subtrees to serve as a basis for selecting better-performing

replacements.

Geometric Semantic Genetic Programming (GSGP) has aroused the interest of

an increasing number of researchers. Moraglio et al. [34] introduced a novel set

of semantically-aware genetic operators to search the underlying semantic space

directly. GSGP, however, has a major shortcoming in that the size of the individuals

grows exponentially during the evolution, which makes it impractical for complex,

real-life applications. Vanneschi et al. [49] overcome this limitation by introducing

new, efficient geometric semantic operators. Castelli et al. [6] proposed geometric

semantic genetic operators that enabled them to solve complex, real-world prob-

lems efficiently. Moreover, Ruberto et al. [43] presented a new genetic programming

framework by introducing two concepts: optimally aligned, or optimally coplanar,

individuals, which outperformed the standard GSGP. Nevertheless, Ruberto et al.

omitted problems for which they were unable to find aligned or coplanar individuals

and the generalization to unseen data was not clear. Gonçalves et al. [17] addressed

 Genetic Programming and Evolvable Machines

1 3

these questions by using a geometric semantic hill climber to explore the search

space.

This work provided a new insight into the relationship between program syntax

and semantics, and allows for the principled, formal design of semantic operators for

various problems.

2.2 Local search in GP

The combination of local search and evolutionary global search [16, 18] has been

widely studied and shown to be a powerful strategy for improving search efficiency

although this is less commonly employed in GP. Local hill climbing has been inte-

grated into GP either for tuning numerical coefficients [1, 20, 27, 45, 54, 56], or

fine-tuning the model structure [2, 13, 19, 26, 29, 31, 53, 55]. Interleaved with

global search, the parameters of solutions in each generation have been optimized

via: relabeling [20], genetic local search [27], gradient descent [45, 56], and linear

scaling [1, 2].

Many hill climbing local search methods have been embedded in standard GP

for model structure optimization. Harries and Smith [19] proposed a non-evolu-

tionary based GP with several genetic operators to evolve solutions in a hill climb-

ing manner. Later, a co-evolving memetic algorithm [26] was introduced to pro-

duce solutions for the comparison of protein structures by integrating co-evolving

local searches with GP. Wang et al. [53] optimized decision trees using a splitting

operator to divide the whole sample space into subspaces, and then conducted a

hill-climbing tuning process. Zhang et al. [55] introduced the new crossover opera-

tor, called looseness control crossover, to find good building blocks by continually

crossing over selected parents in a hill climbing manner. Looseness values assigned

to each link between adjacent nodes prevent disruption of good building blocks in

subsequent operations.

As the traditional crossover operator has often been criticized for being less pow-

erful in forming good offspring solutions, Majeed [31] proposed a semantic context-

aware crossover operator for breeding better child solutions with high fitness gain.

This operator identified the best possible crossover point in each selected subtree by

examining all possible contexts in which a subtree can be grafted, finally selecting

the site where the highest fitness is attained.

Azad and Ryan [2] proposed a method to tune the internal nodes of trees one-at-

a-time by trying all possible nodes with the same arity, and retaining the modifica-

tion if a change of node improved the fitness. Although the method demonstrated

performance improvements, this is an extreme form of local hill climbing that is

unable to modify the ‘shape’ of a tree.

Since it is only able to explore syntactic space, canonical GP is deficient at deter-

mining the (implicit) parameters of a particular program. In order to address this

deficiency, Z-Flores et al. [54] developed a Lamarckian memetic GP incorporating a

local search strategy to optimize parameters embedded in the nodes of the GP trees.

These authors concluded that incorporating local search improves convergence and

performance while reducing code growth. As with the work in [2], the approach of

1 3

Genetic Programming and Evolvable Machines

Z-Flores et al. does not use local search to modify the functional form (‘shape’) of

the tree although whether this approach is effective due to also modifying selec-

tive pressures within the population is possible but as yet unexplored. The work in

[54] was extended in [24] by hybridization with the neuro-evolution of augmenting

topologies (NEAT) method.

For combining the exploration ability of semantic genetic programming and the

exploitation ability of local search, Castelli et al. [7] integrated semantic mutation

operators [34] with a local search method of solving a problem in energy consump-

tion forecasting. This case study resulted in good model accuracy with a speeded-

up search process. In order to accelerate convergence, Castelli et al. [8] proposed

a hybrid algorithm combining GSGP and the above method. The results show this

hybrid method allows the search to converge quickly while also exhibiting a note-

worthy ability to limit overfitting.

Inspired by the RDO algorithm, Ffrancon and Schoenauer [13] proposed a local

tree improvement (LTI) operator within a standard local search framework to find

the best possible semantic match between all subtrees in a parent tree and all pro-

grams in a pre-constructed library. This semantic-aware method performed well on

several boolean benchmark problems.

La Cava et al. [29] claimed that the performance of stack-based GP can be

improved by embedding local search using epigenetic instructions to specify active

and silent genes. In contrast to tree-based GP, stack-based GP is “syntax-free” and

syntactic validity is guaranteed no matter how the epigenetic instructions change.

Very recently, Trujillo et al. [46] have argued that local search is necessary to

allow GP to reach its full potential; these authors also note that local search seems

comparatively little utilized by the GP community.

3 Experimental methodology

3.1 Evolutionary framework

In the context of empirical modeling using GP, Le et al. [30] have recently reviewed

the use of complexity measures, and point out the critical importance of trading off

goodness-of-fit to the training data against model complexity; see also [36, Chap

7]. To explicitly address this trade-off here, we have used a global multiobjective

GP formulation in this work with conventional tree-based individuals where the sin-

gle population was sorted according to Pareto dominance. We have employed both

the sorting approach and selection method of Fonseca and Fleming [14]. We have

employed both generational and steady-state evolutionary strategies for ‘global’

search followed—optionally—by local search over the final populations; we make

detailed comparisons below.

Experimental details of the basic evolutionary algorithm are shown in Table 1.

This, we believe, is a fairly standard configuration except we have used the ana-

lytic quotient operator [38] instead of protected division to avoid near-singularities

in the solutions. We have employed the straightforward complexity measure of tree

node count in our multiobjective formulation since this gives a direct measure of the

 Genetic Programming and Evolvable Machines

1 3

computational burden of evaluating a tree. The imposition of evolutionary pressure

to reduce node count is also an effective way of controlling tree bloat.

Using the normal definition of semantics as the indexed output vector of tree

responses over the training data, the semantics of each node within the tree were

estimated recursively and stored when it was evaluated for the first time. The cal-

culation of the desired semantics starts from the root node and propagates along

all paths to all leaves. Since the desired output of the root node of a tree is known,

the desired semantics of each child node in the tree can be calculated assuming that

its siblings have the correct structure. If the backpropagation process yields multi-

ple possible values, one is chosen arbitrarily; if the value is undefined, it is ignored

in the subsequent calculations of semantic distances between subtrees. See Pawlak

et al. [40] for further details.

We have considered the basic evolutionary GP algorithm followed by one of a

number of different local search methods; the aim in each case was to reduce the

Euclidean distance between the subtree’s actual and desired outputs. We investigated

a number of strategies for selecting subtrees for replacement that we detail below.

Local search has been restricted to the final population in order to keep the computa-

tion times within practical limits.1 In addition, we also include results from the basic

GP without local search as a baseline case.

Since it is a prominent example of semantic-based search, we have also included

the RDO operator [40] as a comparator. This method uses a library of semantically-

unique programs, and when a subtree in a parent is selected during the evolution-

ary process, a new offspring is generated by replacing the selected subtree with the

library program exhibiting the closest match to the subtree’s desired semantics. (This

Table 1 Evolutionary parameters used in this work

Parameter Value

Population size 100

Initialization method Ramped half-and-half; maximum tree depth = 6

Number of evolutionary generations 222

Function set + , −, × , Analytic quotient [38]

Terminal set Input variables; constants in 0.1, 0.2..., 0.9

Conventional GP Elitism Top 10 solutions survive

Conventional GP operators Point crossover + point mutation (tree depth ≤ 4)

RDO-based GP Elitism None

RDO-based GP search operator Static library (maximum tree depth = 4)

Subtree selection method Equal node probability OR

Equal depth probability OR

Ito depth-fair selection [22]

1 Additionally, we have observed (unpublished) that, apart from significantly increasing the computa-

tion time, applying local search to every generation is ineffective because the conventional evolutionary

operators of crossover and mutation are so highly disruptive. These results will be published elsewhere.

1 3

Genetic Programming and Evolvable Machines

strategy has the disadvantage that growth in the overall size of the parent tree is not

explicitly constrained.) We have used only a static library of trees up to a predefined

size limit, precomputed before the evolutionary process commences since this has

been shown to yield superior performance to the alternative of a dynamic library

[40]. Further, we have used more modest library sizes compared to the 100,000

used by Pawlak et al. because we are concerned with the practical application of

the method, and therefore its runtime; even with a reduced library size of 1000, the

runtime of the RDO-based method was typically 30 times longer than that of the

baseline GP approach. Static libraries were generated with a maximum tree depth

of 4, and an initial library size of 1000 that was then reduced by removing semantic

duplicates; typically 5% of the library individuals were removed at this stage. Within

RDO, we have explored a range of subtree selection approaches—see Sect. 3.3 for

full details. The algorithm settings are shown in Table 1.

3.2 Local search methods

We have applied one of a number of local search approaches to the final popula-

tion obtained from the baseline GP algorithm. These comprise two key elements:

(1) the method for selecting a target subtree upon which local search acts, and (2)

the method for generating a (potentially) better subtree. Local search was applied

to every individual in the final population generated by the baseline GP algorithm.

Note that we have not selected a final, single model for evaluation until after local

search was applied to the whole population. See Sect. 3.5 below for further details

on the numbers of times local search was applied.

3.3 Subtree selection

We have employed three different subtree selection methods in this work.

– Equal Node Probability. Selection where each node in the parent tree is chosen

with equal probability to be the root of the target subtree; algorithms using this

subtree selection method are denoted with a ‘1’.

– Equal Depth Probability where the selection method first chooses a depth value

in the range zero (i.e. the parent’s root node) to the maximum depth of the par-

ent tree, with uniform probability. At this point, one of the nodes at the selected

depth is chosen with equal probability. Algorithms using this strategy are denoted

with a ‘2’.

– Ito’s Depth-fair Selection. Node selection using the depth-fair selection method

of Ito et al. [22]. This method is similar to (2) above except that the probabil-

ity of selecting a given depth halves for every increase in tree depth (subject to

the usual normalization condition that the sum of depth selection probabilities is

unity). This approach gives nodes at the higher levels of a tree a greater chance

of being selected. Algorithms employing this method are denoted with a ‘3’.

 Genetic Programming and Evolvable Machines

1 3

All three methods of subtree selection embody different biases as to how nodes

(i.e. target subtrees) are chosen.

3.4 Algorithm comparisons

Clearly a fundamental objective in this work has been to make fair comparisons

between some quite different algorithms. To compare the baseline generational GP,

steady-state GP and RDO global algorithms is fairly straightforward: we allowed

each to run for the same number of local search tree evaluations. This allows each

algorithm to make the same number of ‘moves’ in its search, leading to a reason-

able basis for comparison although we restate that the runtime of the generational

RDO algorithm with subtree selection method ‘1’ above (GenRDO-1) was typi-

cally 30 times longer than for the baseline generational GP (GenGP). Establish-

ing a fair basis for comparison with the various local search algorithms, however,

is more problematic. We have addressed this by measuring the process time of the

GenRDO-1 algorithm on each benchmark problem, and then limiting the total runt-

ime of one of the local search-based algorithms that uses generational global search

followed by generational GP local search with Ito depth-fair selection2 to this fig-

ure. The total number of tree evaluations in this algorithm was noted and used as a

limit for all the other local search methods. Local search was continued by cycling

over the population, attempting to improve one subtree in every individual per cycle,

until the allowed number of local search tree evaluations was exhausted. Thus all

algorithms were compared on the basis of being allowed equal amounts of computa-

tional ‘effort’ as gaged by numbers of tree evaluations.

3.5 Subtree generation and replacement

In conjunction with different methods of subtree selection, we have used a num-

ber of different methods to generate candidate subtrees to use as replacements. In

all cases, the objective was to generate a replacement subtree with semantics more

closely matched to the desired (back-propagated) semantics than those of the origi-

nal selected subtree:

– Generational GP to Generate New Subtrees. A single objective generational GP

was used to search for a tree better matching the desired semantics; apart from

the objective function and restricting the local search GP to 100 generations, the

evolutionary parameters were as detailed in Table 1. A hard limit was placed on

the number of tree nodes in the local search GP. This limit on replacement sub-

tree sizes was set equal to the node count of the original target tree to be replaced

in order to prevent code growth in the parent. Candidate replacement subtrees

were thus, at worst, the same size as the originals they sought to replace. (This is

in quite deliberate contrast to the RDO operator [40], which is ambivalent about

2 Designated as algorithm ‘GenGP-GenGP-3’ below.

1 3

Genetic Programming and Evolvable Machines

code growth.) If an evolved subtree had a smaller mean squared error (MSE)

over the semantic target, it was used to replace the original subtree; otherwise,

the parent tree remained unaltered.

– Steady-state GP to Generate New Subtrees. Similarly, a single-objective steady-

state GP with hard limit on replacement subtree sizes was applied for tuning sub-

trees so as to better approximate the desired semantics.

– Random Generation of New Subtrees. Randomly generating replacement sub-

trees of the same or smaller node count than the original target subtree; again,

this size restriction was designed to prevent growth of the parent tree. For a given

parent tree, one cycle of local search comprised first selecting a target subtree,

and then randomly generating a sequence of candidate replacement subtrees with

randomly-generated node counts less than or equal to the node count of the tar-

get subtree. If a candidate subtree produced a closer semantic match than the

original subtree, it was immediately used for replacement and the random subtree

generation sequence terminated. The number of attempts at replacing a given

subtree was limited to a maximum of 100, and if no suitable replacement was

generated, the subtree was left unchanged. This search procedure was continued

by cycling over the population, attempting to improve a single selected subtree in

each individual, until the limit on the number of tree evaluations was reached.

– Using RDO as local search operator to Generate New Subtrees. We have also

investigated using RDO as a local search method to improve the final population

generated by the baseline global search algorithms—essentially, replacing the

local search by random subtree generation with selection of replacements from

an RDO-style static library. The RDO operator selects a program that exhibits the

closest match to the desired semantics of a selected subtree. We have observed,

however, that, when using RDO as a local search method, search over the static

library does not necessarily yield a candidate replacement subtree with better

semantics than the original target subtree. Consequently, we have employed two

different criteria for accepting tree modification by a subtree identified from the

static library: firstly, we always accept a best-matching candidate subtree (“Best

matching subtree”). Second, we only accept a candidate subtree if it both has

better-matching semantics to the selected target subtree, and the modified tree

Pareto-dominates the original parent tree, i.e. it achieves a lower MSE and/or

lower node count (“Better matching subtree”). As above, local search cycled over

the population attempting to improve one subtree at each pass.

In what follows, we adopt the naming convention for describing a particular

experimental configuration of:

– Global multiobjective search paradigm either generational(‘Gen’) or steady-state

(‘SS’).

– The global search method, either GP, or RDO.

– Local single-objective search method: generational(‘Gen’) GP, steady-state

(‘SS’) GP, random tree generation (‘Ran’), or RDO (‘RDO’).

– The method for selecting the subtree for replacement: equal node probability

(‘1’), equal depth probability (‘2’), or Ito’s depth fair selection (‘3’).

 Genetic Programming and Evolvable Machines

1 3

Thus, “SSGP-GenGP-2” indicates a steady-state global GP followed by genera-

tional GP local search using equal depth probability method of subtree selection.

“GenGP” and “SSGP” refer to the baseline global searches with no local search. In

addition, for the reasons explained above, we have included two different acceptance

strategies when using RDO as a local search operator: “Best matching subtree” and

“Better matching subtree”. These lead to additional variants, labeled ‘4’, ‘5’ and ‘6’

only for global GP followed by RDO-based local search.

Summaries of the experiments conducted are shown in Table 3 for the methods

employing generational global search, and in Table 4 for methods using steady-state

global search.

3.6 Test functions

Although the subject of regression test functions for GP has received detailed consid-

eration [32], we have employed a series of commonly-used benchmark univariate sym-

bolic regression problems—see Table 2-previously used in the GP literature. For each

function, we generated 250 independent training sets each containing 20 data uniformly

sampled over the domain; the independent test set for each function comprised 10,000

data. The best test mean squared error (MSE) obtained from the final population (after

any local search procedures) was taken as a measure of generalization performance,

this being equivalent to the general procedure in single-objective GP.

3.7 Statistical testing

We have made detailed statistical comparisons of the results obtained. Since we

cannot make any distributional assumptions about the results, we have used the

Table 2 Test functions

Problem Function Domain

F1:Automatic French curve [52] y = 4.26(exp−x −4 exp−2x +3 exp−3x) [0⋯ 3.25]

F2:Sextic polynomial [48] y = x
6
+ x

5
+ x

4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F3:Uy5 [48] y = sin x
2
× cos x + 1 [−1⋯ + 1]

F4:Uy6 [48] y = sin x + sin (x + x
2) [−1⋯ + 1]

F5:Vladislavleva [51] y = 8 exp−x
x

3 cos x sin x(cos x sin2
x − 1) [0⋯ + 10]

F6:Chebyshev polynomial [39] y = 3 cos (3 cos
−1

x) [−1⋯ + 1]

F7:Scaled sinc function [39] y = 5 sin x∕x (0⋯ + 10]

F8:Cubic polynomial [48] y = x
3
+ x

2
+ x [−1⋯ + 1]

F9:Quartic polynomial [48] y = x
4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F10:Quintic polynomial [48] y = x
5
+ x

4
+ x

3
+ x

2
+ x [−1⋯ + 1]

F11:Uy7 [48] y = log (x + 1) + log (1 + x
2) [0⋯ + 2]

F12:Uy8 [48] y =

√

x [0⋯ + 4]

F13:Seventh order polynomial [39] y = 23.7(x + 0.9)(x − 0.9)(x − 0.6)(x − 0.6)

(x + 0.8)(x + 0.4)(x + 0.3)

[−1⋯ + 1]

1
 3

G
e

n
e

tic P
ro

g
ram

m
in

g
 an

d
 Evo

lvab
le

 M
ach

in
e

s

Table 3 Summary of experimental protocols used: generational global search

Genetic search operator Subtree selection method Local search method

Standard

xover + muta-

tion

RDO

static

library

Equal node (1) Equal depth (2) Ito depth-fair (3) GenGP SSGP Random

generation

RDO

Better match-

ing subtree

Best

matching

subtree

GenGP ✓

GenRDO-1 ✓ ✓

GenRDO-2 ✓ ✓

GenRDO-3 ✓ ✓

GenGP-GenGP-1 ✓ ✓ ✓

GenGP-GenGP-2 ✓ ✓ ✓

GenGP-GenGP-3 ✓ ✓ ✓

GenGP-SSGP-1 ✓ ✓ ✓

GenGP-SSGP-2 ✓ ✓ ✓

GenGP-SSGP-3 ✓ ✓ ✓

GenGP-Ran-1 ✓ ✓ ✓

GenGP-Ran-2 ✓ ✓ ✓

GenGP-Ran-3 ✓ ✓ ✓

GenGP-RDO-1 ✓ ✓ ✓

GenGP-RDO-2 ✓ ✓ ✓

GenGP-RDO-3 ✓ ✓ ✓

GenGP-RDO-4 ✓ ✓ ✓

GenGP-RDO-5 ✓ ✓ ✓

GenGP-RDO-6 ✓ ✓ ✓

G

e
n

e
tic P

ro
g

ram
m

in
g

 an
d

 Evo
lvab

le
 M

ach
in

e
s

1
 3 Table 4 Summary of experimental protocols used: steady-state global search

Genetic search operator Subtree selection method Local search method

Standard

xover + mutation

RDO

static

library

Equal node (1) Equal depth (2) Ito depth-fair (3) GenGP SSGP Random

generation

RDO

Better match-

ing subtree

Best

matching

subtree

SSGP ✓

SSRDO-1 ✓ ✓

SSRDO-2 ✓ ✓

SSRDO-3 ✓ ✓

SSGP-GenGP-1 ✓ ✓ ✓

SSGP-GenGP-2 ✓ ✓ ✓

SSGP-GenGP-3 ✓ ✓ ✓

SSGP-SSGP-1 ✓ ✓ ✓

SSGP-SSGP-2 ✓ ✓ ✓

SSGP-SSGP-3 ✓ ✓ ✓

SSGP-Ran-1 ✓ ✓ ✓

SSGP-Ran-2 ✓ ✓ ✓

SSGP-Ran-3 ✓ ✓ ✓

SSGP-RDO-1 ✓ ✓ ✓

SSGP-RDO-2 ✓ ✓ ✓

SSGP-RDO-3 ✓ ✓ ✓

SSGP-RDO-4 ✓ ✓ ✓

SSGP-RDO-5 ✓ ✓ ✓

SSGP-RDO-6 ✓ ✓ ✓

1 3

Genetic Programming and Evolvable Machines

nonparametric Friedman test [11] under the null hypothesis that all the ranks of

the results are drawn from the same distribution and therefore there is no differ-

ence between the varying treatments; we used the significance level of P ⩽ 0.05

to reject the null hypothesis. When the null hypothesis of the Friedman test was

rejected, we used the Holm–Bonferroni post-hoc correction [11] to the signifi-

cance level in a Wilcoxon signed ranks test [5, 11] to judge the statistical differ-

ences between pairs of results.

4 Results and discussion

Applying all the optimization approaches detailed in Tables 3 and 4 over each

of the thirteen benchmark regression problems F1–13 in Table 2, and perform-

ing a Friedman test on the ranks of the best MSEs for all algorithms (treatments)

and regression problems (subjects) indicated, we reach the conclusion that the

null hypothesis—that each of the optimization approaches produces identical

results—can be rejected with P values < 0.0001. There is thus strong evidence of

differences between the experimental treatments. For obtaining detailed informa-

tion on which algorithms are statistically significantly different from each other,

we have carried out a series of pairwise tests using the Wilcoxon signed ranks test

with a Holm–Bonferroni post-hoc analysis to constrain the family-wise error rates

for the multiple comparisons [11].

Tables 5 and 6 show the mean ranks of test errors and tree sizes, respectively

aggregated over all benchmark problems and treatments.

As a brief introductory overview, from Table 5 it is clear that the best-per-

forming algorithm overall is SSGP-SSGP-3 followed by SSGP-GenGP-3. By

contrast, the baseline SSGP algorithm ranks 8th overall, and the baseline GenGP

algorithm 14th. GenRDO-1 is ranked third along with a number of other algo-

rithms of various configurations. Regarding the significance of the gray-shaded

cells in this table, there are no statistical differences between any of the 9th

ranked group SSRDO-1 ...GenGP-Ran-3. On the other hand, there is a differ-

ence between SSRDO-1 and the 10th ranked GenGP-RDO-1, but no difference

between GenGP-RDO-1 and the group SSGP-RDO-1 ...GenGP-Ran-3. We have

highlighted this with the gray shading in the 10th column opposite the group

SSGP-RDO-1 ...GenGP-Ran-3.

As regards node counts—rankings are shown in Table 6 where smaller rank

denotes smaller trees—there is a broad inverse relationship between the rankings

on test MSE and tree size. Algorithms involving steady-state approaches tend to be

associated with larger trees, but tend to have smaller test MSEs. Again in this table,

gray-shaded cells denote, for example, that there is no difference between any of the

group SSGP-RDO-4 ...SSGP-SSGP-2, and SSGP-GenGP-1.

(In the more detailed discussion that follows, we use the shorthand terms “larger”

and “smaller” in the sense of statistically larger (or smaller) at the 95% confidence

level.)

The principal observations that can be drawn from these results are:

G

e
n

e
tic P

ro
g

ram
m

in
g

 an
d

 Evo
lvab

le
 M

ach
in

e
s

1
 3

Table 5 Ranking of the mean squared test errors (MSEs) by algorithm; algorithms listed in the same column display no statistical difference

Overall ranks of MSE values for all the algorithms

Rank ‘1’ Rank ‘2’ Rank ‘3’ Rank ‘4’ Rank ‘5’ Rank ‘6’ Rank ‘7’ Rank ‘8’ Rank ‘9’ Rank ‘10’ Rank ‘11’ Rank ‘12’ Rank ‘13’ Rank ‘14’ Rank ‘15’

SSGP-SSGP-3 5.321

SSGP-GenGP-3 5.807

GenGP-SSGP-3 7.389

GenGP-GenGP-3 7.618

SSGP-SSGP-2 8.567692

SSGP-GenGP-2 8.752308

GenRDO-1 9.851538

GenGP-SSGP-2 11.08538

SSGP-Ran-2 11.63615

SSGP-Ran-1 11.97385

SSGP-Ran-3 13.22385

SSGP-GenGP-1 14.37231

SSGP-SSGP-1 14.62154

GenGP-Ran-1 16.96154

SSGP-RDO-5 17.44308

SSGP-RDO-4 17.46

SSGP-RDO-6 18.29231

GenGP-Ran-2 19.11231

SSGP 19.58538

SSRDO-1 20.47154

SSGP-RDO-1 20.49

GenGP-GenGP-2 20.51615

GenGP-GenGP-1 21.00615

GenGP-SSGP-1 21.56

GenGP-Ran-3 21.62462

GenGP-RDO-1 22.13923

GenGP-RDO-4 25.48154

GenRDO-2 26.14077

GenGP-RDO-5 26.22538

SSRDO-2 27.05846

GenGP-RDO-2 27.47385

SSGP-RDO-2 27.57308

GenGP-RDO-6 28.64077

SSRDO-3 31.67308

GenGP 31.82

GenRDO-3 33.98308

GenGP-RDO-3 34.01308

SSGP-RDO-3 34.03538

Conversely, a statistically significant difference is detected between algorithms in different columns. The gray-shaded cells denote that the algorithms shown to their imme-

diate left column have no statistical difference with the GenGP-RDO-1 algorithm in column 10. The rightmost column shows the actual mean rank values

1
 3

G
e

n
e

tic P
ro

g
ram

m
in

g
 an

d
 Evo

lvab
le

 M
ach

in
e

s

Table 6 Overall ranking of node counts by algorithm; algorithms listed in the same column display no statistical difference

Overall ranks of tree sizes for all algorithms

Rank ‘1’ Rank ‘2’ Rank ‘3’ Rank ‘4’ Rank ‘5’ Rank ‘6’ Rank ‘7’ Rank ‘8’ Rank ‘9’ Rank ‘10’ Rank ‘11’ Rank ‘12’ Rank ‘13’ Rank ‘14’

SSRDO-3 6.314

GenGP-Ran3 8.910

GenRDO-3 8.919

SSRDO-2 9.394

GenGP-Ran-2 9.512

GenGP-RDO-3 9.629

SSGP-RDO-3 9.695

GenGP-Ran-1 12.315

SSRDO-1 14.881

GenGP-RDO-6 15.365

GenGP-RDO-5 15.467

SSGP-Ran-2 15.634

GenGP-RDO-4 15.989

SSGP-Ran-1 16.026

GenRDO-2 16.473

GenGP-RDO-2 17.292

SSGP-RDO-2 17.544

SSGP-Ran-3 18.315

GenGP 19.803

GenGP-GenGP-2 20.369

GenGP-SSGP-1 20.567

GenGP-GenGP-1 21.477

GenGP-SSGP-2 21.741

GenGP-GenGP-3 22.775

GenGP-SSGP-3 22.935

SSGP-RDO-5 23.783

SSGP-RDO-4 24.149

SSGP-GenGP-2 24.863

SSGP-SSGP-2 25.014

SSGP-GenGP-1 25.172

SSGP-RDO-6 25.234

SSGP-GenGP-3 25.363

SSGP-SSGP-3 25.463

SSGP-SSGP-1 25.677

SSGP 28.699

GenRDO-1 31.23692

GenGP-RDO-1 34.411

SSGP-RDO-1 34.595

Conversely, a statistically significant difference is detected between algorithms in different columns. The gray-shaded cells denote that algorithms to their immediate left

show no statistical difference to the algorithms in that column. The rightmost column shows the actual mean rank values

 Genetic Programming and Evolvable Machines

1 3

4.1 Comparison of generational and steady‑state global strategies without local

search

In the absence of any local search, the global steady-state (SSGP) strategy

clearly produces smaller test errors than the corresponding generational strat-

egy (GenGP), with mean ranks of 19.585 and 31.820, respectively. The generally

superior performance of the steady-state strategy has previously been observed in

the context of multiobjective genetic algorithms by Durillo et al. [12]. The aver-

age tree size of the models created by SSGP, however, is larger than the average

tree size for GenGP strategy with mean ranks of 28.698 and 19.803, respectively.

Since we are generally interested in models with smaller test errors and superior

generalization, the results here suggest that, in the absence of local search, the

steady-state strategy is better than the much more widely used generational strat-

egy, extending the observations in [12] to another MOEA domain.

4.2 Influence of the global search strategy on the efficacy of a given local search

method

Following on from the previous observation, we can examine the influence of

the evolutionary global search strategies on local search methods. It is clear from

Table 5 that a given local search algorithm following a steady-state global search

performs better than the corresponding algorithm that uses generational GP local

search, except for the three pairs: SSGP-RDO-1 versus GenGP-RDO-1, SSGP-

RDO-2 versus GenGP-RDO-2, SSGP-RDO-3 versus GenGP-RDO-3, between

which no statistically significant differences were detected. (It is noteworthy that

all six algorithms in this ‘no difference’ category use RDO as the local search

method; we observe below that RDO does not appear to be particularly good as

a a local search technique. Thus it seems likely that these six algorithms are not

representative results.) Since the starting point for all local search is the final pop-

ulation produced by the global search strategy, there seems strong evidence that

the generally superior population produced by the steady-state strategy facilitates

more productive local search, regardless of the local search algorithm employed.

It seems logical that starting from a ‘better initial position’ will help the subse-

quent local search to find superior solutions.

At the same time, comparing the average tree sizes generated by the various

algorithms, the trees generated by generational global search are statistically

smaller on a like-for-like basis than those created by a steady-state GP, again

except for the three pairings listed above for which no statistically significant dif-

ferences can be detected. As pointed out above, however, if presented with this

trade-off, most practitioners would favor the methods yielding the smaller gener-

alization errors.

1 3

Genetic Programming and Evolvable Machines

4.3 Comparing RDO in generational and steady‑state global strategies

Algorithms using RDO as the genetic operator exhibit different performances

when used with generational compared to steady-state evolutionary strategies.

Compared to the baseline GenGP, the RDO genetic operator used in a genera-

tional strategy yields performances that range from the seventh best performer

(GenRDO-1) via a middle-ranking performer (GenRDO-2) to rapid deterioration

to one of the worst algorithms (GenRDO-3). GenRDO-3 performs even worse

than the baseline GenGP due to the fact that the population in these runs invari-

ably collapsed to a single or small number of identical individuals, thereby dra-

matically damaging the searching ability of the algorithm due to lack of diversity.

4.3.1 The role of evolutionary strategy with global RDO

The general performance of RDO as a search operator in a steady-state strategy,

however, shows a great difference. The average test errors of all the SSRDO algo-

rithms are statistically worse than those of the baseline SSGP. The inference is that

subtree replacement from the randomly-initialized static library harms the search

efficiency of a steady-state GP. A possible reason for this might be that the RDO

operator, which replaces selected subtrees with specific randomly-generated library

programs, induces significant disruption during a steady-state evolution process. The

evolution process of a generational GP is itself highly disruptive since the majority

of chromosomes in each new generation are produced through crossover operations;

in this circumstance, the RDO operator appears to improve the search efficiency

and generates more accurate trees than the baseline GenGP. The steady-state strat-

egy, however, relies on a continual advancement towards the Pareto front that RDO

seems to repeatedly disrupt leading to poor overall search performance.

4.3.2 The role of subtree selection strategy with global RDO

From the perspective of the subtree selection approach used with RDO, for both

generational and steady-state strategies, algorithms selecting subtrees with equal

node probability generate more accurate models than those using the equal depth

selection method. Ito’s depth fair subtree selection method produces the worst

results. This suggests that the performance of the RDO operator is sensitive to the

method of selecting subtrees.

4.4 The role of the generational and steady‑state strategies for local search

From Table 5, clearly the SSGP-SSGP-3 is the best performer among all the algo-

rithms. Unlike the previous observation that the global search ability of a steady-

state GP is always better than a generational GP, when GP is used as a local search

operator, the steady-state GP does not exhibit any consistent advantage over the gen-

erational GP.

 Genetic Programming and Evolvable Machines

1 3

When compared by subtree selection methods, however, algorithms using Ito’s

depth fair method produce the most accurate models. Algorithms selecting subtrees

with equal node probabilities are ranked lowest among all the GP-based local search

algorithms. This suggests that a subtree with a shorter path to the root node of its

parent tree is likely to be more influential on the entire tree in the overall evaluation;

this conclusion is consistent with a hypothesis proposed by Igel et al. [21]. To verify

this, we investigated the relationships between success rate and MSE reduction with

the normalized depth of selected subtrees. The normalized depth of each subtree

is calculated by dividing the depth of a selected subtree from the root node by the

full depth of the whole tree. All the selected samples were divided into ten groups

according to their normalized depth with increments of 0.1. A illustrative group of

five of the above thirteen benchmark functions were used, and the corresponding

graphs of the relationships between successful subtree replacement rate (Fig. 1) and

MSE reduction (Fig. 2) with normalized depth of selected subtrees.

From the graphs in Fig. 1, the success rates are roughly constant with increasing

normalized depth values, which shows that subtrees of different normalized depths

have almost identical probabilities of being successfully replaced. This suggests that

the good performance of algorithms using Ito’s depth fair subtree selection method

is not caused by more frequent modification of subtrees near the root node of a GP

tree. From the graphs in Fig. 2, an inverse relationship between the magnitudes of

MSE reduction with the normalized depth of selected subtrees can be observed. This

implies that a more efficient optimization of GP trees can be achieved by selecting

subtrees with shorter path to the root node. In other words, an improvement of sub-

trees near the root node is more likely to have a larger beneficial effect on the whole

tree. We consider this the main reason that causes good performances of algorithms

using Ito’s depth fair selection method.

4.5 Influence of the number of cycles of local search

Whether it is possible to achieve comparable results with fewer generations of

global GP search and/or less effort on the local search is of great practical interest.

Taking the best performing SSGP-SSGP-3 algorithm as an example, we conducted

an experiment to further explore the balance between these factors. Typically, the

CPU runtime of one local search cycle over all the trees in a final population takes
∼ 12 s (on a given computer), which is far longer than that of the baseline steady-

state global search (SSGP) lasting ∼ 4 s. Thus by far the greatest proportion of the

computational effort is spent on the local search process. The influence of the num-

bers of local search cycles on the model accuracy is presented for five representative

test functions Fig. 3.

From Fig. 3, it is clear that the test error reduces with increasing numbers of local

search cycles. This reduction, however, slows significantly after 2 or 3 cycles of

local search. In a sense, this is very welcome since local search is so time consum-

ing—it appears that only a little local search is needed beyond which the benefits

diminish rapidly.

1 3

Genetic Programming and Evolvable Machines

4.6 Influence of local search on expected tree sizes

Considering the tree size comparisons in Table 6, all the evolutionary local-search

methods based on either steady-state or generational global search produce trees

that are either smaller or statistically the same size as the trees produced by their

Fig. 1 Relationship between successful replacement rate with normalized subtree depth over five bench-

mark functions

 Genetic Programming and Evolvable Machines

1 3

corresponding baseline algorithms. Thus, for example, local search following SSGP

tends to produce smaller trees than SSGP without local search.

Intriguingly, the observation that local search tends to reduce tree sizes seems

counterintuitive given that the local search methods were designed only to prevent

code growth, not to produce more parsimonious structures—see Sect. 3.5.

Fig. 2 Relationship between MSE reduction with normalized subtree depth over five benchmark func-

tions

1 3

Genetic Programming and Evolvable Machines

For a given parent tree in the final population, we observed that local GP search

almost invariably reduced the size of the tree—namely, GP local search seems effec-

tive at finding smaller trees better matched to the desired backpropagated subtree

(a) (b)

(c) (d)

(e)

Fig. 3 Relationship between test MSE and the number of local search cycles of SSGP-SSGP-3 over five

benchmark functions; the number following ‘LSCycle’ denotes the number of local search cycles in the

local search process

 Genetic Programming and Evolvable Machines

1 3

semantics. Now the final population generated by the baseline algorithm comprises

an (approximation to) the Pareto set of equivalent solutions ranging from underfit-

ted solutions with high training MSE/few nodes through to overfitted solutions with

small training MSE/large numbers of nodes; as a rough rule, the solution yielding

the best test MSE tends to lie around the middle of the Pareto front. Although it

tends to shrink the size of the trees, we observe that local GP search rarely improves

the test error of the best-performing individual produced by the baseline GP such

that it continues to be the best-performing individual after local search terminates.

Rather, one of the overfitted individuals tends to be modified in the local search pro-

cedure and is promoted to having a better test error than the best individual pro-

duced by the global search method. This reinforces the approach of applying local

search to the whole of the final population of the global search algorithm rather then

just the best-performing individual produced by the global algorithm. Recently, Tru-

jillo et al. [46] have made a similar observation for local search in the context of

single-objective GP. More generally, the same sort of phenomenon has been previ-

ously seen in decision trees, which are typically trained to overfitting and then heu-

ristically pruned to improve generalization [42].

4.7 Performance of random subtree generation as a local search operator

The overall performances of the algorithms that use random tree search is variable.

The SSGP-Ran-1,2,3 algorithms are all 4th ranked for MSE whereas the perfor-

mances of GenGP-Ran-1,2,3 are more varied: the first two are better than SSGP, the

last worse than SSGP but on a par with GenGP-GenGP-1,2 and GenGP-SSGP-1.

The superior performance of the random subtree replacement algorithms that use

SSGP as a global search algorithm is presumably connected to the general superior-

ity of the steady-state strategy in global search.

Superficially, at least, there appears a similarity between local search by ran-

domly generating replacement subtrees (the GenGP-Ran-1 ...GenGP-Ran-3 family

of algorithms) and the RDO method. RDO constructs a large library of randomly-

generated subtrees from which one is chosen to replace a target subtree in the parent.

This generation-by-lookup table process could be viewed as an alternative way of

randomly generating a subtree. GenRDO-1, however, is statistically better than ran-

dom search implying this approach is not equivalent to random local search follow-

ing global GP; at this point, nonetheless, we sound a note of caution about the size

effect observed here. The reason for the apparent superiority of RDO-based methods

is not completely clear and will be the subject of future work.

4.8 The performance of RDO as a local search operator

We have also investigated using RDO as a local search method (SS/Gen-RDO-1

to SS/Gen-RDO-6) to improve the final population generated by the baseline SS/

GenGP algorithms—essentially, replacing the local search by random subtree gen-

eration with selection of replacements from an RDO-style static library. Again,

superficially, these could be seen as equivalent processes. The results of using RDO

1 3

Genetic Programming and Evolvable Machines

for local search were overwhelmingly negative with little improvement in the popu-

lation generated by the corresponding global SS/GenGP algorithm. We conclude,

therefore, that RDO functions poorly as a local search method although clearly per-

forms well as a genetic operator (in the generational strategy). Its superficial resem-

blance to a random local search operator would thus appear coincidental.

4.9 RDO compared to global GP + GP local search

One of the principal findings of this work is that using GP as a local search proce-

dure is able to produce generalization performance that is better than the state-of-

the-art GenRDO approach, and does so using trees of significantly smaller sizes;

this observation applies to all of the thirteen test functions considered. To take a

typical example, GenRDO-1 with the French curve function produced best test-

error tree sizes in the range 29 to 723 with an average of 196. The SSGP-SSGP-3

algorithm, on the other hand, yielded trees of 23 to 467 nodes with an average of

135. We believe this results from the careful implementation of the GP local search

method to avoid code growth—see Sect. 3.5.

The RDO genetic operator exhibits good search ability in a generational strat-

egy, but with a steady-state strategy, the RDO operator performs even worse than

the baseline SSGP algorithm. This implies the RDO search operator is sensitive to

the evolutionary strategy. Moreover, the rapid performance deterioration from Gen-

RDO-1 to GenRDO-3 indicates the RDO genetic operator is also sensitive to the

subtree selection method. This is a disappointing characteristic of RDO since evo-

lutionary methods are generally considered to be very robust to sub-optimal choices

of parameters, etc. This robustness does not appear to extend to the RDO approach.

On the contrary, GP local search appears much less sensitive than RDO to a differ-

ent choice of subtree selection method. The use of Ito’s method that prefers selecting

target subtrees near the root node seems to encourage model generalization of the

entire tree.

4.10 Computational complexity resulting from different local search strategies

We have also considered the additional computation resulting from various local

search methods. Taking the French curve function as as example, and experiments

run on a computer with a 3.40 GHz processor. The average CPU runtime for the

baseline GenGP is around 0.68 s and for the baseline SSGP around 3.83 s. Table 7

Table 7 CPU runtimes for one cycle of local search on the French curve function

Local search algorithm GenGP-1 GenGP-2 GenGP-3 SSGP-1 SSGP-2 SSGP-3

Runtime (s) 3.483 6.942 14.219 39.150 68.942 95.990

Local search algorithm Ran-1 Ran-2 Ran-3 RDO-1 RDO-2 RDO-3

Runtime (s) 7.994 6.749 7.112 2.841 2.558 2.539

Local search algorithm RDO-4 RDO-5 RDO-6

Runtime (s) 2.561 2.599 2.571

 Genetic Programming and Evolvable Machines

1 3

lists the average CPU runtime cost for one cycle of refinement using various local

search methods. From this table, it is clear that the most time-consuming local search

is SSGP-3 that also produces the most accurate models. Local search algorithms

using RDO turn out to be the least time-consuming, but provide minimal improve-

ment to (and are sometimes worse than) the corresponding baseline GP. Clearly, the

SSGP local search strategies consume more time than their corresponding GenGP

methods. For both SSGP and GenGP local search, one cycle of optimization of the

final population using Ito’s depth fair subtree selection method takes longer than the

equal-depth selection method, and the equal node subtree selection method the least.

Generally, local search using random subtree generation takes about 7 s.

4.11 Future work and overall discussion

The work described in the paper has been deliberately constrained to local search

methods that change the ‘shapes’ of GP trees by altering sub-trees. Successful local

search has also been reported using methods that introduce additional ‘tuning’

parameters into the tree nodes—for example, [46]. An obvious area for future work

is a quantitative comparison between these different approaches to local search, or

indeed possible hybridization between them.

Although this paper presents a large range of algorithms, methods of local search,

and their combinations, much future work remains to be done. In carrying out the

work reported here, we have deliberately adopted a ‘breadth first’ philosophy rather

than seeking detailed explanations for every observation. That said, a very clear

and fertile area for future work is to revisit the promising research directions that

we have identified to gain a fuller understanding of the phenomena involved; in our

experience, such studies tend to be time-consuming hence we have deferred them to

future work.

Another area that warrants further study is the extension to more complex, higher

dimensional test functions. In the present paper, we have employed the univariate

functions that tend to be regarded as “standard” within the GP community. While

they represent a valid starting point for a study, these functions have received some

criticism and other, more challenging datasets have been proposed in the litera-

ture [32]. An important research issue is to establish whether the advantages of

local search identified in the present paper extend to higher dimensions. In addi-

tion, explicitly considering real-world datasets—which often present different chal-

lenges—would be a major extension of this work.

On the subject of test functions, one of the reviewers suggested that ‘genomic’-

type datasets—characterized by hundreds or thousands of features but only tens of

records—would be an appropriate subject for study in the present paper; such chal-

lenging datasets have recently been addressed by Chen et al. [9] using GP. In our

view, the main research issues when applying GP to ‘genomic’ datasets are two-

fold: firstly, to constrain the complexity of a GP model to prevent overfitting when

learning in what are effectively ‘empty’ pattern spaces, bearing in mind that one of

the major advantages of GP is its ability to automatically adjust its own complex-

ity. Secondly, genomic-type datasets are typically characterized by the presence of

1 3

Genetic Programming and Evolvable Machines

large numbers of uninformative/redundant features. In the context of such challeng-

ing learning problems, we think there is little reason that local search on its own

would have much impact on datasets with these characteristics without also explic-

itly addressing the complexity constraint and feature selection challenges.

A further area that might warrant additional investigation is the mechanism of

semantic back propagation that is the precursor for local search. In common with

other reports, we have adopted the strategy of back propagating errors from the root

node of a tree under the assumption that all of a given node’s siblings possess the

correct structure. Although a reasonable simplification, this would seem to signifi-

cantly constrain the scope of any local search. In this context, we suggest a sensi-

tivity-based approach [44] may improve search efficiency, and this too will be the

subject of future work.

We have pointed out in Sect. 1 that memetic algorithms combine global explora-

tory search with local exploitative search. We believe our work fits very much within

this paradigm. Since subtrees for replacement by local search are stochastically

chosen, it is possible that consecutive passes of local search over a parent tree will

select exactly the same target subtree leading to inefficient, duplicated search. Our

use of Ito’s selection strategy (‘3’) that tends to prefer subtrees rooted near the top

of the parent will exacerbate this effect since there are fewer choices near the tree’s

root. We suggest improving the efficiency of our method with a tabu-like approach

whereby subtrees that have been subjected to local search are not then immediately

re-subjected to it in the next pass of local search. This could easily be implemented

by tagging nodes with a timestamp of when they are selected as targets, and exam-

ining this timestamp before proceeding with local search; this is an area for future

work.

Finally, we note that genetic programming has proved an extremely effective and

practical technique for solving the combinatorial optimization problem of searching

over a set of possible functions. Local search over the set of possible subtrees in a

parent GP tree could thus be viewed as a recursive reduction of the overall problem.

In light of this, it is perhaps logical that GP should perform well as a local search

strategy.

5 Conclusions

The most significant conclusion from this paper is that semantic-based genetic pro-

gramming local search is able to produce better generalization performance that is

statistically different from the state of the art GenRDO-1 method of Pawlak et al.

[40], and achieves this with trees of significantly smaller size. This has obvious

computational implications. A contributory factor to this reduction in tree size has

been the careful design of the local search procedure so as to avoid tree growth. We

observe that our GP local search seems to operate by pruning overfitted trees down

to the point of best test performance rather than necessarily improving the best test

case individuals generated by the global SS/GenGP algorithms. Trees generated by

the (SS/GenGP)-(SS/GenGP)-3 approach tend to be (statistically) smaller than those

 Genetic Programming and Evolvable Machines

1 3

generated by the corresponding baseline algorithms, while at the same time exhibit-

ing better prediction performance.

We have also found that the RDO operator was obviously effective when used as

a genetic operator within the generational paradigm. The performance of RDO with

a steady-state strategy, however, is noticeably worse than with a generational strat-

egy. The trees generated by the steady-state variants of RDO are less accurate than

even those generated by the baseline SSGP algorithm. We infer that the disruption

caused by RDO search counteracts the otherwise good search performance of the

steady-state strategy.

Additionally, we observed significant effects of the method for selecting the sub-

tree for local search. On the basis of the work here, the RDO operator appears sensi-

tive to the choice of selection operator, yielding performance that ranges from the

seventh best performer (GenRDO-1) via the 12th-ranked performer (GenRDO-2) to

population collapse and the lowly-ranked performer (GenRDO-3). GP local search,

on the other hand, appears to display far less sensitivity to the choice of subtree

selection method. The SSGP-SSGP-3 method ranks top while a less helpful choice

of subtree selection method only reduces this form of GP local search to a middling

(3rd or 5th ranked) performer rather than a bottom-ranked performer. The reason

that the Ito’s depth fair selection method performs best was investigated and it was

concluded that the optimization of subtrees closer to the root are more influential in

the improvement of the entire tree. Furthermore, the test error reduces with increas-

ing numbers of cycles of local search although the gains appear modest after only

two or three cycles of local search.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. F. Archetti, S. Lanzeni, E. Messina, L. Vanneschi, Genetic programming for human oral bioavail-

ability of drugs, in 8 th Annual Conference on Genetic and Evolutionary Computation (GECCO

’06) (2006), pp. 255–262. https ://doi.org/10.1145/11439 97.11440 42

 2. R.M.A. Azad, C. Ryan, A simple approach to lifetime learning in genetic programming-based sym-

bolic regression. Evol. Comput. 22(2), 287–317 (2014). https ://doi.org/10.1162/EVCO_a_00111

 3. L. Beadle, Semantic and Structural Analysis of Genetic Programming. Ph.D. thesis, University of

Kent (2009)

 4. L. Beadle, C.G. Johnson, Semantically driven mutation in genetic programming, in 11th Conference

on Congress on Evolutionary Computation (CEC’09) (2009), pp. 1336–1342

 5. A. Benavoli, G. Corani, F. Mangili, Should we really use post-hoc tests based on mean-ranks? J.

Mach. Learn. Res. 17(1), 152–161 (2016)

 6. M. Castelli, S. Silva, L. Vanneschi, A C++ framework for geometric semantic genetic programming.

Genet. Program. Evol. Mach. 16(1), 73–81 (2015). https ://doi.org/10.1007/s1071 0-014-9218-0

 7. M. Castelli, L. Trujillo, L. Vanneschi, Energy consumption forecasting using semantic-based

genetic programming with local search optimizer. Intell. Neurosci. 2015, 57:57 (2015). https ://doi.

org/10.1155/2015/97190 8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1143997.1144042
https://doi.org/10.1162/EVCO_a_00111
https://doi.org/10.1007/s10710-014-9218-0
https://doi.org/10.1155/2015/971908
https://doi.org/10.1155/2015/971908

1 3

Genetic Programming and Evolvable Machines

 8. M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic

programming with local search, in Annual Conference on Genetic and Evolutionary Computation

(GECCO ’15) (Madrid, 2015), pp. 999–1006. https ://doi.org/10.1145/27394 80.27547 95

 9. Q. Chen, M. Zhang, B. Xue, Feature selection to improve generalization of genetic programming for

high-dimensional symbolic regression. IEEE Trans. Evol. Comput. 21(5), 792–806 (2017). https ://

doi.org/10.1109/TEVC.2017.26834 89

 10. V. Cherkassky, F.M. Mulier, Learning from Data: Concepts, Theory and Methods, 2nd edn.

(Wiley-IEEE Press, New York, 2007)

 11. J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7,

1–30 (2006)

 12. J.J. Durillo, A.J. Nebro, F. Luna, E. Alba, On the effect of the steady-state selection scheme in

multi-objective genetic algorithms, in 5th International Conference Evolutionary Multi-criterion

Optimization (EMO 2009) (Nantes, 2009), pp. 183–197. https ://doi.org/10.1007/978-3-642-

01020 -0_18

 13. R. Ffrancon, M. Schoenauer, Memetic semantic genetic programming, in Conference on

Genetic and Evolutionary Computation (GECCO ’15) (2015), pp. 1023–1030. https ://doi.

org/10.1145/27394 80.27546 97

 14. C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with

evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man Cybern. Syst. A 28(1),

26–37 (1998). https ://doi.org/10.1109/3468.65031 9

 15. E. Galván-López, M. O’Neill, A. Brabazon, Towards understanding the effects of locality in GP,

in 8th Mexican International Conference on Artificial Intelligence (2009), pp. 9–14. https ://doi.

org/10.1109/MICAI .2009.17

 16. C. Giraud-Carrier, Unifying Learning with Evolution Through Baldwinian Evo-

lution and Lamarckism (Springer, Dordrecht, 2002), pp. 159–168. https ://doi.

org/10.1007/978-94-010-0324-7_11

 17. I. Gonçalves, S. Silva, C.M. Fonseca, M. Castelli, Arbitrarily close alignments in the error space:

a geometric semantic genetic programming approach, in Genetic and Evolutionary Computa-

tion Conference Companion, GECCO ’16 Companion (Denver, 2016), pp. 99–100. https ://doi.

org/10.1145/29089 61.29089 88

 18. F. Gruau, D. Whitley, Adding learning to the cellular development of neural networks: evolu-

tion and the Baldwin effect. Evol. Comput. 1(3), 213–233 (1993). https ://doi.org/10.1162/

evco.1993.1.3.213

 19. K. Harries, P. Smith, Exploring alternative operators and search strategies in genetic program-

ming, in 2nd Annual Conference on Genetic Programming (1997), pp. 147–155

 20. H. Iba, H. de Garis, T. Sato, Genetic programming with local hill-climbing, in 3rd Conference

on Parallel Problem Solving from Nature (PPSN III): International Conference on Evolutionary

Computation (1994), pp. 302–311. https ://doi.org/10.1007/3-540-58484 -6_274

 21. C. Igel, K. Chellapilla, Investigating the influence of depth and degree of genotypic change on

fitness in genetic programming, in 1st Annual Conference on Genetic and Evolutionary Compu-

tation (GECCO’99), vol. 2 (1999), pp. 1061–1068

 22. T. Ito, H. Iba, S. Sato, Non-destructive depth-dependent crossover for genetic programming, in

1st European Workshop on Genetic Programming (EuroGP ’98) (London, 1998), pp. 71–82

 23. D. Jackson, Promoting phenotypic diversity in genetic programming, in 11th International Con-

ference on Parallel Problem Solving from Nature: Part II (PPSN’10) (2010), pp. 472–481

 24. P. Juárez-Smith, L. Trujillo, Integrating local search within neat-GP, in Genetic and Evo-

lutionary Computation Conference Companion (Denver, 2016), pp. 993–996. https ://doi.

org/10.1145/29089 61.29316 59

 25. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, vol. 1 (MIT Press, Cambridge, 1992)

 26. N. Krasnogor, Self generating metaheuristics in bioinformatics: the proteins structure com-

parison case. Genet. Program. Evol. Mach. 5(2), 181–201 (2004). https ://doi.org/10.1023/

B:GENP.00000 23687 .41210 .d7

 27. K. Krawiec, Genetic programming with local improvement for visual learning from examples, in

9th International Conference on Computer Analysis of Images and Patterns (CAIP) (2001), pp.

209–216. https ://doi.org/10.1007/3-540-44692 -3_26

https://doi.org/10.1145/2739480.2754795
https://doi.org/10.1109/TEVC.2017.2683489
https://doi.org/10.1109/TEVC.2017.2683489
https://doi.org/10.1007/978-3-642-01020-0_18
https://doi.org/10.1007/978-3-642-01020-0_18
https://doi.org/10.1145/2739480.2754697
https://doi.org/10.1145/2739480.2754697
https://doi.org/10.1109/3468.650319
https://doi.org/10.1109/MICAI.2009.17
https://doi.org/10.1109/MICAI.2009.17
https://doi.org/10.1007/978-94-010-0324-7_11
https://doi.org/10.1007/978-94-010-0324-7_11
https://doi.org/10.1145/2908961.2908988
https://doi.org/10.1145/2908961.2908988
https://doi.org/10.1162/evco.1993.1.3.213
https://doi.org/10.1162/evco.1993.1.3.213
https://doi.org/10.1007/3-540-58484-6_274
https://doi.org/10.1145/2908961.2931659
https://doi.org/10.1145/2908961.2931659
https://doi.org/10.1023/B:GENP.0000023687.41210.d7
https://doi.org/10.1023/B:GENP.0000023687.41210.d7
https://doi.org/10.1007/3-540-44692-3_26

 Genetic Programming and Evolvable Machines

1 3

 28. K. Krawiec, P. Lichocki, Approximating geometric crossover in semantic space, in 11th Annual

Conference on Genetic and Evolutionary Computation (GECCO ’09) (2009), pp. 987–994. https

://doi.org/10.1145/15699 01.15700 36

 29. W. La Cava, T. Helmuth, L. Spector, K. Danai, Genetic programming with epigenetic local

search, in Annual Conference on Genetic and Evolutionary Computation (GECCO ’15) (2015),

pp. 1055–1062. https ://doi.org/10.1145/27394 80.27547 63

 30. N. Le, H.N. Xuan, A. Brabazon, T.P. Thi, Complexity measures in genetic programming learn-

ing: a brief review, in IEEE Congress on Evolutionary Computation (CEC) (2016), pp. 2409–

2416. https ://doi.org/10.1109/CEC.2016.77440 87

 31. H. Majeed, The Importance of Semantic Context in Tree Based GP and Its Application in Defin-

ing a Less Destructive, Context Aware Crossover for GP. Ph.D. thesis, University of Limerick

(2007)

 32. J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K.

Krawiec, R. Harper, K. De Jong, U.M. O’Reilly, Genetic programming needs better benchmarks,

in 14th Conference on Genetic and Evolutionary Computation (New York, 2012), pp. 791–798.

https ://doi.org/10.1145/23301 63.23302 73

 33. N.F. McPhee, B. Ohs, T. Hutchison, Semantic building blocks in genetic programming, in 11th

European Conference on Genetic Programming (EuroGP’08) (2008), pp. 134–145

 34. A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in 12th

International Conference on Parallel Problem Solving from Nature—Volume Part I (PPSN’12)

(Taormina, 2012), pp. 21–31. https ://doi.org/10.1007/978-3-642-32937 -1_3

 35. P. Moscato et al., On evolution, search, optimization, genetic algorithms and martial arts:

towards memetic algorithms. Caltech Concurrent Computation Program, C3P. Report 826, 1989

(1989)

 36. O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and

Fuzzy Models (Springer, Berlin, 2001)

 37. F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms, vol. 379 (Springer, Berlin,

2012)

 38. J. Ni, R.H. Drieberg, P.I. Rockett, The use of an analytic quotient operator in genetic pro-

gramming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013). https ://doi.org/10.1109/

TEVC.2012.21953 19

 39. J. Ni, P. Rockett, Tikhonov regularization as a complexity measure in multiobjective genetic pro-

gramming. IEEE Trans. Evol. Comput. 19(2), 157–166 (2015)

 40. T.P. Pawlak, B. Wieloch, K. Krawiec, Semantic backpropagation for designing search opera-

tors in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015). https ://doi.

org/10.1109/TEVC.2014.23212 59

 41. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming (Lulu Enterprises,

UK Ltd., Morrisville, 2008)

 42. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers Inc., San

Francisco, 1993)

 43. S. Ruberto, L. Vanneschi, M. Castelli, S. Silva, ESAGP—a semantic GP framework based on

alignment in the error space, in Genetic Programming (Berlin, Heidelberg, 2014), pp. 150–161

 44. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to

Assessing Scientific Models (Wiley, Nrew York, 2004)

 45. A. Topchy, W.F. Punch, Faster genetic programming based on local gradient search of numeric

leaf values, in 3rd Annual Conference on Genetic and Evolutionary Computation (GECCO’01)

(San Francisco, 2001), pp. 155–162

 46. L. Trujillo, E. Z-Flores, P.S. Juarez Smith, P. Legrand, S. Silva, M. Castelli, L. Vanneschi, O.

Schütze, L. Munoz, Local search is underused in genetic programming, in Genetic Programming

Theory and Practice XIV (Springer, Ann Arbor, 2017)

 47. N.Q. Uy, N.X. Hoai, M. O’Neill, B. McKay, The role of syntactic and semantic locality of cross-

over in genetic programming. in 11th International Conference on Parallel Problem Solving

from Nature: Part II (PPSN’10) (Krakow, 2010), pp. 533–542

 48. N.Q. Uy, N.X. Hoai, M. O’Neill, R.I. Mckay, E. Galván-López, Semantically-based crossover

in genetic programming: application to real-valued symbolic regression. Genet. Program. Evol.

Mach. 12(2), 91–119 (2011). https ://doi.org/10.1007/s1071 0-010-9121-2

https://doi.org/10.1145/1569901.1570036
https://doi.org/10.1145/1569901.1570036
https://doi.org/10.1145/2739480.2754763
https://doi.org/10.1109/CEC.2016.7744087
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1109/TEVC.2012.2195319
https://doi.org/10.1109/TEVC.2012.2195319
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1109/TEVC.2014.2321259
https://doi.org/10.1007/s10710-010-9121-2

1 3

Genetic Programming and Evolvable Machines

 49. L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic

gp and its application to problems in pharmacokinetics, in Genetic Programming (Berlin, Hei-

delberg, 2013), pp. 205–216

 50. L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming.

Genet. Program. Evol. Mach. 15(2), 195–214 (2014). https ://doi.org/10.1007/s1071 0-013-9210-0

 51. E.J. Vladislavleva, G.F. Smits, D. den Hertog, Order of nonlinearity as a complexity measure for

models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol.

Comput. 13(2), 333–349 (2009). https ://doi.org/10.1109/TEVC.2008.92648 6

 52. G. Wahba, S. Wold, A completely automatic French curve: fitting spline functions by cross vali-

dation. Commun. Stat. 4(1), 1–17 (1975). https ://doi.org/10.1080/03610 92750 88272 23

 53. P. Wang, K. Tang, E.P.K. Tsang, X. Yao, A memetic genetic programming with decision tree-

based local search for classification problems, in IEEE Congress of Evolutionary Computation

(CEC) (2011), pp. 917–924. https ://doi.org/10.1109/CEC.2011.59497 16

 54. E. Z-Flores, L. Trujillo, O. Schütze, P. Legrand, Evaluating the effects of local search in genetic

programming, in EVOLVE—A Bridge Between Probability, Set Oriented Numerics, and Evolu-

tionary Computation V (Cham, 2014), pp. 213–228. https ://doi.org/10.1007/978-3-319-07494

-8_15

 55. M. Zhang, X. Gao, W. Lou, A new crossover operator in genetic programming for object classifica-

tion. IEEE Trans. Syst. Man Cybern. Syst. B 37(5), 1332–1343 (2007)

 56. M. Zhang , W. Smart, Genetic programming with gradient descent search for multiclass object clas-

sification, in 7th European Conference on Genetic Programming (EuroGP 2004) (Coimbra, 2004),

pp. 399–408. https ://doi.org/10.1007/978-3-540-24650 -3_38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.1080/03610927508827223
https://doi.org/10.1109/CEC.2011.5949716
https://doi.org/10.1007/978-3-319-07494-8_15
https://doi.org/10.1007/978-3-319-07494-8_15
https://doi.org/10.1007/978-3-540-24650-3_38

	Comparison of semantic-based local search methods for multiobjective genetic programming
	Abstract
	1 Introduction
	2 Related work
	2.1 Semantically-aware methods in GP
	2.2 Local search in GP

	3 Experimental methodology
	3.1 Evolutionary framework
	3.2 Local search methods
	3.3 Subtree selection
	3.4 Algorithm comparisons
	3.5 Subtree generation and replacement
	3.6 Test functions
	3.7 Statistical testing

	4 Results and discussion
	4.1 Comparison of generational and steady-state global strategies without local search
	4.2 Influence of the global search strategy on the efficacy of a given local search method
	4.3 Comparing RDO in generational and steady-state global strategies
	4.3.1 The role of evolutionary strategy with global RDO
	4.3.2 The role of subtree selection strategy with global RDO

	4.4 The role of the generational and steady-state strategies for local search
	4.5 Influence of the number of cycles of local search
	4.6 Influence of local search on expected tree sizes
	4.7 Performance of random subtree generation as a local search operator
	4.8 The performance of RDO as a local search operator
	4.9 RDO compared to global GP + GP local search
	4.10 Computational complexity resulting from different local search strategies
	4.11 Future work and overall discussion

	5 Conclusions
	References

