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Using Emulation to Engineer and Understand

Simulations of Biological Systems
Kieran Alden * Member, IEEE, Jason Cosgrove *, Mark Coles, Jon Timmis Senior Member, IEEE

Abstract—Modeling and simulation techniques have demon-
strated success in studying biological systems. As the drive to
better capture biological complexity leads to more sophisticated
simulators, it becomes challenging to perform statistical analyses
that help translate predictions into increased understanding.
These analyses may require repeated executions and extensive
sampling of high-dimensional parameter spaces: analyses that
may become intractable due to time and resource limitations.
Significant reduction in these requirements can be obtained using
surrogate models, or emulators, that can rapidly and accurately
predict the output of an existing simulator. We apply emulation
to evaluate and enrich understanding of a previously published
agent-based simulator of lymphoid tissue organogenesis, showing
an ensemble of machine learning techniques can reproduce
results obtained using a suite of statistical analyses within
seconds. This performance improvement permits incorporation
of previously intractable analyses, including multi-objective opti-
mization to obtain parameter sets that yield a desired response,
and Approximate Bayesian Computation to assess parametric
uncertainty. To facilitate exploitation of emulation in simulation-
focused studies, we extend our open source statistical package,
spartan, to provide a suite of tools for emulator development,
validation, and application. Overcoming resource limitations
permits enriched evaluation and refinement, easing translation
of simulator insights into increased biological understanding.

Index Terms—Emulation, Ensemble, Mechanistic Modeling,
Sensitivity Analysis, Multi-Objective Optimization, Approximate
Bayesian Computation, Machine Learning.

I. INTRODUCTION

THE objective driving simulation-focused biological re-

search is to generate novel predictions that increase our

understanding of biological systems and inform laboratory

studies. As simulations become more sophisticated, capturing

complex diseases [1] and large-scale metabolic networks [2],

this objective becomes more challenging. In addition, key

research-led policy areas that exploit the benefits of simulation

are seeing a focus shift, from a desire to understand average

population behaviors to appreciating the range of behaviors

observed within a population. This approach benefits applica-

tions such as person-centered healthcare [3], where a provision

may be better suited to some individuals than others. Capturing

increased complexity and individual heterogeneity can give

rise to models that are time and resource intensive, and thus
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difficult to parameterize and evaluate. This in turn impacts the

confidence one has in simulation-derived predictions, limiting

the translation of these insights into further laboratory or

clinical studies.

A. Performance Issues in Analyzing Simulations

Significant insights are being generated from non-

deterministic models designed to incorporate stochasticity and

heterogeneity observed in real life systems. In applications

such as target evaluation for drug discovery and understanding

emergence of disease dynamics from individual cellular inter-

actions, the incorporation of stochastic molecular, cellular, and

environmental processes is desired to ground the model in the

domain being explored [4], [5]. Although the composition of

non-deterministic models may themselves not be that complex

or computationally intensive, diverse sets of outputs may

be produced for a fixed parameter input [6]: a factor usu-

ally mitigated by summarizing replicate executions. Ensuring

enough replicates are performed such that this summary is

representative of the parameter input is critical for statistical

analyses, specifically sensitivity analyses, that permit system-

atic exploration of the parameter space and elucidation of the

pathways impacting simulation response [7]. An increase in

model complexity gives rise to high-dimensional parameter

spaces, that require significant computational infrastructure to

explore, especially if a large number of replicate executions

are required per parameter set. As it is common to simulate

biological systems for which our understanding remains in-

complete, there may be significant uncertainty around a subset

of these parameters: their value range may remain unknown

or poorly constrained [8]. This parametric uncertainty impacts

the calibration process used to align simulation behaviors to a

desired or expected response, complicating both the formation

of a baseline state to which subsequent perturbations are

compared [9], and understanding the range of parameter values

that produce that desired response. The latter is of critical

importance when considering model selection, or in capturing

individual heterogeneity by performing executions where het-

erogeneous individuals within a population are represented by

simulation executions of different parameter sets.

A range of statistical analysis techniques can be applied

to understand and mitigate the factors above. Yet as the

execution time for a simulation increases, it becomes less

tractable to perform these analyses in a time-frame that can run

parallel to laboratory or clinical studies. We have previously

described techniques that aid in quantifying the number of

replicate executions required to ensure a result is representative
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of a specified parameter set [6], [10], mitigating aleatory

uncertainty. We have shown that agent-based simulations

that capture both stochasticity and heterogeneity can require

hundreds of replicates to generate a representative output for

a single parameter set [10], [6]. Sensitivity analyses may

incorporate both a local parameter analysis that assesses the

uncertainty around the value of each parameter individually,

and global analyses that can reveal non-linear relationships be-

tween model parameters. For the latter, adequate sampling of

the parameter space is crucial. Often a latin-hypercube (LHC)

sampling scheme is adopted [11], where a number of model

parameter sets are generated and a Partial Rank Correlation

Coefficient (PRCC) calculated to quantify any effect between

a parameter and model response [6]. However, summarizing

parameter sensitivities through a PRCC may not capture the

magnitude or non-monotonic relationships between parameter

inputs and emergent outputs of the simulator. Alternative

parameter sampling approaches include the extended Fourier

amplitude sampling test (eFAST) [12], where parameter sam-

ples are selected from sinusoidal curves through the parameter

space, with each parameter taken in turn as that of interest and

sampled at a significantly different frequency than its comple-

mentary set. Statistical analyses of simulation executions under

these conditions provides a partition of the observed variance

in response between the parameters of interest, indicating those

having significant impact on behaviors. Although a powerful

technique, the characteristics of this sampling approach give

rise to a significant number of parameter sets. For a simulator

of six parameters, taking 65 samples from each sinusoidal

curve, with three curve phase shifts introduced to mitigate

selection of near identical parameter sets [12], a total of 1,170

parameter sets is generated. In our previous application of this

technique, where a simulator required 500 executions to miti-

gate aleatory uncertainty, 585,000 simulation executions were

required [10]. Even with the availability of high-performance

computing resources, such resource-intensive analysis become

intractable for simulators with a long execution time.

A range of additional techniques have shown similar

promise in understanding parametric uncertainties and opti-

mizing parameter configurations with respect to a desired out-

put, automating the calibration process. Approximate Bayesian

Computation (ABC) techniques provide a means of under-

standing the uncertainty around each parameter value by gen-

erating posterior distributions for each [13], [14]. This makes

it possible to sample parameters from a distribution predicted

to replicate behaviors that align well to a desired response,

rather than calibrate parameters to an individual value. Such

sampling may be a powerful approach to adopt in person-

centered studies where each patient can be represented as a pa-

rameter configuration sampled from the posterior distributions.

Similarly, multi-objective evolutionary algorithms (MOEAs)

have shown promise in addressing problems such as parameter

calibration [9]. There may be several simulation responses that

should be matched against experimentally observed data: it

may be the case that the accuracy of one simulation response

to the observation cannot be improved without compromising

other responses [15]. Whereas ABC gives a distribution of

values in which a parameter may lie, MOEA techniques permit

identification of the optimal trade off between those simulation

responses and the associated parameter configurations under

which that outcome is achieved [16]. In optimization routines,

an MOEA approach could thus be used to find a set of

parameter configurations for an alternative desired outcome.

Both ABC and MOEA adopt a heuristic approach where pa-

rameter sets are iteratively generated, executed, and evaluated

until a convergence criterion is met. It is thus difficult to be

aware of the execution time required for both analyses prior

to execution, limiting the application of these analysis in time

and resource intensive projects.

B. Addressing Performance Issues using Machine Learning

A surrogate tool, or emulator, that is capable of converting

a set of parameter values into a prediction of the simulation

response that is representative of a high number of replicates,

is an attractive option for reducing resource requirements

[17]. In saving resources, emulation can serve as a useful

adjunct to the original simulator, providing insights where

complex analyses were previously intractable. This could have

a significant impact on the outcomes of a model-informed

biological research project. We have previously noted that

for any simulation result to be meaningful in the context of

the real biological system, it is critical that the relationship

between the model and the real-world it captures is understood

[18], [19]. We note that producing an emulator that captures

a simulation does add a further layer of abstraction from the

real biological system, and does not make the simulator itself

entirely redundant. However, if the accuracy of that emulator

can be quantified and understood, a useful tool is be produced

that provides a means of complementing existing simulation

analyses while enhancing the range of potential analyses that

could be performed. This approach could be applied at all

phases of simulator development, from highlighting potential

coding errors prior to running complex analyses, refining

model design by gaining an initial understanding of influential

simulated pathways, and informing analyses to be performed

using the simulator.

Emulation has primarily been achieved through a Bayesian

approach where a statistical model, usually a Gaussian process,

is used to estimate simulator outputs. Such emulators have

been applied to aid parameter estimation in a stochastic model

of mitochondrial DNA population dynamics [20], an epidemic

model of influenza [21], and models of hormonal crosstalk

in Arabidopsis root development [22]. Machine learning ap-

proaches, powered by recent technical advances in compu-

tation and increased availability of large datasets, have also

shown promise in identifying complex non-linear relationships

within multivariate datasets [23]. Using supervised learning

approaches, a machine learning algorithm can learn the be-

haviors of a simulator, to quickly and accurately predict the

simulation response for parameter sets the algorithm has yet

to observe. This attribute makes machine learning algorithms

well placed to emulate simulators of biological systems, as

illustrated by the use of support vector machines to emulate

models of haemorrhage and renal denervation, resulting in a

6-fold decrease in computation time [24].
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C. Emulation to Understand Models of Biological Systems

Previously we developed an agent-based model of the

pre-natal development of Peyer’s Patches (PP), a secondary

lymphoid tissue that triggers adaptive immune responses to

infection [25], [10], [26]. This simulator, described in the cited

works and introduced briefly in Figure 1(B) and the Methods,

was applied within a sensitivity analysis routine, to determine

the key biological mechanisms that influence cell behavior

during the process of tissue development. This routine utilized

our previously published sensitivity analysis tool, spartan [5],

[27], [28]. This published study utilized local and global

sensitivity analyses to: reveal how robust parameters for which

a value was unknown are to perturbation; reveal non-linear

interactions between parameters; and to partition the variance

between those parameters. These analyses produced the hy-

pothesis that lymphoid organ development may be biphasic:

one that has since been verified in the laboratory [25]. As this

simulation captures the emergent behaviors from interactions

of hundreds of heterogeneous individual cells, there is a high

level of stochasticity. A substantial amount computer and time

resources (Table 1) (on the order of months) were required

to perform these sensitivity analyses, limiting application of

additional analysis techniques such as ABC and MOEA.

A range of different machine learning approaches have been

developed [29], [30], [31], [32], each with their own set of

advantages and limitations, with performance of each specific

to the data on which is is trained [33]. In this paper we explore

the relative performance of a range of these techniques in

predicting outputs obtained from the agent-based model. We

show that one technique may have poorer predictive power on

a section of the parameter space than another, yet outperform

other techniques for an alternative region. To mitigate this

effect, we combine different algorithms into a hybrid tool,

or ensemble, that is capable of outperforming each technique

in isolation. Using the ensemble, we replicate previously

published statistical analyses in the order of seconds rather

than months. With strong performance assured, additional

analysis routines that enrich our understanding of the simulator

yet were previously intractable have now been conducted

using the ensemble. These results provide a strong argument

for the use of machine learning approaches in supporting

the engineering and enriched analysis of simulations of bi-

ological systems (Figure 1(A)). To promote the adoption of

emulation in the systems biology community and aid others

in evaluating the approaches described herein, we extend

existing functionality within spartan, to permit the genera-

tion, validation, and application of emulators and ensembles.

The extended tool is available from the Comprehensive R

Archive Network (CRAN), and supported by tutorials and

example simulation data available from the spartan website

(http://www.york.ac.uk/ycil/software).

In the description of our Results, gained using the additional

functionality in spartan, section A details the application of a

range of supervised machine learning approaches to generate

emulators of a simulation, each trained using a latin-hypercube

sample of the parameter space. Section B examines the per-

formance of each machine learning technique in isolation. In

Sections C and D we detail the generation and performance of

combining the emulators into an ensemble capable of rapidly

and accurately reproducing simulator behaviors. Section E

replicates the previously conducted sensitivity analyses for

multiple simulation time-points, with results consistent with

published simulator results. The significant improvement in

performance facilitated enriched analyses, specifically Ap-

proximate Bayesian Computation and Multi-Objective Opti-

mization, detailed in Section F. A discussion then follows on

the role that machine learning techniques and our extended

spartan tool could have within a process of developing and

understanding models of biological systems.

II. METHODS

A. Case Study Simulation

Given PP emerge through interactions between two popula-

tions of hematopoietic and non-hematopoietic stromal cells,

mediated by expressed chemoattractant factors within the

developing tissue’s local environment and factors that aid cell

adhesion in that locality, our model adopts an agent-based

approach. Each cell involved in PP development is explicitly

captured in the model as an individual entity, each possessing

their own attributes, and interacts with other cellular and

environmental actors in accordance with a specified set of

rules [10]. The total number of cells modelled is set to match

the estimated counts of each cell population estimated from

flow cytometry experiments. Expression and response to adhe-

sion factors and chemokines in the environment is modelled

using mathematical constructs, controlled by the parameters

identified in Figure 1(A). In the laboratory cell velocity and

displacement behavior responses have been established by

observing cells using an ex vivo cell culture system [25] for

a one-hour period, providing a baseline through which to

parameterize the simulation and suggest the values to which

the mathematical constructs must be set in order to capture

observed behaviors. Thus the simulation outputs cell velocity

and displacement for all agents over the same one hour period

and twelve-hour intervals that follow, as well as a calculation

of the size of the cell aggregations that develop. Sensitivity

analysis techniques were applied that perturbed the values of

these parameters in order to examine how cell velocity and

displacement alters under different physiological conditions

[5].

B. spartan

Open source and supported by multiple publications and

tutorials, spartan comprises a suite of statistical analyses that

aim to help understand how simulation-derived predictions

could be interpreted in the context of the biological system

being captured. The datasets originally released with spartan

have been used in this study, providing an accessible set of

data for demonstrating application of emulation and easing

reproduction of the presented analyses. spartan has been

extended to offer four additional techniques: (i) Generation

of emulations using five machine learning techniques; (ii)

Generation of an ensemble that combines these emulators

into one single predictive tool; (iii) Provision of a software
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wrapper that permits the use of an ensemble for performing

Approximate Bayesian Computation; and (iv) Provision of

a software wrapper permitting the application of a multi-

objective optimization algorithm, through which the ensemble

is used to locate parameters that lead to a desired emulated

outcome. The latest version exploits the functionality in a

number of additional R packages, namely randomForest [34],

mlegp [35], neuralnet [36], e1071 [37], mco [38], and plotrix

[39].

C. Specification of Computer Resources

The simulation runs were performed on the York Advanced

Research Computing Cluster, a resource of 70 nodes, 138

processors, 1462 cores, and 10.2TB RAM. The emulators and

ensembles were generated and used for experimentation on an

Apple MacBook Pro, 2.5GHz Intel four core i7, 16GB RAM.

D. Emulator Creation

1) Generation of Training, Testing and Validation Datasets:

The spartan tutorial dataset for demonstrating performance

of a sampling-based global sensitivity analysis using LHC

sampling consists of 500 parameter sets. Each set was executed

500 times to mitigate aleatory uncertainty, and median re-

sponses calculated to summarize simulator performance under

those conditions [26]. Spartan divided the data set into training

(75%), testing (15%) and validation (10%) sets (percentages

can be changed), which were used to create and assess

the performance of emulators generated using five machine

learning algorithms. One emulation was generated for each

simulation response (cell velocity and displacement), such that

the performance of one response does not bias another.

2) Neural Networks (ANN): ANN’s are inspired by the

neuronal circuits in the brain, with computations structured in

terms of an interconnected group of artificial neurons. During

the learning phase, the weighting of connections between

neurons are adjusted in such a way that the network can

convert a set of inputs (simulation parameters) into a set of

desired outputs (simulation responses). Neural networks were

developed in spartan using the neuralnet package [36] with

supervised learning of the data achieved through backpropa-

gation. To determine optimal hyperparameters of the network

we performed ten-fold cross validation (default value, but can

be altered) on a selection of structures with five inputs (the

parameters) and two outputs (velocity and displacement), with

one to four hidden layers (the specific details are covered in

the software tutorial). The number of generations defaults to

800,000, but can be modified by the user. The accuracy of

each fold was determined to be the root mean squared error

(RMSE) between the predicted cell behavior responses and

those observed in the simulation, and the accuracy of the

network structure determined to be the average of the ten

fold RMSE. The network structure with the minimum average

RMSE was selected as the structure that would be used in

creation of the emulator.

3) Random Forest (RF): A decision tree is structured to

convert inputs (parameters) into a set of predicted outputs,

and comprises root, internal and leaf nodes. Each internal

node represents a decision with two branches leading to

stratification of the training data, in this case for the purpose

of regression. A RF is an ensemble of decision trees, trained

on different parts of the same training set, with the goal of

avoiding issues of overfitting [29], [40]. The RF was generated

within spartan using the randomForest package [34] with

supervised learning achieved by creating a forest with 500

trees and no limitation on tree depth or maximum number of

terminal nodes (as default in the randomForest package.

4) Gaussian Process (GP): A GP model is a non-

parametric approach that finds a distribution over the possible

functions that are consistent with the observed data facilitating

supervised learning of simulator outputs. A Gaussian process

model was created in spartan using the mlegp package [35]

with default parameter settings.

5) Generalized Linear Model (GLM): A GLM is a gen-

eralized form of ordinary linear regression, allowing for pre-

dictions of simulator outputs without assuming that the error

distributions follow a normal distribution. A GLM was created

in spartan using the glm method in the base R package, with

default parameter settings.

6) Support Vector Machine (SVM): A support vector ma-

chine constructs a hyperplane, or set of hyperplanes within

a feature space to facilitate classification and regression pre-

dictions [30]. The svm model was generated within spartan

using the e1071 package [37] using a radial basis kernel.

The parameter epsilon, which controls the threshold error for

fitting the hyperplane, and the cost parameter, the penalty

for violating a constraint that can be adjusted to deal with

overfitting left at default values of 0.1 and 1 respectively.

7) Evaluating Emulator Performance: Emulator perfor-

mance was evaluated by calculating the RMSE between the set

of emulator predictions for unseen parameter values in the test

data with simulator responses observed under those parameter

conditions.

E. Ensemble Creation

Each individual emulator is used to make predictions of the

simulator output responses for the parameter values in the test

set. The predictions from each emulator form input nodes to

a neural network, with the output nodes being the actual ob-

served responses from the test set. A network consisting of one

hidden layer with a single node is used to calculate weightings

of each algorithm’s performance. The relative weighting of

each algorithm is then used to combine emulator responses to

form an ensemble. It may not be the case that an ensemble of

all five machine learning techniques provides better accuracy

than by combining a subset of emulators. As such, we assessed

all combinations of emulators, determining the optimal ensem-

ble structure that provided the lowest RMSE, averaged across

all simulation responses, between predicted values and those

observed from the original simulator. Consequently, the total

time taken to generate an ensemble (shown in Table 1) will

be dependent on the emulators which the ensemble includes.

F. Sensitivity Analysis Using Ensemble

1) Sampling-Based Sensitivity Analysis: A new list of 500

parameter sets was created for the parameters identified in
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Figure 1 using the LHC sampling method in spartan. The

generated CSV file of parameter values and the optimal

ensemble was specified as input to a new spartan method

designed to generate responses for each parameter set using

an ensemble. This produces a CSV file summarizing ensemble

response for each parameter set. Creation of this file permits

result analysis using the pre-existing techniques within spartan

[5], [27]. This analysis produces a Partial Rank Correlation

Coefficient (PRCC) for each parameter value, that quantifies

the relationship between a parameter and an output response,

providing an indication as to the influence of that parameter,

although the values of the complementary set are also being

perturbed. PRCC values were generated for all parameter-

measure pairings, for all simulation time-points (hours 12-

72, in 12 hour increments), permitting direct comparison to

analyses previously conducted using the simulator [25], [5],

[26].

2) Variance-Based Sensitivity Analysis: A new list of pa-

rameter value sets for performing an analysis using eFAST

were obtained using the parameter sampling method in spar-

tan. A dummy parameter was introduced to the sampling,

giving seven parameters. In accordance with guidance con-

cerning eFAST sampling frequency [7], 65 values were sam-

pled from the sinusoidal curves that cover the value space

for each parameter, generating 390 (65*7) value sets. Due to

the properties of sigmoidal sampling and a high chance of

repeated values, repeated sampling after a frequency shift is

suggested. Applying three frequency shifts (curves) generated

a total of 1,170 parameter sets for analysis. Similarly to the

sampling-based analysis above, a new method has been in-

cluded in spartan that processes the CSV value files generated

for each resampling curve, generating output predictions for

each parameter set using the ensemble. Again these can be

analysed using the pre-existing techniques within spartan. For

each simulation response, variance in output was attributed to

each of the seven parameters (Si value). The Si values were

calculated for both cell velocity and displacement at both hours

12 and 72, to permit comparison with previously published

eFAST results obtained using the simulator.

G. Enriched Analysis Using Ensemble

1) Approximate Bayesian Computation: The R package

EasyABC [41] provides a number of algorithms through

which parameter posterior distributions can be predicted. In

the extended version of spartan we provide a wrapper that

normalizes the parameter sets generated by the ABC algorithm

and inputs these into the ensemble, before re-scaling the

predictions and returning those values back for assessment

of fit against a specified tolerance level. In the analyses

presented in this paper, we ran the Delmoral implementation

of the sequential ABC algorithm [42], with the target summary

statistics of cell velocity and displacement being the medians

of the cell behavior measures observed in ex vivo culture and

published previously. The algorithm parameters were set at the

default values given in the EasyABC documentation.

2) Multi-Objective Optimization (MOO): MOO was used

to find parameter sets that met three objectives at hour

72: minimize the RMSE between emulator and simulator

responses for cell velocity; minimize the RMSE between

emulator and simulator responses for cell displacement; and

maximize the area of the cell aggregation that develops (the

PP). These sets were derived using the non-dominated sorting

genetic algorithm II (NSGA-II) [43] using the mco R package

[38]. With a population size of 300, values for generation

number (400), mutation (0.8) and crossover probabilities (0.4)

(table 2) were determined by sensitivity analysis, choosing

parameters that performed well on all three objectives and

maximized the variance of the parameter inputs. As we wished

to replicate the cell behaviour responses, the parameter values

were constrained to match the predicted posterior distributions

observed using the EasyABC package: distributions observed

in Figures 6 and S6.

III. RESULTS

A. Emulation Generation

Our approach utilized the spartan tutorial dataset as de-

scribed in the Methods to generate emulators using five

machine learning algorithms, with generation time of each

shown in Table 1. To indicate success of the training process,

and provide a comparison of performance with the test set,

the RMSE obtained in training each algorithm is compared

in Figure S4. To emulate and replicate previously published

temporal sensitivity analyses [5], [28], where simulation be-

haviors were assessed at twelve-hour intervals, emulators were

generated at twelve hour intervals to hour 72.

B. Emulator Performance

Emulator performance data for cell velocity at hour 12 is

shown in Figure 2(A), with performance comparison of cell

displacement available in Supplementary Figure S1. The hour

12 dataset facilitated a comparison of how each algorithm can

learn a highly skewed dataset (kurtosis: 6.353, Figure 2(B))

with fewer examples towards the lower end of the distribution.

This artifact impacted the performance of the support vector

machine, random forest, and generalized linear model algo-

rithms, with less of an impact observed for Gaussian process

and neural network derived predictions. Emulator performance

on both cell velocity and displacement responses at hour 72

can be seen in Supplementary Figures S2-S3.

C. Ensemble Generation

From the respective emulators at each time-point and

each response, spartan was used to create ensemble models,

through combining emulators into one predictive tool. Ensem-

ble generation times for both hours 12 and 72 are listed in

Table 1.

D. Ensemble Performance

As the test subset of the partition data was used to weight

performance of each emulator and thus derive the best per-

forming ensemble, performance of the ensemble itself was

assessed by comparing response predictions for the parameter

values in the validation set with those observed from the
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Fig. 1. A: A framework to emulate simulations of biological systems. The behavior of a systems biology model (i) is summarized by applying latin-hypercube
sampling (ii), with simulation results under those conditions generating a dataset used to inform the training and validation of an emulator using machine
learning techniques (iii). The emulator is then used in place of the systems biology model to accurately and rapidly predict responses to conduct a suite of
analyses that may be intractable using the original simulator (iv). Emulator development, validation, and analysis techniques have all been incorporated within
the spartan R package. B: Schematic overview of the case study model of Peyer’s Patch (PP) development. Full implementation detail can be found in our
previously published work [10]. (i) The model captures the migration and aggregation of Lymphoid Tissue Initiator (LTin) and Lymphoid Tissue Inducer
(LTi) cells into the developing gastrointestinal tract, and their interaction with Lymphoid Tissue Organiser (LTo) cells, modeled using six key parameters.
Both LTin and LTi cells express adhesion receptors, modelled using a mathematical construct controlled by parameter maxProbabilityOfAdhesion, to model
the probability the receptor binds to adhesion factors expressed by the LTo . LTi cells express chemokine receptors that are controlled by the parameter
chemokineExpressionThreshold to determine whether an LTi cell responds to chemokine expression in it’s vicinity. Adhesion factor expression by an LTo
cell is represented using a linear model function that is adjusted with each stable cell contact by increasing the parameter adhesionFactorSlope. Chemokine
expression across the environment is varied between initialChemokineExpression and maxChemokineExpression. (ii) LTin and LTo cell contact causes LTo
differentiation, increasing adhesion factor expression. Success of receptor binding is captured using probability parameter stableBindProbability. (iii): LTi
and LTo contact causes further LTo differentiation and increased expression of adhesion factors, in addition to increased expression of chemokines. (iv) This
processes give rise to the emergence of cell aggregates that become PP. The simulator outputs the area of this aggregation at hour 72.
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Fig. 2. Emulation performance, integration, and comparison. A: Performance of five machine learning techniques (stated in the graph header) in predicting
simulator responses, in this case cell velocity at the twelve-hour time-point of the case study simulation. B: The distribution of the training dataset for the
Velocity response at the twelve-hour timepoint. C-D: An ensemble approach that combines multiple machine learning techniques out-performs each technique
in isolation. Both responses at hour 72 are shown in Supplementary Material (Fig. S2-S3).

published simulator. This comparison is shown for both cell

velocity and displacement at hour 12 in Figure 2(C-D). We

observed a decrease in the RMSE for both measures. For

velocity an RMSE of 0.331 µm/minute is observed, an

improvement of the lowest RMSE found when using a single

emulation approach: the 0.378 µm/minute obtained using a

neural network. For displacement, an RMSE of 4.051 µm,

again an improvement on the 5.223 µm observed using

a single machine learning approach. We present ensemble

performance results for both cell responses at hour 72 in

Supplementary Figures S2-S3. Our results suggest that an

ensemble of machine-learning approaches does outperform

each technique in isolation, and is capable of mitigating char-

acteristics of the training dataset, such as the skew mentioned

previously.

E. Sensitivity Analysis

With the ensemble generated and performance assured,

we replicated the sensitivity analyses that had previously

been conducted at hours 12 and 72 [10], [5], [28], using

the ensemble in place of the original simulator. We contrast

performance both against the original analysis results and in

terms of time and resource requirements necessary to perform

these analyses. The computing resources used, from which the

wall time statistics were generated, are specified in section C

of the Methods.

1) Sampling-Based Global Analysis (LHC): Partial Rank

Correlation Coefficients were calculated for each parameter-

response pairing using the latin-hypercube sampling and anal-

ysis technique described in the Methods. This analysis took

6.45 seconds for hour 12 and 3.49 seconds for hour 72. Note

that this analysis was conducted for a new set of 500 parameter

sets, derived using spartan, as the ensemble had been trained

on the parameter values used in the published analyses. The

results for two parameters, controlling the probability of cell

adhesion and response to chemokine expression, are shown

for cell velocity in Figure 3(A), the results obtained using

the ensemble on the left against the original simulator analy-

sis on the right. For maxProbabilityOfAdhesion, both results

show a clear trend in the data, supported by a high corre-

lation coefficient. The ensemble has replicated the original

analysis hypothesis that the probability of cellular adhesion

significantly influences cell behavior, although another five

parameters are also being perturbed. This provided confidence

that the emulator could capture complex interactions between

parameters. For the parameter chemokineExpressionThreshold,

the original analysis found no correlation between parameter

value and output response [10], a finding supported by addi-

tional local sensitivity analyses that suggested a perturbation

in this parameter had little impact on cell behaviour [5]. This

result is again replicated using the ensemble.

Figure 3(B&C) ease comparison of the results generated by

the ensemble with those of the original analysis by presenting

the PRCC values as a polar plot, one for each cell behavior

response. In the published simulator analysis, a significant

negative correlation is suggested between the probability of

cell adhesion and cell displacement, contradicting the accepted

hypothesis that chemokine expression is the critical pathway in

PP development [44]. The emulator replicates that suggestion

for both cell velocity and displacement. When considering

cell velocity for hour 12 (Figure 3(B)), the emulator produces

PRCC values that are quantitatively very similar to those in
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Fig. 3. Replicating simulator sensitivity analysis using an emulator. A: The emulator is capable of capturing the key behaviours observed in a global
sensitivity analysis, using latin-hypercube sampling and calculation of summary Partial Rank Correlation Coefficients (PRCC), illustrated here for parameters
maxProbabilityOfAdhesion and chemokineExpressionThreshold. B: Comparison of the PRCC values for all parameters at the twelve-hour time-point obtained
using both the simulator and emulator. C: Comparison of a the PRCC values obtained at the 72 hour time-point

the original time intensive analysis. For cell displacement,

the ensemble does suggest a stronger correlation between

cell displacement and both chemokine response and initial

chemokine expression parameters than that suggested by the

simulator analysis at hour 12. The analysis, constructed to

mimic that conducted in the laboratory [25], examines the

behaviors of cells within 50 µm of a developing PP. At this

early time-point, measures of cell displacement are sensitive to

the number of cells that are located in this vicinity: a number

that can be very low in some cases. A low number of examples

thus impacts the ability for the machine learning algorithm

to predict this response. As simulation time progresses and

additional cells enter this vicinity, a higher number of cells

provides more data on which to train the ensemble, and

accuracy for the cell displacement measure improves (Figure

3(C)).

2) Variance-Based Global Analysis (eFAST): The original

application of the eFAST analysis using spartan, described

in detail in the Methods, required 682,500 executions of the

simulator: an intensive analysis that is potentially intractable

for studies with a greater number of parameters than that of

the presented case study. This analysis was repeated using

the ensemble, and the calculated variance in simulation re-

sponse that can be attributed to each parameter (the Si value)

presented in Figure 4. This analysis took 14.67 seconds for

hour 12 and 6.00 seconds for hour 72. When considering

cell displacement at hour 12, the original simulator analysis

found the maximum probability of cell adhesion accounted

for more variance than the complementary set (Figures 4(A-

B)). Again the emulator reproduces this finding, but assigns

much more of the variance to this one parameter. However

the performance of the emulator is much more comparable
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compared in A, 72 hours in C. The same comparison for cell velocity is shown
in B and D.

to that of the simulator analysis at hour 72 (Figure 4(C-

D)). This difference supports conclusions made previously

when examining the PRCC values, that predictive power may

be impacted by a lower number of examples at an early

time-point in PP development. This affect is also observed

when contrasting the amount of variance accounted for by

each parameter and higher-order interactions with others: a

comparison made in Supplementary Figure S5. Here it can

be observed that the ensemble is capable of predicting these

higher-order interactions, with predictive power again increas-

ing throughout the simulation timecourse.

3) Temporal Sensitivity Using the Ensemble: Previously

we applied the case study simulator and sensitivity analysis

methods in spartan to suggest that PP development may be

biphasic: dependent on adhesion factor expression at hour

12 yet highly influenced by chemoattractant expression and

response at hour 72 [28]. By contrasting PRCC values for

the six parameters obtained at twelve hour intervals, we

were able to suggest that a change in the influence of a

subset of the simulator parameters occurs between hours 24

and 36. Using the approach described in the methods we

created an ensemble for each twelve hour interval, permitting

a replication of this temporal analysis (Figure 5). Using each

ensemble and spartan, PRCC values were calculated for each

parameter-response pairing at each interval. It is clear that the

ensemble has captured the performance of the simulator over

the time-course for all parameters and simulation responses.

Some deviation is observed at hour twelve (Figure 5(B,C,E)),

as observed for the previous sampling and variance based

sensitivity analyses.

F. Enriched Analyses

1) Approximate Bayesian Computation (ABC): To deter-

mine posterior distributions for each of the case study pa-

rameters, an ABC approach was adopted as described in

the Methods. Predicted posterior distributions for parameters

chemokineExpressionThreshold (A), maxProbabilityOfAdhe-

sion (B), and adhesionFactorExpressionSlope (C) for hour

12 are presented in Figure 6, with the remaining parameters

presented in Supplementary Figure S6. For adhesion factor

expression, the posterior is positively skewed, only including

parameters that are less than 1.2. Conversely for maximum

probability of cellular adhesion, the distribution is negatively

skewed, suggesting larger values of the parameter lead to cell

responses that replicate those observed in the laboratory. In

both cases, the original simulator’s calibrated values of 1.0 and

0.65 respectively fall within the predicted posterior distribu-

tions [10]. For chemokine expression threshold, the posterior

distribution is normally distributed across the parameter value

range, suggesting a high level of uncertainty in the value

that should be assigned to this parameter. This supports our

previously published sensitivity analyses for this parameter

[10], [5], that determined a perturbation in parameter value

to have no effect on simulated responses.

2) Multi-Objective Optimization (MOO): To align cell be-

haviors to experimental data while maximizing the emergent

area of produced PP, we performed automated calibration
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Fig. 5. Replicating a temporal sensitivity analysis of parameter influence, published in [28], using latin-hypercube sampling. Partial Rank Correlation
Coefficients for each parameter and measure pair were calculated at six discrete time-points, for both the simulator and emulator
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using the MOEA, NSGA-II. To ensure cell behaviours are

preserved, the value space for each parameter was restricted

to that of the posterior distribution predicted using ABC. Using

NSGA-II in conjunction with our emulator we found 100

parameter sets that represent the optimal solutions evolved

by the NSGA-II algorithm. Figure 6(D) is a Pareto optimal

front showing the optimal trade-off between the three ob-

jectives. As patch area exceeds a value of 900 µm2, the

accuracy of the cell behavior measures decreases, suggesting

900 µm2 is the largest patch area obtainable under baseline

conditions. To verify the accuracy of those Pareto optimal

solutions, parameter inputs were assessed using the simulator,

with no statistically significant difference between emulator

predictions and simulator observations (Figure 6(E)).

IV. DISCUSSION

Sophisticated statistical analysis techniques are required

to facilitate translation of simulation outputs into increased

biological understanding. For many biomedical research appli-

cations, simulators may require significant time and computa-

tional infrastructure to evaluate. This resource requirement not

only limits the use of certain statistical analysis techniques, but

is also a significant obstacle in the embedding of a simulation

as a key decision making platform to complement an ongoing

laboratory or clinical study.

We illustrate the use of machine learning approaches to

construct emulator tools that rapidly and accurately replicate

previously published intensive statistical analyses of an agent-

based simulator of lymphoid tissue formation. To ease wider

application, we extended the functionality of spartan [5], [28]

to permit the emulation of biological simulators. Using this

extended tool and the computing resources specified in the

Methods, we replicated a sampling-based sensitivity analysis

that previously required 250,000 simulation executions (each

execution taking at least 94 seconds) in 3.49 seconds, and a

variance-based sensitivity analysis, requiring 682,500 simula-

tion executions, in 6 seconds. Further, a temporal sensitivity

analysis was reproduced that is consistent with that published

previously for all simulated emergent cell behaviors [28].

Including five different machine learning algorithms permits

us to contrast performance for this specific case study and

demonstrate the benefits of combining these into an ensemble.

It can be noted in Figures 2 and S1-S3, that in this case

the neural network is the top performing algorithm, for both

velocity and displacement, yielding the lowest RMSE in all

cases. As such this algorithm was given the highest weighting
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Simulator Performance

Calibrated Simulator Execution Time (seconds) 94.265

Replicate executions Required Per Parameter Set
to Mitigate Aleatory Uncertainty

500

Executions Required for 500 Sample LHC 250,000

Executions Required for eFAST 682,500

Emulator Performance

Time (seconds)

Emulator Training Time 12Hr 72Hr

GLM 0.197 0.209

SVM 0.245 0.244

RF 0.693 0.651

NN 280.35 246.45

GP 484.357 500.704

Ensemble Generation Time 281.771 747.913

Emulated LHC Analysis 6.45 3.49

Emulated eFAST Analysis 14.67 6.00

TABLE I
PERFORMANCE STATISTICS FOR BOTH USE OF SIMULATOR, INDIVIDUAL

EMULATION, AND ENSEMBLE, USING THE COMPUTING RESOURCES

SPECIFIED IN SECTION C OF THE METHODS. WHEREAS ONE EXECUTION

OF THE ORIGINAL SIMULATOR AT CALIBRATED VALUES MAY TAKE 94
SECONDS. BOTH SENSITIVITY ANALYSES WERE PERFORMED IN A

FRACTION OF THE TIME TAKEN TO PERFORM ONE EXECUTION OF THE

ORIGINAL SIMULATOR.

each time an ensemble was generated. Notable from Figures 2

and S1 is that the neural network and gaussian process models

are more accurate over the entire output range for both velocity

and displacement, than the general linear model, SVM, and

random forest, where prediction accuracy is decreased for

lower output values. Through combining the five algorithms

into an ensemble, the RMSE is lower for both output measures

than the neural network in isolation. The weighting of the

stronger algorithms corrects those that have made poorer

predictions at the lower end of the output scale, while better

agreement increases the accuracy at the upper end.

We note that emulator performance in comparison with

the previously published results was improved at hour 72 in

comparison with hour 12. At each time-point, responses are

analyzed for cells that are located within 50 µm of a devel-

oping PP. Early in development, at hour 12, there are fewer

immune cells within that vicinity than at hour 72, skewing the

output distributions. A comparison of the performance at both

time-points for displacement can be drawn from Figures 3,4,

S1 and S3. The lower number of examples at hour 12 can

impact the machine learning algorithm’s ability to learn the

response for the complete parameter range, in particular for

the Generalised Linear Model, Random Forest, and Support

Vector Machine algorithms. One of the key strengths of

generating an ensemble is that the predictions obtained using a

combination of weighted emulators was found to mitigate this

artifact of the training dataset (Figure 2C), without the need

for an increased number of training data points or adaptive

sampling schemes. As PP development progresses over time,

a greater number of cells fall within this range, providing

a larger training data set and a wider variety of behaviors,

improving accuracy of predicted cell displacement for the

aforementioned algorithms. Although mitigated in this case,

it remains important to be aware of how the training data

characteristics may impact predictive performance.

In this application, we generated emulators for each sim-

ulation output response, for each time-point of PP develop-

ment. Given the strong performance statistics in Table 1, this

was sensible, as each emulator could be generated relatively

efficiently while ensuring the prediction of one output was

not impacted by the other. Further work could consider the

accuracy of emulators that are trained to predict multiple

output responses, to determine if there is a balance between

the level of accuracy such an approach could achieve and the

time taken to generate an emulator for each response. We also

recognize the potential issue to overfit each algorithm, and

provide the user with training statistics to aid assessment of

the performance over both the training and test sets (Figure

S4), as well as apply cross fold validation to aim to reduce that

risk. It can be noted from Figure S4 that the RMSE observed

in training is lower for gaussian process models than the other

algorithms, which does suggest some overfitting, although the

performance on the test set is comparable to the algorithm’s

complementary set. In addition, we also recognize there could

be an interesting challenge in creating one emulator that

accurately predicts cellular responses across the time period,

rather than training one for each time-point. Given the insights

that can be gained from temporal sensitivity analyses (Figure

5), building one emulator/ensemble rather than several may

yield further performance benefits.

The generation of rapid predictions of simulator output

facilitated the use of heuristic approaches that sequentially

run, evaluate and adapt parameter inputs to yield a desired set

of simulation outputs. For complex models such as the case

study, traditional Bayesian approaches to generate likelihood

distributions for each parameter become intractable, necessitat-

ing posterior prediction using approximate Bayesian computa-

tion approaches. The generated posterior distribution provides

capacity to sample parameter values from a distribution that

leads to a desired response, rather than fix a single value to

each parameter. Such an approach could see an ensemble used

in place of an original simulator in assessing what kind of

variability might occur within a patient cohort, informing the

statistical design of a trial, or assessing what proportion of

patients may respond favorably to a therapeutic intervention.

It may then be possible to infer summary population char-

acteristics and responses via the outputs of several ensembles

each representing one individual. Here our ABC analysis high-

lighted a high level of uncertainty in the parameter chemokine

expression threshold, suggesting that the parameter is poorly

constrained. The distribution of the parameter adhesion factor

expression was tightly constrained across a narrow range of

values while the distribution for maximum probability was

positively skewed. All three results are consistent with results

from previously published sensitivity analyses that suggested

the influence of each parameter value at this time-point [25],

[10]. In those previous analyses, only a local analysis indicated

the extent to which a parameter could be perturbed before

simulator behavior was significantly changed [10]. However

a local analysis holds all other parameters to a fixed value,
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failing to account for non-linear interactions between a pa-

rameter and it’s complementary set. A posterior distribution

now indicates the range over which each parameter may exist,

taking all other parameters into account.

Through multi-objective optimization we obtained a popula-

tion of parameter configurations that gave rise to a desired sim-

ulator output. In our previous studies we focused on calibrating

the simulator such that the emergent cell behavior properties of

velocity and displacement were consistent with those observed

in the laboratory [25]. The ensemble provides capacity to

address further interesting research questions that may not

have been possible previously. Here we were interested in

determining features of the parameter space that give rise to

those cell behavior responses, while maximizing the area of

the PP that develop. This reveals the optimal trade off between

obtaining a large patch area and decreasing the accuracy of

simulated cell motility. This method is useful in determining

how well a simulation captures each output response, and how

it may be necessary to compromise on the accuracy of some

output responses to improve the accuracy of others. Aside

from calibration, MOEA can be employed evaluate competing

models, with the advantage that it can assess several output

metrics simultaneously, identifying the optimal trade-off in

performance against each [15].

Emulation can provide significant added value to

simulation-focused biomedical research programmes.

Through rapid identification of key mechanisms and

pathways, emulators can inform experiments to quantify

sensitive parameters, and identify sections of the simulator

that are highly influential and may require refinement. In the

presented case study presented, we examined cell behaviors

in ex vivo culture at hour 12 [25]. If an emulation approach

had been used to perform the temporal sensitivity analyses

earlier, this may have directed additional experiments towards

later time-points, where the analyses suggest a switch from

an adhesion driven to chemokine mediated process. The

application of emulation may expedite simulator development

by permitting rapid prototyping and identification of errors in

model design, parameterization, and software infrastructure.

Testing an emulation of a simulator avoids identification

of errors late in the development process that could incur

significant time penalties, especially when running time-

intensive statistical analyses.

V. CONCLUSION

Issues of time and resource limitations incurred in simulator

analysis can be addressed by integrating machine learning

approaches within the process of simulator development, anal-

ysis, refinement, and translation. We illustrate the exploitation

of five machine learning algorithms in developing emulators

that rapidly and accurately replicate intensive statistical analy-

ses performed previously, and through generation of an ensem-

ble permit enriched understanding of behaviors through perfor-

mance of additional analysis routines. An extended software

tool, spartan (https://www.york.ac.uk/ycil/software/spartan/) is

provided capable of expediting the translation of simulator-

derived insights into a better understanding of the design,

organization, dynamics, and function of biological systems.
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