

This is a repository copy of *Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/131833/

Version: Accepted Version

Article:

Wang, X, Cawood, PA, Zhao, H et al. (6 more authors) (2018) Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. Earth and Planetary Science Letters, 496. pp. 159-167. ISSN 1385-013X

https://doi.org/10.1016/j.epsl.2018.05.044

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Mercury anomalies across the end Permian mass extinction in South China from
2	shallow and deep water depositional environments
3	
4	Xiangdong Wang ¹ , Peter A. Cawood ^{2, 3} , He Zhao ¹ , Laishi Zhao ^{1, *} , Stephen E.
5	Grasby ⁴ , Zhong-Qiang Chen ^{5, *} , Paul B. Wignall ⁶ , Zhengyi Lv ¹ , Chen Han ¹
6	¹ State Key Laboratory of Geological Processes and Mineral Resources, China
7	University of Geosciences (Wuhan), Wuhan 430074, China.
8	² Department of Earth, Atmosphere and Environment, Monash University, Victoria
9	3800, Australia
10	³ Department of Earth Sciences, University of St Andrew, KY16 9AL, UK
11	⁴ Geological Survey of Canada, Natural Resources Canada, Calgary, Alberta T2L2A7,
12	Canada
13	⁵ State Key Laboratory of Biogeology and Environmental Geology, China University
14	of Geosciences (Wuhan), Wuhan 430074, China
15	⁶ School of Earth and Environment, University of Leeds, Leeds, UK
16	* Correspondent authors, E-mails: lstab.even.com , zhong.qiang.chen@cug.edu.cn zhong.qiang.chen@cug.edu.cn zhong.qiang.chen@cug.edu.cn zhong.qiang.chen@cug.edu.cn zhong.qiang.chen@cug.edu.cn stab.even.com zhong.qiang.chen@cug.edu.cn
17	Abstract

Life on Earth suffered its greatest bio-crisis since multicellular organisms rose 600 million years ago during the end-Permian mass extinction. Coincidence of the mass extinction with flood basalt eruptions in Siberia is well established, but the exact causal connection between the eruptions and extinction processes in South China is

uncertain due to their wide spatial separation and the absence of direct geochemical 22 evidence linking the two. The concentration and stable isotope analysis of mercury 23 24 provides a way to test these links as its concentration is thought to be tied to igneous activity. Mercury/total organic carbon ratios from three Permian-Triassic boundary 25 sections with a well-resolved extinction record in South China show elevated values 26 (up to 900 ppb/wt. % relative to a background of <100 ppb/wt. %) that exactly 27 coincides with the end-Permian mass extinction horizon. This enrichment does not 28 show any correlation with redox and sedimentation rate variations during that time. 29 Hg isotope mass-independent fractionation (Δ^{199} Hg), with sustained positive values, 30 indicate a predominant atmospheric-derived signature of volcanic Hg in deep-shelf 31 settings of the Daxiakou and Shangsi sections. In contrast, the nearshore environment 32 of the Meishan section displays a negative Δ^{199} Hg signature, interpreted to be related 33 to terrestrial Hg sources. Such temporal differences in Δ^{199} Hg values shed new light 34 on Hg geochemical behavior in marine settings, and also on kill mechanisms 35 36 associated with volcanism that were responsible for biotic mortality at the end of the Permian. 37

38

39 **1. Introduction**

The end-Permian mass extinction (EPME; 252 million years ago) was the most
severe biotic crisis of the Phanerozoic. Most workers agree that intense volcanic
activity of the Siberian Traps Large Igneous Province (STLIP) was a driver of

43	environmental change (Wignall, 2001; Svensen et al., 2009; Sun et al., 2012; Black et
44	al., 2014; Clarkson et al., 2015; Burgess et al., 2017). The STLIP has an estimated
45	volume of up to $3-4 \times 10^6$ km ³ , which is larger than any other continental basalt
46	province, including the Emeishan traps (~ 1×10^{6} km ³), Central Atlantic Magmatic
47	Province (~ 2×10^6 km ³), Karoo and Ferrar traps (~ 2.5×10^6 km ³) and Deccan traps
48	$(2-4 \times 10^6 \text{ km}^3)$ (Courtillot and Renne, 2003, references therein). Its original volume
49	is likely considerably larger as most is buried and inaccessible beneath the younger
50	sediments of the West Siberian Basin (Reichow et al., 2009; Saunders, 2016). Recent
51	high-precision U-Pb dating of STLIP basalts have shown that the onset of eruptions
52	began shortly before the start of the mass extinction crisis (Burgess and Bowring,
53	2015). More recently, Burgess et al. (2017) further categorized the dated volcanic
54	rocks from STLIP into lava- and sill-originated rocks, and found that major transfer
55	from lava to sill eruptions coincided with the main episode of biotic extinction.
56	Although there is a clear temporal correlation between the extinction event and
57	volcanic activity, the precise mechanism that drove the environmental change is
58	unresolved. In recent years, stable isotope systems have been shown to provide
59	important insights into the response of environmental systems to key climatic changes
60	associated with extinction events (Payne et al., 2010; Clarkson et al., 2015; Song et al.,
61	2017; Liu et al., 2017). For example, calcium and boron isotopes were successfully
62	applied to demonstrate ocean acidification triggered by STLIP across the EPME
63	(Payne et al., 2010; Clarkson et al., 2015). But for any isotopic system there are often
64	multiple inputs and outputs that can control the isotopic fractionation process in the

environment. In this paper we attempt to evaluate environmental controls on Hg
associated with the EPME. Hg is a key gas associated with volcanic activity and has
been linked to the end-Permian environmental crisis (Sanei et al., 2012; Grasby et al;
2013, 2017)–a link we aim to assess here using mercury concentrations and isotopes
measured in Permian-Triassic boundary (PTB) sections in South China.

The ratio of mercury concentrations over total organic carbon (Hg/TOC) in 70 sedimentary sections has been shown to provide a proxy for voluminous volcanism 71 (Sanei et al., 2012; Grasby et al., 2013, 2017). Mercury is a highly toxic heavy metal 72 73 and has a sufficiently long atmospheric residence time (>1.5 yr) for global distribution (Blum et al., 2014). Explosive volcanic events inject abundant Hg into the atmosphere 74 ensuring its global reach (Pyle and Mather, 2003). Most volcanic mercury is released 75 as gaseous Hg⁰ and removed from the atmosphere mainly through oxidation to form 76 Hg²⁺, which then accumulates in oceans and on land through rainfall or adsorption 77 onto organic matter ensuring a strong association between Hg and TOC in sediments 78 79 (Gehrke et al., 2009; Ruiz and Tomiyasu, 2015). Hg isotopes can undergo both large mass-dependent fractionations (MDF) and mass-independent fractionations (MIF) in 80 81 nature (Blum et al., 2014), and thus are capable of tracing Hg sources and cycling (Grasby et al., 2017). Hg-MDF (δ^{202} Hg) can result from many pathways, including 82 physical, chemical and biological reactions, whereas Hg-MIF (Δ^{199} Hg) is controlled 83 by more limited pathways (mostly photochemical) and is unlikely to be altered in the 84 post-depositional processes (Blum et al., 2014; Thibodeau et al., 2016; Thibodeau and 85 Bergquist, 2017). Hence, Hg-MIF (Δ^{199} Hg) is generally a more conservative tracer of 86

volcanic signature (Thibodeau and Bergquist, 2017).

88	In recent years, Hg concentrations and isotopes have been used to explore the
89	relationship between large igneous provinces and contemporary mass extinctions
90	(Sanei et al., 2012; Grasby et al; 2013, 2017; Percival et al., 2015, 2017; Sial et al.,
91	2016; Thibodeau et al., 2016; Gong et al., 2017). Anomalous Hg deposition was
92	observed at the EPME crisis in the Sverdrup Basin, Canadian High Arctic that
93	occupied a paleogeographic position near the STLIP (Fig. 1A) (Sanei et al., 2012;
94	Grasby et al., 2013). More recently, Grasby et al. (2017) documented the difference in
95	Hg isotopes near the EPME between Sverdrup Basin at a deep water setting and the
96	shallower water Meishan section in South China. They attributed the negative Δ^{199} Hg
97	values at the EPME in Meishan to terrestrial sources, and suggested that deeper water
98	sections that are isolated from terrestrial input provide better records of the volcanic
99	signature. Therefore, whether or not the signature of Hg enrichments associated with
100	STLIP is recorded in the South China sections is unresolved. We further this work by
101	examining a series of sections in South China covering a range of water depths. We
102	provide new data for two deeper-water sections (200-500m), at Daxiakou and
103	Shangsi in South China, and integrate this with the data from the shallow water
104	Meishan section (Grasby et al., 2017). We measured Hg concentrations and Hg
105	isotopic compositions through the Clarkina changxingensis (C. changxingensis) to
106	Isarcicella isarcica (I. isarcica) conodont zones, to clarify the timing and intensity of
107	the eruption across the PTB and link its relationship with EPME in South China. The
108	varied sedimentary environments in the three sections enable an assessment of the

109 geochemical behaviors of Hg in different water depths and indicated that the effects of110 the STLIP extended to the Chinese sections.

111

112 2. Geological background

The Meishan, Daxiakou, and Shangsi sections are separated by over 1000 km and lie 113 114 along the northern part of South China Craton. During late Permian time, the craton was situated at low latitudes in the eastern Paleo-Tethys (Fig. 1A). The craton was 115 characterized by marine facies in its interior, and bounded by lands to the east and 116 117 west (Fig. 1B). In the central part of the craton, the roughly east-west trending Yangtze carbonate platform is flanked to the north and south by deeper water basins 118 (Feng et al., 1996; Fig. 1B). The three studied sections lie on the flanks of the 119 northern basin and the EPME has been calibrated at the bottom of the C. meishanensis 120 conodont zone, with the PTB was placed at the bottom of the Hindeodus parvus (H. 121 parvus) conodont zone (Jiang et al., 2011; Zhao et al., 2013; Chen et al., 2015). 122 123 The Meishan section, which is located at Meishan Town, Changxing County, Zhejiang Province, lay on the northeastern margin of the Yangtze Platform at a 124 shallow water depth of between 30-60 m based on sedimentary structures indicative 125 of fair-weather wave base and storm wave base (Yin et al., 2001; Chen et al., 2015; 126 Fig. 1B). This section is the Global Stratotype of Point and Section (GSSP) for the 127 PTB (Yin et al., 2001). Biostratigraphy, lithofacies, geochronology, and geochemistry 128 of the Meishan section have been extensively investigated since the 1980's, and have 129

130	been updated by Chen et al. (2015). Herein, the uppermost Permian succession (Beds
131	20-24) consists of bioclastic limestone of the Changxing Formation, whereas the
132	lowest Triassic strata consist of calcareous mudstone and marlstone of the Yinkeng
133	Formation (Beds 25–51) (Chen et al., 2015).
134	The Daxiakou section is situated near the town of Xiakou, Xingshan County,
135	Hubei province. This section was deposited on the northern margin of the South
136	China craton in a relatively deeper-water (~200–500 m) basin setting, as determined
137	by conodont biofacies and deeper-water foraminifera (Zhao et al., 2013; Zhang and
138	Gu, 2015; Fig. 1B). The uppermost Permian succession is dominated by black shale
139	with scattered interbeds of limestone and volcanic tuff of the Dalong Formation,
140	whereas the lowest Triassic sequence is composed of thin-bedded limestone and
141	calcareous mudstone interbeds of volcanic tuff of the Daye Formation. Zhao et al.
142	(2013) established the detailed conodont zonation at Daxiakou, which correlates well
143	with the Meishan section. Li et al. (2016) have also established high-resolution
144	astronomical cycles for the PTB beds in the same section.
145	The Shangsi section, one of the candidate sections for the GSSP of the PTB, is
146	located near Changjianggou village of Shangsi Town, Guangyuan City, Sichuan
147	Province. The Shangsi area lay on the northwestern margin of the South China craton
148	(Fig. 1B). The PTB succession is continuously exposed at this section and has been
149	well studied (Li et al., 1986; Wignall et al., 1995; Riccardi et al., 2007; Jiang et al.,
150	2011; Shen et al., 2011; Xiang et al., 2016). The latest Permian succession is mainly
151	composed of siliceous limestone interbedded with black shale of the Dalong

152	Formation, indicating that it represents a relatively deeper-water setting which is
153	supported by deep-water radiolarian assemblages (~200-500 m) (Jiang et al., 2011;
154	Xiao et al., 2017; Fig. 1B). However, the water-depth gradually started to shallow
155	from the latest Permian (Li et al., 1986). At the EPME, the lithology changed from
156	siliceous limestone to mudstone. The lowest Triassic strata mainly consist of interbeds
157	of marlstone and mudstone of the Feixianguan Formation.

159 **3. Methods**

160 3.1 Mercury concentrations

161	Mercury content was measured using a LECO AMA254 mercury analyzer at the
162	State Key Laboratory of Geological Processes and Mineral Resources (SKLGPMR),
163	China University of Geosciences (CUG-Wuhan). Prior to analysis, all samples were
164	freeze-dried to prevent decomposition of Hg. About 100 mg of mudstone or shale and
165	150–200 mg of limestone were analyzed. Data reliability was ensured by use of
166	international standard 502-685 (0.04 \pm 0.008 ppm), which was analyzed after every
167	12 unknowns then followed by a repeat. The analytic precision is within 5 % and
168	reproducibility of sample concentrations was within 10 %.
169	
170	3.2 Total organic carbon (TOC) measurement
171	TOC content measurement was conducted in the SKLGPMR (CUG, Wuhan) by

a vario macro cube elemental analyzer. About 10 g of powdered sample was put into

173	the 50 mL tube, then 50 % HCl was injected to dissolve carbonate minerals until there
174	was no further bubbling. After multiple centrifugal and lyophilization, the residue was
175	analyzed for total organic carbon (TOC). Data quality was assessed through multiple
176	analyses of standard sample DP-1 (65.44±0.33 %). A standard sample and a repeat
177	were analyzed after every 12 unknowns, yielding an analytical accuracy of 2.5 % of
178	the reported values.

180 3.3 Hg isotopes

181 Hg isotopic compositions of samples from the three sections were analyzed at the Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. Detailed 182 analytical methods and processing procedure follow those described by Grasby et al. 183 184 (2017) and Gong et al. (2017). Approximately 0.5 g of ground sample and ~0.1 g of standard reference materials (GSS-4, soil) were digested (95 °C for 90 min) using 5 185 mL of aqua regia (HCl/HNO3 = 3, v/v). After digestion, the solution was centrifuged 186 (3000 rpm for 10 min) at room temperature and then decanted to obtain the 187 supernatant. Before conducting Hg isotope analysis, the digested sample solutions 188 were diluted to 2 and 1 ng mL⁻¹ using Milli-O water based on total Hg values. All the 189 acid concentrations of the diluted solutions were < 20 %. Similarly, NIST SRM 3133 190 and 3177 Hg standard solutions with Hg concentrations of 2 and 1ng mL⁻¹ were also 191 prepared. 192 Isotopic values were measured using a Neptune MC-ICP-MS with high 193

194 sensitivity X skimmer cone. NIST SRM 997 Tl was the internal standard used for

simultaneous instrumental mass bias correction of Hg. SnCl₂ (4 ng mL⁻¹) was used to 195 generate elemental Hg⁽⁰⁾ before being introduced into the plasma. The stability of the 196 197 instrument and measurement precision were monitored using NIST SRM 3133 and 3177 Hg standard solutions, respectively. Sample-standard bracketing was based on 198 NIST 3133. Digest recovery of the samples was monitored by MC-ICP-MS using 199 202 Hg signals. The sensitivity for 202 Hg during Hg isotope analysis was ~1.2 V per ng 200 mL⁻¹ Hg. 201 Hg isotopic variations are reported in δ^{202} Hg notation in units of per mil (‰) 202 referenced to the NIST-3133 Hg standard (once every 3 samples): 203 204 δ^{202} Hg (‰)= [(²⁰²Hg/¹⁹⁸Hg_{sample})/(²⁰²Hg/¹⁹⁸Hg_{standard}) -1]×1000 205 (1) 206 Mass independent fractionation (MIF) of Hg isotopes is expressed in Δ notation 207 $(\Delta^{xxx}Hg)$, which describes the difference between the measured $\delta^{xxx}Hg$ and the 208 theoretically predicted δ^{xxx} Hg value, using the following equations: 209 210 $\Delta^{199} \text{Hg} \approx \delta^{199} \text{Hg} - (\delta^{202} \text{Hg} \times 0.2520)$ 211 (2) $\Delta^{200} \text{Hg} \approx \delta^{200} \text{Hg} - (\delta^{202} \text{Hg} \times 0.5024)$ 212 (3) $\Delta^{201} \text{Hg} \approx \delta^{201} \text{Hg} - (\delta^{202} \text{Hg} \times 0.7520)$ 213 (4) 214 Replicate analysis of the NIST 3177 Hg intra lab isotope reference standard (n = 4215 analytical sessions) were as follows: δ^{202} Hg = -0.42 ± 0.06‰ (2 sd); Δ^{199} Hg = -0.04 ± 216

217 0.02‰ (2 sd);
$$\Delta^{200}$$
Hg = 0.01 ± 0.04‰ (2 sd); Δ^{201} Hg = 0.01 ± 0.04‰ (2 sd).

The complete data set of Hg, TOC, Hg/TOC and Hg isotopes values can be obtained in Online Supplementary Tables S1, S2, S3.

220

221 **4. Results**

4.1 TOC contents

223	In the Meishan section, TOC concentrations vary from 0.06 to 1.56 wt. %, and
224	have relatively higher values (~1 wt. %) at the bottom of Bed 22 and Beds 24–26,
225	44–49 (Fig. 2). Through the Daxiakou section, TOC concentrations range from 0.04 to
226	3.99 wt. %. The latest Permian rocks of Dalong Formation show very high TOC
227	concentrations (~4.0 wt. %; Fig. 3). While the earliest Triassic Daye Formation
228	display low TOC concentrations, almost all less than 1 wt. %. In the Shangsi section,
229	the TOC concentrations vary from 0.03 to 2.82 wt. %. The higher TOC values (~1
230	wt. %) occurs the bottom of Bed 22 of the Dalong Formation and Beds 30-33 in Daye
231	Formation (Fig. 4). In other horizons, TOC has lower values (mostly less than 0.4
232	wt. %).
233	
234	4.2 Hg and Hg/TOC variations
235	The Meishan, Daxiakou and Shangsi sections all record high Hg concentrations
236	and a short-lived positive excursion in Hg/TOC values coincident with the EPME. Hg

concentrations are directly tied to TOC contents (Grasby et al., 2013), and this is

238	demonstrated by the covariant relationship between TOC and Hg concentrations of
239	the studied sections where Daxiakou and Shangsi have the highest Hg values in the
240	late Permian along with anomalously high TOC contents (Figs. 2, 3, 4).
241	In the Meishan section, the highest Hg values (up to 176 ppb) occur at the top of
242	Bed 24 and in Beds 25–26. High values also occur at the bottom of Bed 22 and Beds
243	44–49. TOC values are high in these layers, indicating the Hg concentrations are
244	probable driven by lithologically controlled changes in organic matter content.
245	Compared to Hg concentrations, positive excursions in Hg/TOC are only observed in
246	the uppermost parts of Bed 24 and Bed 25, corresponding to the EPME (Fig. 2). In the
247	Daxiakou section, the uppermost Dalong Formation (Bed 9), in the C. meishanensis
248	conodont zone, corresponds to Bed 25 in the Meishan section and records high values
249	in Hg concentrations (~300 ppb) and a positive excursion in Hg/TOC ratios (Fig. 3).
250	High Hg concentrations are also present through the upper Permian of the Dalong
251	Formation, although in these layers there is no Hg/TOC excursion (Fig. 3). This may
252	imply that the high Hg contents are due to high levels of TOC in the shale. Similar to
253	TOC, high Hg concentrations also occur at the bottom of Bed 22 and Beds 30-33 in
254	the Shangsi section (Fig. 4), except near the EPME where high Hg values (~100 ppb)
255	were recorded, whereas TOC contents are relatively low. A Hg/TOC excursion was
256	only recorded near the EPME.

4.3 Hg isotope compositions of the study sections

259 The Hg isotope values of the Meishan, Daxiakou and Shangsi sections are

shown in figures 2, 3, and 4, respectively, and analytical results are also provided inOnline Supplementary Tables S1, S2, and S3.

262	MDF (δ^{202} Hg) at Meishan ranges from -2.3 ‰ to -0.58 ‰, and MIF (Δ^{199} Hg)
263	varies from -0.12 $\%$ to 2.0 $\%$. They both show negative shifts at the EPME (to -1.74 $\%$
264	in δ^{202} Hg and -0.12 ‰ in Δ^{199} Hg; Fig. 2). MDF (δ^{202} Hg) also shows similar negative
265	values above and below the EPME. MDF (δ^{202} Hg) values at Daxiakou are negative
266	and vary from -1.78 $\%$ to -0.49 $\%$. The values rise below the EPME (to -0.49 $\%$) and
267	decline above it (Fig. 3). MIF (Δ^{199} Hg) values vary through the section, from -0.02 ‰
268	to 0.27 ‰. For uppermost Permian samples, Δ^{199} Hg values are relatively high and
269	have an average of 0.18 ‰. The high values continue through the EPME and drop
270	below 1.0 ‰ in the earliest Triassic. Overall, Δ^{199} Hg values at Daxiakou display
271	positive values with no significant change across the EPME (Fig. 3). At the Shangsi
272	section, MDF (δ^{202} Hg) and MIF (Δ^{199} Hg) values range from -2.26 ‰ to -0.58 ‰, and
273	-0.01 ‰ to 0.21 ‰, respectively. The Δ^{199} Hg values are similar to those at Daxiakou,
274	with high values in uppermost Permian samples and lower values in the earliest
275	Triassic, and also show sustained positive values across the EPME (Fig. 4). The main
276	difference between these two sections is that greater MDF (δ^{202} Hg) and MIF (Δ^{199} Hg)
277	levels are reached at the EPME in Daxiakou. The maximum δ^{202} Hg and Δ^{199} Hg at the
278	EPME in the Shangsi section are -0.75 $\%$ and 0.11 $\%$, respectively, whereas the
279	maximum values at Daxiakou are -0.49 ‰ and 0.15 ‰.

5. Discussion

282 5.1 Cause of the Hg and Hg/TOC anomalies

283	High Hg concentrations and elevated Hg/TOC values are all recorded across the
284	EPME in the studies of the Meishan, Daxiakou and Shangsi sections. Background Hg
285	concentrations are directly tied to marine organic matter (OM) deposition rates. For
286	example, high Hg values are observed at the bottom of Bed 22, and Beds 44-49 in
287	Meishan, through the upper Permian Dalong Formation at Daxiakou, and at the
288	bottom of Bed 22 and Beds 30-33 at Shangsi, and all are associated with high TOC
289	contents in shale or siliceous limestone. A constant and low Hg/TOC ratio is a
290	common feature of background marine conditions (Grasby et al., 2013, 2017). Our
291	results also show a pronounced increase in Hg/TOC values coincident with the
292	extinction interval (Figs. 2–5).
293	The role of lithology, sedimentation rate, and marine anoxia on Hg/TOC values
294	must all be considered to explain these shifts, because all are known to vary in the
295	studied sections. Lithologic variations are pronounced near the EPME and include
296	bioclastic limestone, mudstone, shale and volcanic ash beds, but there is no
297	relationship to the Hg/TOC changes. Within the C. meishanensis conodont zone at
298	Daxiakou for example, constant high Hg/TOC values were recorded in different
299	lithologic samples, including volcanic ash, shale, mudstone and limestone. In addition
300	to lithology, if the atmospheric mercury level is constant, a reduced sedimentation rate
301	may result in elevated Hg concentrations (Percival et al, 2015). This affect can be
302	accounted for by comparison with TOC concentrations, as these would also covary

303	with sedimentation rates (e.g. dilution effects). Using a recently-devised
304	cyclostratigraphic scheme (Li et al., 2016), sedimentation rates in the Meishan and
305	Daxiakou sections do indeed vary substantially (Fig. 2, 3). This reveals though that
306	there is no clear correlation between Hg/TOC values and sedimentation rate. Marine
307	anoxia was also widespread during the PTB transition, and its intensity varied
308	considerably. The PTB transition saw the temporary establishment of oxic/weakly
309	dysoxic conditions in Meishan (Chen et al., 2015) whereas the deeper-water Shangsi
310	and Daxiakou sections saw more oxygen-restricted conditions (Xiang et al., 2016;
311	Shen et al., 2016). The Hg/TOC fluctuations are not influenced by these oxygenation
312	trends, the highest values only occur at the EPME (Beds 27) in Shangsi (Fig. 4),
313	indicating that redox conditions have no significant control.
314	The Hg isotopic compositions can help to trace the origin and the pathways of
315	the observed Hg and Hg/TOC excursions (Thibodeau et al., 2016; Grasby et al., 2017;
316	Gong et al.,2017). Volcanic Hg has δ^{202} Hg values between -2.0 ‰ and 0 ‰, and has
317	insignificant MIF (Δ^{199} Hg ≈ 0 ‰) (Zambardi et al., 2009; Yin et al., 2016; Grasby et
318	al., 2017; Thibodeau and Bergquist, 2017). Once emitted to the environment, MDF
319	$(\delta^{202}$ Hg) can result in indistinguishable signatures from many pathways, including
320	hydrothermal reactions, sorption/deposition, organic matter burial and diagenesis
321	(Blum et al., 2014; Thibodeau et al., 2016; Grasby et al., 2017). In contrast, MIF
322	$(\Delta^{199}$ Hg) mostly occurs through photochemical reduction, such as in aqueous droplets
323	and surface waters, resulting in positive Δ^{199} Hg values (Bergquist and Blum, 2007;
324	Blum et al., 2014). Aquatic environments can receive Hg through atmospheric Hg^{2+}

325	deposition and direct uptake of $Hg^{0}_{(g)}$ by terrestrial sources (Thibodeau and Bergquist,
326	2017). Thus, marine sediments dominated by atmospheric Hg^{2+} deposition tend to
327	have positive Δ^{199} Hg because of the photo reduction in the surface environments
328	(Grasby et al., 2017; Thibodeau and Bergquist, 2017). However, sediments that
329	received $Hg^{0}_{(g)}$ through terrestrial runoff tend to have greater negative $\delta^{202}Hg$ and
330	Δ^{199} Hg than atmospheric Hg ⁰ _(g) , and terrestrial resources acquire negative δ^{202} Hg and
331	Δ^{199} Hg values when plants and soils sequestrate Hg ⁰ _(g) (Thibodeau and Bergquist,
332	2017). In our study, the two relatively deeper water sections, Daxiakou and Shangsi,
333	both recorded higher Hg/TOC values and sustained positive Δ^{199} Hg values at the
334	EPME (Fig. 3, 4). This finding is consistent with the data of coeval Buchanan lake
335	sediments (deep water facies) that show positive Δ^{199} Hg values with no significant
336	change across the EPME despite a large Hg spike (Grasby et al., 2017). The
337	excursions in Hg/TOC indicate that increased Hg flux was imported to the oceans at
338	that time. Meanwhile, the positive Δ^{199} Hg values indicate sediments in these deep
339	water sections received Hg primarily through atmospheric Hg deposition, instead of
340	terrestrial runoff. Thus, the observed Hg peaks are due to enhanced flux of Hg from
341	atmosphere consistent with enhanced atmospheric content. The best way to explain
342	this is that enhanced volcanic activity injected massive quantities of Hg into the
343	atmosphere and increased the global atmospheric Hg level.
344	

5.2 Variations of Hg/TOC values and Hg isotopic compositions in different waterdepths

347	The Meishan, Daxiakou and Shangsi sections all showed short-duration, albeit
348	variable, positive excursions, in Hg/TOC across the EPME (Figs. 2–5). The maximum
349	Hg/TOC at Meishan, Shangsi and Daxiakou are 926 ppb/wt. %, 553 ppb/wt. %, and
350	254 ppb/wt. %, respectively. The prominent negative shifts of $\delta^{202} Hg$ and $\Delta^{199} Hg$
351	values at the EPME horizon in the Meishan section (Fig. 5), which is a clastic
352	sediment-starved carbonate platform setting, indicate that enhanced Hg influx from
353	terrestrial sources could be imported to oceans and overwhelmed the volcanic
354	signature from the Siberian Traps (Grasby et al., 2017). It is possible that most of Hg
355	coming from the terrestrial source might have also been derived from the STLIP and
356	this is indicated by the similar Hg/TOC baselines of the studied sections. The larger
357	spike at Meishan suggests a focusing of the volcanic Hg via the terrestrial ecosystems
358	to marine deposition above that of direct atmospheric inputs. Similarly, highest
359	Hg/TOC excursions were also noted in terrestrial and coastal sections by Percival et al.
360	(2015, 2017) who have reported Hg anomalies in several different sedimentary
361	records that span Pliensbachian-Toarcian transition and end-Triassic mass extinction.
362	For example, the Pliensbachian-Toarcian transition at Bornholm, Danish Basin, which
363	preserves a fluvial to marginal marine setting, shows greatest its Hg/TOC excursion
364	during the Toarcian Oceanic anoxic events. The end-Triassic record from a
365	fluvial-deltaic section of Astartekløft, Greenland, also shows its greatest Hg/TOC
366	excursion during the end-Triassic mass extinction interval. These suggest that the
367	different values in Hg/TOC at the EPME recorded in our studied sections are not due
368	to slightly different sampling resolution at the sites (e.g., lower resolution at

369 Daxiakou), rather they show that coastal/terrestrial sediments include additional370 terrestrial Hg relative to deeper sections.

371	The Daxiakou and Shangsi sections both represent deeper water depositional
372	environments (~200–500 m) (Jiang et al., 2011; Zhao et al., 2013; Zhang and Gu,
373	2015; Xiao et al., 2017). At the EPME, the Daxiakou section is inferred to have been
374	at a greater water depth than the Shangsi section, based on its overall finer grain-size
375	of the sediment. The Δ^{199} Hg values of Daxiakou at the EPME have greater positive
376	values than those from Shangsi (Fig. 5), consistent with the Daxiakou section being
377	least affected by terrestrial Hg. The positive Δ^{199} Hg values at the EPME in the
378	Daxiakou and Shangsi sections are consistent with those observed in modern
379	sediments that receive insignificant terrestrial runoff (Thibodeau and Bergquist, 2017,
380	references therein), as well as those obtained from deeper water section across the
381	Cretaceous-Paleogene transition (Bajada del Jagüel section, Sial et al., 2016).
382	Conversely, no significant Hg-MIF (Δ^{199} Hg ≈ 0 ‰) signature with Hg enrichments
383	that was associated with an overloading of volcanic Hg from the Central Atlantic
384	Magmatic Province, was observed during end-Triassic mass extinction in a shallow
385	shelf sediments at Muller Canyon, Nevada (USA), indicating that the sediments
386	received volcanic Hg through both atmosphere Hg^{2+} deposition and terrestrial runoff,
387	and the Hg-MIF signatures were overwhelmed (Thibodeau et al., 2016; Thibodeau
388	and Bergquist, 2017).
389	In summary, sediments receive variable proportions of their Hg from direct
390	atmospheric and terrestrial inputs. It is likely that Hg, including Hg/TOC and Hg

391	isotopes in shallow water sections are more sensitive to terrestrial signals, such as the
392	portion of Hg entering from the atmosphere to land systems and ancient Hg
393	originating from eroding rocks. In contrast, deep water sections better record the
394	timing and strength of eruptions in the geological record because of their more precise
395	sensitivity to Hg atmospheric perturbations unmediated by the terrestrial realm
396	(Grasby et al., 2017; Thibodeau and Bergquist, 2017).
397	
398	5.3 Causal links between biotic extinction and STLIP
399	The STLIP is recognized as the largest continental basalt province (Dobretsov et
400	al., 2008). The preserved area of the province is of the order of 2.5 million km^2 and a
401	working estimate for the total volume of eruptives and shallow-level intrusions is 3-4
402	million km ³ (Fedorenko et al., 2000). The coincidence of the STLIP with the EPME
403	(Wignall, 2001; Courtillot and Renne, 2003; Burgess and Bowing, 2015), suggests a
404	link between the two events. Release of volcanic CO_2 and thermogenic methane
405	through magma emplacement into the West Siberian Tunguska basin, which is
406	composed of a thick succession of evaporite, clastic, carbonate, and
407	hydrocarbon-bearing rocks, is thought to have triggered strong climatic warming and
408	ocean acidification (Svensen et al., 2009; Sun et al., 2012; Black et al., 2014;
409	Clarkson et al., 2015), as evidenced 3 to 4 ‰ negative shift in C-isotopic records
410	coincident with the EPME horizon (Fig. 5).
411	Siberian Traps magmatic activity is divided into three stages based on
412	high-precision U-Pb dates: early extrusion (252.24–251.907 Ma; ~C.

413	changxingenss-C. yini conodont zones), characterized by initial pyroclastic eruptions
414	followed by lava effusion, then medium-term sill intrusion (251.907–251.483 Ma; ~ C.
415	meishanensis-lower I. isarcica conodont zones), and terminal stage (lasting until at
416	least 251.354 Ma; above the lower I. isarcica conodont zone), marked by initial lava
417	extrusion after a ~420 ka hiatus and then sill intrusion (Burgess and Bowring, 2015;
418	Burgess et al., 2017). This implies that STLIP involved three or more original magma
419	pulses. Burgess et al. (2017) showed that the initial pulse of Siberian Traps sills
420	following the initial extrusive pyroclastics and lava, coincided with the onset of
421	EPME and an abrupt negative C isotope shift. Hg enrichment also occurs at that
422	horizon (this study; Sanei et al., 2012; Grasby et al., 2013; 2017). This suggests that a
423	large volume of Hg was released into the atmosphere at the time of initial sill
424	intrusion. Most of the sills are exposed at the periphery of exposures of lavas and
425	volcaniclastic rocks, and are up to 1200 m thick (Svensen et al., 2009; Burgess and
426	Bowring, 2015). Compared to the pyroclastic lava, the sills take up a much larger area
427	and volume (Vasiliev et al., 2000; Burgess and Bowring, 2015). Total sill volume in
428	the STLIP is difficult to constrain but has been conservatively estimated in excess of 2
429	\times 10 ⁶ km ³ (Vasiliev et al., 2000), which maybe exceed 50 % of the STLIP's total
430	volume. Such massive sills provided extensive horizontal and vertical magmatic
431	channels and diatremes, by which volatiles are delivered to the atmosphere (Svensen
432	et al., 2009; Burgess et al., 2017). As a heat sensitive element, the major proportion of
433	Hg in sedimentary rocks is released if the temperature exceeds 340 $^{\circ}$ C (Sial et al.,
434	2013). Therefore, during the early intrusion stage, massive gas Hg^0 would be

435	produced by interaction between the magma and country rocks and easily released to
436	the atmosphere through magmatic vents (Burgess et al., 2017). The Hg content of
437	mantle material is 0.01 μ g/g (McDonough, 2003). Using a density of basic rock of
438	2.8×10^3 kg/m ³ , total Hg released from 2×10^6 km ³ sills would be 5.6×10^9 Mg. A
439	similar estimated value of 3.8×10^9 Mg was given by Sanei et al. (2012). In addition,
440	heating of sediments over the large area encompassed by the sill complex could
441	provide additional Hg release, the estimated quantity of which is about 1.75×10^5 Mg
442	(Sanei et al., 2012). If most of the 2×10^6 km ³ sills intruded during 251.907–251.483
443	Ma, then 13000 Mg yr ⁻¹ volcanic Hg would be released to the atmosphere during that
444	time, which is ~5.6 times current anthropogenic emissions of ~2320 Mg yr ⁻¹ and is
445	~144.4 times modern volcanic emissions of ~90 Mg yr ⁻¹ (Pirrone et al., 2010; Sial et
446	al., 2013). The general elevation of Hg/TOC values in the C. meishanensis-lower I.
447	isarcica conodont zones, marked by green on figure 5, corresponds with the high rate
448	of Hg emission during the Siberian sill emplacement. Furthermore, the highest values
449	at the EPME correspond to the strongest release. Depending on the high rate of
450	emission, the enhanced Hg release at the EPME horizon may have temporarily
451	exceeded the capacity of organic matter to fix Hg resulting in its buildup in ocean
452	water to toxic levels (Sanei et al., 2015).
453	Other than a direct link by poisoning, most extinction scenarios invoke a
454	volcanism-extinction nexus caused by the subsequent effects of CO ₂ release and rapid
455	global warming (Sun et al., 2012), which include ocean anoxia, acidification, and the
456	direct consequences of warming. Such effects are longer term than direct Hg

poisoning which, if significant, is likely to have occurred on a timescale of decades to 457 centuries because of the short residence time of this element in the ocean-atmosphere 458 459 system. Carbon dioxide-driven global warming is a longer term effect (centuries, millennia) because of the longer residence time in the Earth surface system (Wignall, 460 2001). Nonetheless, our data show a tight coincidence between the onset of extinction 461 in South China and Hg enrichment. Any lead in time between the onset of STLIP 462 volcanism and the environmental consequences was below the temporal resolution of 463 our study. Phrased another way, the devastation caused by the onset of Siberian Trap 464 465 sill emplacement was geologically instantaneous.

466 **6.** Conclusions

Three sections across the end-Permian mass extinction at Meishan, Daxiakou, 467 and Shangsi in South China all record high Hg concentrations and a short-lived 468 positive excursion in Hg/TOC values. Hg isotopes with positive values (Δ^{199} Hg) and 469 limited variability in the Daxiakou and Shangsi sections indicate a predominant 470 atmospheric-derived Hg signature from STLIP, whereas in the Meishan section, 471 δ^{202} Hg and Δ^{199} Hg both display negative shifts, indicating a significant proportion of 472 terrestrial sources (Grasby et al., 2017). Our data indicate that Hg, including Hg/TOC 473 and Hg isotopes, show different geochemical behavior at different water depths. For 474 Meishan, a clastic sediment-starved carbonate platform setting, enhanced Hg influx 475 from terrestrial sources could be imported to the marine setting and overwhelmed the 476 volcanic signature from Siberian Traps. At the deeper water marine sections, at 477

478	Daxiakou and Shangsi, a lower terrestrial signature was recorded. Although more
479	studies are undoubtedly needed on the geochemical behavior of Hg in different
480	sedimentary facies, our finding suggests that deep water marine facies can more
481	directly record the atmospheric-derived Hg signature from volcanism than near shore
482	shallow marine environments where signals are mediated to a greater extent by
483	terrestrial ecosystems via continental run off. Furthermore, our study demonstrates
484	that the effects of the STLIP extended to the Chinese sections, and clarifies the
485	relationship between Siberian eruptions and the EPME in South China.
486	
487	Acknowledgments
488	We are grateful to journal editor Prof. Tamsin Mather and two anonymous reviewers
489	for their comments and constructive suggestions, to Xinbin Feng and Guangyi Sun for
490	their help with stable Hg isotopes analysis, and to L. Zhang, Y. Li, Q. Gong, F.H. Ye,
491	and S.J. Liu for their assistance during the experimental studies. This study is
492	supported by three NSFC (National Natural Science Foundation of China) grants (No.
493	41673011,41473006 to LSZ and No. 41572091 to ZQC), a State Key Laboratory of
494	GPMR research grant (GPMR 201804 and MSFGPMR), and the Fundamental
495	Research Funds for the Central Universities, China University of Geosciences
496	(Wuhan) (CUGQYZX1728). Peter A. Cawood acknowledges support from Australian
497	Research Council grant FL160100168. This paper is a contribution to IGCP 630.
498	

501	References
502	Bergquist, B.A., Blum, J.D., 2007. Mass-dependent and -independent fractionation of
503	Hg isotopes by photoreduction in aquatic systems. Science 318, 417–420.
504	Black, B.A., Lamarque, A.F., Shields, C.A., Elkins-Tanton, L.T., Kiehl, J.T., 2014.
505	Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology
506	42, 67–70.
507	Blum, J.D., Sherman, L.S., Johnson, M.W., 2014. Mercury isotopes in earth and
508	environmental sciences. Annu. Rev. Earth Planet. Sci. Lett. 42, 249-269.
509	Burgess, S.D., Bowring, S.A., Shen, S.Z., 2014. High-precision timeline for Earth's
510	most severe extinction. Proc. Natl. Acad. Sci. U. S. A. 111, 3316–3321.
511	Burgess, S.D., and Bowring, S.A., 2015. High-precision geochronology confirms
512	voluminous magmatism before, during, and after Earth's most severe extinction.
513	Sci. Adv. 1: 1500470e.
514	Burgess, S.D., Muirhead, J.D., Bowring, S.A., 2017. Initial pulse of Siberian Traps
515	sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164.
516	Chen, Z.Q., Yang, H., Luo, M., Benton, M.J., Kaiho, K., Zhao, L.S., Huang, Y.G.,
517	Zhang, K.X., Fang, Y.H., Jiang, H.S., Qiu, H., Li, Y., Tu, C.Y., Shi, L., Zhang, L.,
518	Feng, X.Q., Chen, L., 2015. Complete biotic and sedimentary records of the
519	Permian–Triassic transition from Meishan section, South China: ecologically
520	assessing mass extinction and its aftermath. Earth-Sci. Rev. 149, 67–107.
521	Clarkson, M.O., Kasemann, S.A., Wood, R.A., Lenton, T.M., Daines, S.J., Richoz, S.,

522	Ohnemueller, F., Meixner, A., Poulton, S.W., Tipper, E.T., 2015. Ocean
523	acidification and the Permo-Triassic mass extinction. Science34 8, 229–232.
524	Courtillot, V.E., Renne, P.R., 2003. On the ages of flood basalt events. C. R.
525	Geoscience 335, 113–140.
526	Dobretsov, N.L., Kirdyashkin, A.A., Kirdyashkin, A.G., Vernikovsky, V.A., Gladkov,
527	I.N., 2008. Modelling of thermochemical plumes and implications for the origin
528	of the Siberian traps. Lithos 100, 66–92.
529	Feng, Z., Yang, Y., Jin, Z., He, Y., Wu, S., Xin, W., Bao, Z., Tan, J., 1996.
530	Lithofacies paleogeography of the Permian of South China. Acta
531	Sedimentologica Sinica 14, 1–11.
532	Fedorenko, V., Czamanske, G., Zen'ko, T., Budahn, J., Siems, D., 2000. Field and
533	geochemical studies of the melilite-bearing Arydzhangsky Suite, and an overall
534	perspective on the Siberian alkaline-ultramafic flood volcanic rocks. Int. Geol.
535	Rev. 42, 769–804.
536	Grasby, S.E., Sanei, H., Beauchamp, B., Chen, Z.H., 2013. Mercury deposition
537	through the Permo–Triassic biotic crisis. Chem. Geol. 351, 209–216.
538	Grasby, S.E., Shen, W.J., Yin, R.S., Gleason, G.D., Blum, J.D., Lepak, R.F., Hurley,
539	J.P., Beauchamp, B., 2017. Isotopic signatures of mercury contamination in latest
540	Permian Oceans. Geology 45, 55–58.
541	Gehrke, G.E., Blum, J.D., Meyers, P.A., 2009. The geochemical behaviour and
542	isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel.
543	Geochim. Cosmochim. Acta 73, 1651–1665.

544	Jiang, H.S., Lai, X.L., Yan, C.B., Aldridge, R.J., Wignall, P., Sun, Y.D., 2011. Revised
545	conodont zonation and conodont evolution across the Permian-Triassic boundary
546	at the Shangsi section, Guangyuan, Sichuan, South China. Global and Planetary
547	Change 77, 103–115.
548	Li, Z.S., Zhan, L.P., Zhu, X.F., Zhang, J.H., Jin, R.G., Liu, G.F., Sheng, H.B., Shen,
549	G.M., Dai, J.Y., Huang, H.Q., Xie, L.C., Yan, Z., 1986. Mass extinction and
550	geological events between Palaeozoic and Mesozoic era. Acta geological sinica
551	60, 1–15 (in Chinese with English abstract).
552	Li, M.S., Ogg, J., Zhang, Z., Huang, C.J., Hinnov, L., Chen, Z.Q., Zou, Z.Y., 2016.
553	Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch
554	of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25.
555	Liu, S.A., Wu, H.C., Shen, S.Z., Jiang, G.Q., Zhang, S.H., Lv, Y.W., Zhang, H., Li,
556	S.G., 2017. Zinc isotope evidence for intensive magmatism immediately before
557	the end-Permian mass extinction. Geology 45, 343–346.
558	McDonough, W. F., 2003. Compositional model for the Earth's core. Treatise on
559	geochemistry 2, 568.
560	Payne, J.L., Turchyn, A.V., Paytan, A., DePaolo, D.J., Lehrmann, D.J., Yu, M.Y., Wei,
561	2010. J.Y., Calcium isotope constraints on the end-Permian mass extinctions.
562	PNAS 107, 8543–8548.
563	Percival, L.M.E., Witt, M.L.I., Mather, T.A., Hermoso, M., Jenkyns, H.C., Hesselbo,
564	S.P., Al-Suwaidi, A.H., Storm, M.S., Xu, W., Ruhl, M., 2015. Globally enhanced
565	mercury deposition during the end-Pliensbachian extinction and Toarcian OAE:

- A link to the Karoo–Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428,
 267–280.
- 568 Percival, L.M.E., Ruhl, M., Hesselbo, S.P., Jenkyns, H.C., Mather, T.A., Whiteside,
- 569 J.H., 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass
- 570 extinction. Proc. Natl. Acad. Sci. U. S. A. 114, 7929–7934.
- 571 Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason,
- 572 R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., 2010. Global
- 573 mercury emissions to the atmosphere from anthropogenic and natural sources.
- 574 Atmos. Chem. Phys. Discuss. 10, 4719–4752.
- 575 Pyle, D.M., Mather, T.A., 2003. The importance of volcanic emissions for the global
 576 atmospheric mercury cycle. Atmos. Environ. 37, 5115–5124
- 577 Gong, Q., Wang, X.D., Zhao, L.S., Grasby, S.E., Chen, Z.Q., Zhang, L., Li, Y., Cao,
- 578 L., Li, Z.H., 2017. Mercury spikes suggest volcanic driver of the
- 579 Ordovician-Silurian mass extinction. Sci.Rep. 7, 5304.
- 580 Reichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., Allen, M.B., Andreichev, V.L.,
- 581 Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev,
- 582 A.Y., Mitchell, C., Puchkov, V.N., Safonova, I.Y., Scott, I.A., Saunders, A.D.,
- 583 2009. The timing and extent of the eruption of the Siberian Traps large igneous
- 584 province: Implications for the end-Permian environmental crisis. Earth Planet.
- 585 Sci. Lett. 277, 9–20.
- 586 Riccardi, A., L Kump, R., Arthur, M.A., D'Hondt, S., 2007. Carbon isotopic evidence
- 587 for chemocline upward excursions during the end-Permian event. Palaeogeogr.

- 588 Palaeoclimatol. Palaeoecol. 248, 73–81.
- 589 Ruiz, W.L.G., and Tomiyasu, T., 2015. Distribution of mercury in sediments from
- 590 Kagoshima Bay, Japan, and its relationship with physical and chemical factors.
- 591 Environ. Earth Sci. 74, 1175–1188.
- Sanei, H., Grasby, S.E., Beauchamp, B., 2012. Latest Permian mercury anomalies.
- 593 Geology 40, 63–66.
- Sanei, H., Grasby, S.E., Beauchamp, B., 2015. Contaminants in marine sedimentary
- deposits from coal fly ash during the latest Permian extinction. Develop.
- 596 Paleoenviron. Res. 18, 89–99.
- 597 Saunders, A.D., 2016. Two LIPs and two Earth-system crises: the impact of the North
- Atlantic Igneous Province and the Siberian Traps on the Earth-surface carboncycle. Geol. Mag. 153, 201–222.
- 600 Sial, A.N., Lacerda, L.D., Ferreira, V.P., Frei, R., Marquillas, R.A., Barbosa, J.A.,
- 601 Gaucher, C., Windmöller, C.C., Pereira, N.S., 2013. Mercury as a proxy for

602 volcanic activity during extreme environmental turnover: The

- 603 Cretaceous–Paleogene transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 387,
 604 153–164.
- Sial, A.N., Chen, J.B., Lacerda, L.D., Frei, R., Tewari, V.C., Pandit, M.K., Gaucher,
- 606 C., Ferreira, V.P., Cirilli, S., Peralta, S., Korte, C., Barbosa, J.A., Pereira, N.S.,
- 2016. Mercury enrichment and Hg isotopes in CretaceousePaleogene boundary
- successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous
- 609 Res. 66, 60–81.

610	Shen, S.Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao,
611	C.Q., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y.N.,
612	Wang, X.D., Wang, W., Wu, L., Li, W.Z., Tang, Y.G., Liu, X.L., Liu, L.J., Zeng,
613	Y., Jin, Y.G., 2011, Calibrating the end-Permian mass extinction. Science 334,
614	1367–1372.
615	Shen, J., Feng, Q.L., Algeo, T.J., Li, C., Planavsky, N.J., Zhou, L., Zhang, M.L., 2016.
616	Two pulses of oceanic environmental disturbance during the Permian–Triassic
617	boundary crisis. Earth Planet. Sci. Lett. 443, 139–152.
618	Song, H.Y., Song, H.J., Algeo, T.J., Tong, J.N., Romaniello, S.R., Zhu, Y.Y., Chu,
619	D.L., Gong, Y.M., Anbar, A.D., 2017. Uranium and carbon isotopes document
620	global-ocean redoxproductivity relationships linked to cooling during the
621	Frasnian- Famennian mass extinction. Geology 45, 887–890.
622	Sun, Y.D., Joachimski, M.M., Wignall, P.B., Yan, C.B., Chen, Y.L., Jiang, H.S.,
623	Wang, L.N., Lai, X.L., 2012. Lethally Hot Temperatures during the Early
624	Triassic Greenhouse. Science 338, 366-370.
625	Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov,
626	H.H., Jamtveit, B., 2009. Siberian gas venting and the end-Permian
627	environmental crisis. Earth Planet. Sci. Lett. 277, 490–500.
628	Thibodeau, A.M., Ritterbush, K., Yager, J.A., West, A.J., Ibarra, Y., Bottjer, D.J.,
629	Berelson, W.M., Bergquist, B.A., Corsetti, F.A., 2016. Mercury anomalies and
630	the timing of biotic recovery following the end-Triassic mass extinction. Nat.
631	Commun. 7, 11147.

632	Thibodeau, A.M., Bergquist, B.A., 2017. Do mercury isotopes record the signature of
633	massive volcanism in marine sedimentary records. Geology 45, 96–96.
634	Vasiliev, Y.R., Zolotukhin, V.V., Feoktistov, G.D., Prusskaya, S. N., 2000.
635	Evaluation of the volumes and genesis of the Permo-Triassic trap magmatism on
636	the Siberian platform. Russ. Geol. Geophys 41, 1696–1705.
637	Wignall, P.B., Hallam, A., Lai, X.L., Yang, F.Q., 1995. Paleoenvironmental changes
638	across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Hist.
639	Biol. 10, 175–189.
640	Wignall, P.B., 2001. Large provinces and mass extinctions. Earth Sci. Rev. 53, 1-33.
641	Xiang, L., Schoepfer, S.D., Zhang, H., Yuan, D.X., Cao, C.Q., Zheng, Q.F.,
642	Henderson, C.M., Shen, SZ., 2016. Oceanic redox evolution across the
643	end-Permian mass extinction at Shangsi, South China. Palaeogeogr.
644	Palaeoclimatol. Palaeoecol. 448, 59–71.
645	Xiao, Y.F., Suzukib, N., He, W.H., 2017. Water depths of the latest Permian
646	(Changhsingian) radiolarians estimated from correspondence analysis. Earth-Sci.
647	Rev. 173, 141–158.
648	Yin, H.F., Zhang, K.X., Tong, J.N., Yang, Z.Y., Wu, S.B., 2001. The global stratotype
649	section and point (GSSP) of the Permian-Triassic boundary. China basic science
650	24, 102–114.
651	Yin, R., Feng, X., Hurley, J.P., Krabbenhoft, D.P., Lepak, R.F., Hu, R., Zhang, Q., Li,
652	Z., Bi, X., 2016. Mercury isotopes as proxies to identify sources and
653	environmental impacts of mercury in sphalerites. Sci. Rep. 6, 18686.

654	Zambardi, T., Sonke, J.E., Toutain, J.P., Sortino, F., Shinohara, H., 2009. Mercury
655	emissions and stable isotopic compositions at Vulcano Island (Italy). Earth
656	Planet. Sci. Lett. 277, 236–243.
657	Zhao, L.S., Chen, Y.L., Chen, Z.Q., Cao, L., 2013. Uppermost Permian to Lower
658	Triassic conodont zonation from three gorges area, South China. Palaios 28,
659	523–540.
660	Zhang, M.H., Gu, S.Z., 2015. Latest Permian deep-water foraminifers from Daxiakou,
661	Hubei, South China. J. Paleontol. 89, 448–464.
662	
663	
664	
665	
666	Figure captions:
667	
668	Fig. 1 Global (A) and South China (SC) (B) paleogeographic configurations over
669	the Permian-Triassic transition showing the locations of the Meishan (MS),
670	Daxiakou (DXK) and Shangsi (SS) sections, and the Siberia Traps large igneous
671	province (STLIP). Global paleographic map is available online
672	http://jan.ucc.nau.edu/~rcb7/, and map B follows Feng et al. (1996).
673	
674	Fig. 2 TOC, Hg, Hg/TOC and Hg isotopic compositions over the
675	Permian–Triassic transition at the Meishan section, South China. Hg, Hg/TOC

676	ratios and Hg isotop	es through bed	24 to bed 29 are	from Grasby et	al. (2017), and
				2	· //

- shown by red circles. Sedimentation rates (SR) are calculated by Li et al. (2016)'s age
- model. Conodont zones follow Chen et al. (2015).
- 679
- 680
- Fig. 3 TOC, Hg, Hg/TOC and Hg isotopic compositions over the

682 **Permian–Triassic transition at the Daxiakou section, South China**. Sedimentation

- rates (SR) are calculated by Li et al. (2016)'s age model. Conodont zones follow Zhao
- et al. (2013).
- 685
- **Fig. 4 TOC, Hg, Hg/TOC and Hg isotopic compositions over the**
- 687 Permian–Triassic transition at the Shangsi section, South China. Conodont zones
- 688 follow Jiang et al. (2011).
- 689

	12	
600	Fig. 5 Integrated excursions of Hg/TOC ratios. Hg isotomes, $\delta^{13}C$ values (Burge	CC
090	rig. 5 integrated executions of fig/10C ratios, fig isotopes, o C values (burge	22

- et al., 2014), species richness variations (Song et al., 2013) and STLIP stages
- 692 (Burgess et al., 2017) over the Permian–Triassic transition. Ages are from
- 693 Meishan section reported by Burgess et al. (2014). C = Clarkina, H = Hindeodus, I =
- 694 Isarcicella

696 Fig. 1

700 Fig. 2

704 Fig. 3

