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We describe a promising alternative approach to modelling moist convection and

cloud development in the atmosphere. Rather than using a conventional grid-based

approach, we use Lagrangian “parcels” to represent key dynamical and thermody-

namical variables. In the prototype model considered, parcels carry vorticity, mass,

specific humidity, and liquid-water potential temperature. In this first study, we

ignore precipitation, and many of these parcel “attributes” remain unchanged (i.e. are

materially conserved). While the vorticity does change following the parcel motion,

the vorticity tendency is readily computed and, crucially, unwanted numerical diffu-

sion can be avoided. The model, called “Moist Parcel-In-Cell” (MPIC), is a hybrid

approach which uses both parcels and a fixed underlying grid for efficiency: advec-

tion (here moving parcels) is Lagrangian whereas inversion (determining the velocity

field) is Eulerian. The parcel-based representation of key variables has several advan-

tages: (a) it allows an explicit subgrid representation; (b) it provides a velocity field

which is undamped by numerical diffusion all the way down to the grid scale; (c) it

does away with the need for eddy viscosity parametrizations and, in their place, it

provides for a natural subgrid parcel mixing; (d) it is exactly conservative (i.e. there

can be no net loss or gain of any theoretically conserved attribute); and (e) it dis-

penses with the need to have separate equations for each conserved parcel attribute;

attributes are simply labels carried by each parcel. Moreover, the latter advantage

increases as more attributes are added, such as the distributions of microphysical

properties, chemical composition and aerosol loading.
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1 INTRODUCTION

Clouds, convection and moist processes generally pose seri-

ous challenges for modelling the Earth’s climate and weather

(e.g. Holloway et al., 2014; Bony et al., 2015). Such processes

involve small-scale interactions which are well beyond the

resolution of current global circulation models (GCMs). In

particular, accurate resolution of processes influenced or con-

trolled by turbulence in clouds requires model scales of the

order of metres (Austin et al., 1985; Blyth et al., 2005; Cooper

et al., 2013; Heinze et al., 2015; Seifert et al., 2015), scales

which are more than seven orders of magnitude smaller than

the global scale!

The large-eddy simulation (LES) method has been used

to study cumulus and stratocumulus clouds since the pio-

neering work of Sommeria (1976) and Deardorff (1980).

In LES, the impact of subgrid-scale motions on resolved

scales is modelled by turbulence closure assumptions. LES

models play a key role in the development of low cloud

parametrizations (e.g. Siebesma and Cuijpers, 1995) and have

been routinely validated for observational cases (e.g. Brown

et al., 2002; Siebesma et al., 2003). Other non-hydrostatic
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models have also been essential in studying the interaction

between deep convection and its environment (e.g. Bretherton

and Smolarkiewicz, 1989), and mixing at the edge of clouds

(Grabowski and Clark, 1993). However, there are key differ-

ences between two-dimensional and three-dimensional simu-

lations of deep convection (Redelsperger et al., 2000; Petch et
al., 2008), and three-dimensional LES on large domains has

only become possible over the last decade (Khairoutdinov et
al., 2009). Detailed cloud models have also been used both as

embedded models for local weather forecasting (Schalkwijk et
al., 2015) or as subgrid models in larger-scale models (“super-

parametrization,” e.g. Grabowski and Smolarkiewicz, 1999).

The need for a high-resolution description of cloud turbu-

lence is due to the highly nonlinear nature of cloud processes.

Previous studies have shown that the behaviour of cumulus

clouds is very sensitive to the choice of numerical method

(Matheou, 2011; Pressel et al., 2015). The equations of state

describing the transfer between different phases of water

involve very steep functions, usually represented by discon-

tinuous changes. Furthermore, aircraft measurements have

shown that the thermodynamic properties of clouds can

have large variations on scales of metres to tens of metres

(Austin et al., 1985; Blyth et al., 2005), and cumulus clouds

often contain cores with relatively high liquid water content

(Heymsfield et al., 1978; Blyth et al., 2005; 2015; Moser

and Lasher-Trapp, 2017). Such regions may be important

in determining the time-scale for rain formation (Twomey,

1966; Blyth et al., 2013; Cooper et al., 2013). Resolving

these scales of motion appears to be essential to modelling

cumulus convection.

The computational demands for high-resolution cloud sim-

ulation are exacerbated when consideration is made of addi-

tional attributes of the air parcels, such as the distributions

of microphysical properties (e.g. drop sizes), chemical com-

position and aerosol loading. Accurate treatment of cloud

microphysics demands consideration of droplet size distribu-

tions of cloud water and cloud ice distributions: the ice is

itself divided into many possible classes (according to crys-

tal form, aggregation, etc). For instance, a model may carry

N ∼ 6 species of water and ice with M ∼ 50 bins. Clouds

are also important agents of transport and chemical trans-

formation of trace gases in the climate system, and many of

the chemical reactions are nonlinear and occur on the fine

scales within a cloud. Sophisticated cloud-chemistry schemes

may include many interacting species. Aerosols feed back

on the cloud physics by acting as condensation nuclei and

modifying the distributions of cloud particles. For these rea-

sons, a sophisticated cloud-resolving model capable of study-

ing cloud–chemistry–climate processes may need to carry

cloud microphysical spectra, aerosol spectra and a number

of interacting chemical species on its grids. These addi-

tional attributes place enormous demands on computational

resources – involving both the cost of dynamical transport and
that of additional processes such as chemical reactions – and

are included at the expense of the resolution needed to capture

cloud fine structure.

There is hence a pressing need to improve the numerical

modelling and representation of moist processes in general.

Previous studies have considered whether methods used in the

computer graphics and gaming community can help to pro-

vide simulations with a higher effective resolution at reduced

computational cost (e.g. Shutts and Allen, 2007). In this

paper, we also propose a non-standard approach, namely to

represent dynamical and thermodynamic processes by freely

moving parcels. The parcels carry a number of attributes,

such as vorticity, mass, specific humidity, and liquid-water

potential temperature. Ignoring precipitation, the attributes

of mass, specific humidity and liquid-water potential temper-

ature are all conserved following the motion of each parcel,

and importantly a parcel-based model guarantees this with-
out the need to follow additional prognostic equations as in

a conventional numerical model. The advantages grow when

more attributes are considered, such as a spectrum of aerosol

particle sizes, chemical species, etc. Moreover, the parcels

provide an explicit sub-grid parametrization – indeed they

replace the need for such a parametrization – thereby dis-

pensing with ad hoc parametrizations and artificial “eddy”

viscosities. Mixing on the smallest scales can be dealt with

by parcels splitting and recombining. A priori, a parcel-based

model has much less numerical dissipation than conventional

numerical models presently in widespread use. Hence, a

parcel-based model can be expected to achieve a much higher

effective resolution.

Parcel-based methods are not new: they have been used

in the vortex dynamics literature for decades to study basic

properties of fluid flows at very high Reynolds numbers

(e.g. Christiansen and Zabusky, 1973 for two-dimensional

flows, and Novikov, 1983, Aksman et al., 1985, Ander-

son and Greengard, 1985, Alkemade et al., 1993 for

three-dimensional flows). Such methods have even been

used to model moist convection as early as Gadian (1991),

who simulated clouds in a two-dimensional plane using

Smoothed Particle Hydrodynamics (SPH). This method in

fact originated in studies of astrophysical phenomena (Mon-

aghan, 1992), and continues to be a popular choice in mod-

elling galaxy dynamics, star formation and stellar clusters

(e.g. Smilgys and Bonnell, 2017). In atmospheric chem-

istry and transport studies, parcel-based methods such as the

Finite Mass Method (FMM; Klinger et al., 2005 and ref-

erences therein) and the Hamiltonian Particle-Mesh method

(HPM; Frank et al., 2002) have been shown to offer sig-

nificant improvements over the commonly used grid-based

semi-Lagrangian method (Grewe et al., 2014). The HPM

method uses particles rather than parcels of finite volume,

and uses a spatial smoothing kernel for the interpolation of

particle properties to an underlying grid. This is done in a

consistent way to ensure conservation of properties such as

total mass, etc. Parcel and particle-based methods have also

been used to model cloud and rain water in combination with



DRITSCHEL ET AL. 1697

a dynamical core that is otherwise Eulerian (e.g. Andrejczuk

et al., 2008; Shima et al., 2009; Riechelmann et al., 2012;

Wyszogrodzki et al., 2013). Nevertheless, to our knowledge,

a parcel-based method has never been seriously considered to

be a viable approach for detailed cloud modelling.

Parcel and particle-based methods vary considerably in

their formulation, and may require the tuning of many numer-

ical parameters. We believe that this has detracted from the

uptake of such methods by the atmospheric modelling com-

munity. Here, in order to produce a flexible, versatile model

with a minimum of tunable parameters, we adopt the simplest

“vortex-in-cell” (VIC) approach of Christiansen and Zabusky

(1973), with a parameter-free refinement due to Brackbill and

Ruppel (1986) to ensure conservation. We also use the math-

ematically reformulated parcel vorticity equation of Cottet

and Koumoutsakos (2000, pp. 244–245) to more accurately

satisfy the non-divergence condition of the vorticity field.

Moist processes, specifically the effects of condensation and

evaporation, are incorporated in a simplified way and in an

idealized physical setting, with the sole purpose of providing

a proof of concept.

The resulting new model, called “Moist Parcel-In-Cell”

(MPIC), is extensively tested to understand dependencies on

numerical parameters and to determine feasible values. As

a demanding test case, we consider the evolution of a rising

moist thermal in a neutral layer below a stratified zone. The

thermal reaches the stratified zone and passes through the

lifting condensation level where it releases additional buoy-

ancy and forms a cloud. The flow evolution rapidly becomes

turbulent, and is reminiscent of observed cumulus convec-

tion. Comparisons with a convection-permitting research

model, the Met-Office/NERC cloud model (MONC) are the

focus of a forthcoming paper (Böing et al., forthcoming).

There, and in one figure here, the MPIC model is shown to

compare well using significantly lower grid resolutions. This

is the result of using a conservative sub-grid representation

in the MPIC model, thereby greatly reducing the effects of

numerical diffusion.

The plan of the paper is as follows. Section 2 describes

the idealized physical setting considered, and sets out the

associated simplified mathematical model. Section 3 then

details the MPIC numerical method, focussing in particular

on its novel or non-standard features. Section 4 goes through

a series of tests which demonstrate the insensitivity of the

results to the only tunable parameters, those controlling par-

cel density and mixing. Finally, section 5 concludes with a

discussion of the steps currently being taken to extend the

MPIC model to more realistic physical settings.

2 PHYSICAL SETTING AND
MATHEMATICAL FRAMEWORK

Cloud formation in the atmosphere is a highly com-

plex process. We do not attempt to model every aspect

of this process, but only intend to demonstrate a viable

computational approach that could lead to a step change in

modelling atmospheric convection in general. To this end, we

consider a simplified physical setting in an idealized geom-

etry, and reduce the governing mathematical equations to

their simplest relevant form. Key aspects of the dynamics and

physics are retained, notably the inclusion of a latent heating

term with a nonlinearity characteristic of more sophisticated

cloud schemes.

First, we assume the domain is Cartesian, horizontally peri-

odic in x (0 ≤ x ≤ Lx) and in y (0 ≤ y ≤ Ly), and

bounded below and above by flat, impermeable, free-slip

surfaces at z = 0 and Lz. Second, we make the incom-

pressible Boussinesq approximation (Durran and Arakawa,

2007) in which variations in density are small compared with

the domain average density. This is not valid for deep con-

vection, but is often used in studies of shallow convection

(Brown et al., 2002; Siebesma et al., 2003). This approxi-

mation greatly simplifies the governing equations, but it is

not required by the MPIC model (section 5 below). Third,

we simplify the pressure–temperature dependent formula-

tion of saturation specific humidity occurring when moisture

within an air parcel condenses or evaporates. Instead, the

effects of latent heating are included by increasing the parcel

buoyancy b whenever the parcel specific humidity q exceeds

a height-dependent background profile q0e−𝜆z (with 𝜆 con-

stant). Effectively, the saturation specific humidity depends

only on height. Thus, a moist parcel can gain buoyancy (tend-

ing to accelerate upwards) when its water vapour condenses.

Likewise, it can lose buoyancy when it evaporates. Conden-

sational heating is the only effect of moisture that we account

for: we ignore differences in density between dry air and water

vapour, as well as the weight/loading of condensate.

The simplicity of this framework has been designed so

that the first development of the model, and the analysis

of its performance, focusses on the essentially Lagrangian

dynamical core. In particular, we have constructed a model

framework which is simple enough to isolate the dynamical

behaviour without additional complicating processes, such as

microphysical feedbacks. In this framework, we are able to

characterize the dynamical performance quantitatively and

definitively. The simple framework will make it easy for oth-

ers to replicate our results, and it also ensures the equations

lend themselves to non-dimensionalization. The key feature

of the thermodynamics that we have retained is the disconti-

nuity in the equation of state that is a result of condensation.

There are some precedents for making the saturation specific

humidity depend on height only: for example, Pierrehumbert

et al. (2007) and Tsang and Vanneste (2017) essentially use

the same formulation. However, in their case, liquid water

is assumed to be removed (precipitate), whereas in our case

liquid water does not precipitate but can re-evaporate.

Another example of the use of a simplified equation of state

is the approach of Pauluis and Schumacher (2010). Their for-

mulation comes closer to the full equation of state for small
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domain heights, as the liquid water content here depends on

height as well as two other thermodynamic variables. How-

ever, the interpretation of the thermodynamic variables in this

framework is less straightforward. Moreover, once a parcel is

saturated, the amount of condensation per unit height is con-

stant rather than exponentially decreasing in this formulation,

which makes it less appropriate for deeper domains.

Our ongoing work in the development of the model will

add increasing degrees of sophistication to the microphysical

representations. It would be relatively simple to replace our

thermodynamic formulation with a saturation specific humid-

ity which depends on temperature and a height-dependent

reference pressure. In this case, we would need to include an

iterative procedure for solving the equation of state. Usually,

some simplifications are made in the thermodynamics, and

different models use a variety of formulations. The details do

not matter for a proof of concept, and this is why we have

taken the simplest approach.

The governing equations written in momentum form for

velocity u, (non-hydrostatic) pressure p, liquid-water buoy-

ancy bl and specific humidity q are

Du
Dt

= −
𝜵p
𝜌0

+ b êz, (1)

Dbl

Dt
= 0, (2)

Dq
Dt

= 0, (3)

𝜵 ⋅ u = 0, (4)

where D∕Dt = 𝜕∕𝜕t + u ⋅ 𝜵 is the material derivative. In

Equation 1 the total buoyancy b (including the effects of latent

heating) is approximated by

b = bl +
gL

cp𝜃l0
qc, (5)

where

qc = max
(
0, q − q0e−𝜆z) (6)

is the liquid water content. The pressure p in Equation 1

excludes the part due to the hydrostatic background state

of constant density 𝜌0. The other symbols appearing in

Equations 1–6 are the vertical unit vector êz, the gravita-

tional acceleration g, the latent heat of condensation L, the

specific heat at constant pressure cp, the surface saturation

humidity q0, and the inverse condensation scale-height 𝜆.

The liquid-water buoyancy is defined by bl = g(𝜃l − 𝜃l0)∕𝜃l0
where 𝜃l is the liquid-water potential temperature and 𝜃l0 is a

constant reference value.

The incompressible Boussinesq approximation is conve-

nient since, in the vorticity formulation, the pressure term

disappears. The vorticity 𝝎 = 𝜵 × u satisfies

D𝝎

Dt
= 𝝎 ⋅ 𝜵u +

(
by,−bx, 0

)
, (7)

where subscripts on b denote partial differentiation. Hence,

vorticity is generated by horizontal buoyancy gradients.

Notably, regions of the flow with uniform b and no vorticity

remain irrotational (𝝎 = 0).

Small-scale models of deep convection usually employ

an anelastic formulation of the continuity equation (Pauluis,

2008) rather than the incompressible Boussinesq approx-

imation we are using here. In the near future, we aim

to extend MPIC to the anelastic framework by weighting

both its conserved properties and the parcel volumes by a

height-dependent mean density 𝜌0(z), and by making appro-

priate changes to the numerical solver. To use MPIC as an

embedded model, it would also be important to ensure max-

imum consistency in the thermodynamical formulation with

the host model (Grabowski and Smolarkiewicz, 2002).

Finally, we ignore precipitation. However, the Lagrangian

method for precipitation introduced by Shima et al. (2009)

would be one of the ways in which this could be added. We

plan to include precipitation in a future version of MPIC.

3 THE NUMERICAL ALGORITHM

We first present an overview of the algorithm, then describe

how it is constructed and provide details of features not found

in other parcel-based numerical methods.

Lagrangian, freely-moving parcels are used for evolving

all quantities, while an underlying regular (here Cartesian)

grid is used for transferring parcel properties to the grid

and vice versa. The grid is also used for “inversion,” i.e.

to obtain the velocity field from the interpolated vorticity

field. This is the basis for the original Vortex-In-Cell (VIC)

method (see Christiansen and Zabusky, 1973 and the com-

prehensive review of Cottet and Koumoutsakos, 2000). The

parcels are ideal for carrying quantities which do not change

in time – materially conserved quantities called “attributes.”

In the present model, the attributes consist of liquid-water

buoyancy bl, specific humidity q and parcel volume V . No

additional equations are required to evolve the attributes as in

a grid-based model; the attributes are merely labels carried

by each parcel. Instead, the positions xi of each parcel i are

evolved using the simple equation

dxi

dt
= u(xi, t), (8)

where u is the gridded velocity field interpolated at xi. An

additional vector equation is required to update the par-

cel vorticity 𝝎i, which changes as a result of both vortex

stretching and horizontal buoyancy gradients (section 3.1

below). The parcel vorticity is itself an odd concept since,

by definition, vorticity must be divergence-free (𝜵 ⋅ 𝝎 = 0;

discussion in Cottet and Koumoutsakos, 2000, pp. 84–85). A

dense collection of parcels can approximate this condition,

but one can also regard the field generated by all parcels as

only part of the entire vorticity field 𝝎. The remaining part

(which has the form of a gradient of a potential—section 3.1

gives further explanation) can be chosen to satisfy 𝜵 ⋅ 𝝎 = 0.
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But what is most remarkable is that this remaining part

contributes nothing to the velocity field (though it is needed

in the vorticity tendency equation).

A potential drawback of parcel-based methods is that large

numbers of parcels must be superposed to accurately rep-

resent any evolving flow. In the original applications to a

uniform density fluid, parcels could be restricted to a small

volume of the entire space, as in that case no new vortic-

ity is produced outside of its initial domain of support. In

a variable-density flow, vorticity does not remain localized

if initially so. Hence, in the MPIC model, we fill the entire
domain with parcels, ensuring each grid box contains many

parcels (typically 5–200). We originally thought this would be

computationally prohibitive, but it turns out to be affordable,

especially when compared to conventional numerical models.

Essentially, we have found that the higher effective resolution

afforded by the parcels – and the strict conservation of par-

cel attributes – strongly offsets the costs of carrying a large

number of space-filling parcels. The operations performed

on parcels are mostly simple interpolations (see below)

which are relatively inexpensive from a computational point

of view.

Another well-known problem with parcel methods is that

the parcel motion does not respect exact mass conservation

or incompressibility (Grewe et al., 2014). While each parcel

carries a volume, and the parcel advection is accurate, using a

finite number of parcels inevitably leads to numerical density

anomalies, even if care is taken initially to ensure a perfect

match between the parcel and grid densities (or volumes in an

incompressible flow). This problem can be alleviated by con-

servatively adjusting parcel properties (e.g. as in Grewe et al.,
2014), but its seriousness depends on the number of parcels

used to find a given field on the grid, and the duration of the

flow simulation. Grabowski et al. (2018) describe a scheme

in which the interpolated velocity field is incompressible

throughout each grid box, but even this does not guarantee

that the parcel density remains uniform (as the example of a

single parcel crossing a grid box boundary demonstrates). In

the results presented below using the MPIC model, we find

that the discrepancy between parcel and grid densities is neg-

ligible over cloud development time-scales when using the

recommended default numerical settings.

Parcels simplify many features of the dynamics. In partic-

ular, the effects of condensation and evaporation on parcel

buoyancy are naturally incorporated in a parcel formulation.

All that is required is to construct the total buoyancy b from

the liquid-water buoyancy bl, specific humidity q and parcel

height z using Equation 5, then interpolate b to gridded values

for calculating the parcel vorticity tendencies (section 3.1).

The MPIC model uses perhaps the simplest of all interpo-

lations – tri-linear interpolation – to transfer parcel properties

to and from an underlying grid. This interpolation is needed

in order to build the vorticity field on a grid and to use effi-

cient, accurate grid-based methods for calculating the velocity

field from the vorticity field. The gridded velocity field is then

interpolated at the parcel positions, enabling one to move the

parcels forward to the next instant of time. Other forms of

interpolation (e.g. involving a search over nearby parcels as

in SPH or HPM) may be more accurate, but are not nearly as

simple, and may not lend themselves to efficient calculation

on massively parallel computers. Notably, the interpolation

used ensures that the total parcel mass, and indeed all par-

cel attributes, are not only conserved but are identical to the

grid-based calculation of the same quantities after interpola-

tion (Brackbill and Ruppel, 1986; Cottet and Koumoutsakos,

2000, pp. 241–242).

In order to follow the inevitable, and often rapid, cascade of

scales in a turbulent flow, we allow for parcel splitting down to

a prescribed minimum scale. To decide when parcels should

split, we keep track of each parcel’s “stretch”: the time inte-

gral of the magnitude of the vortex stretching. (Note: a more

robust measure of parcel stretch would make use of the local

strain tensor 𝜵u, but this requires tracking the parcel shape

(five extra variables) as in McKiver and Dritschel, 2003.)

When the stretch exceeds a certain threshold (around four in

practice, though the results are insensitive to this, as shown in

section 4), we split the parcel into two adjacent pieces, each

with half the volume of the original parcel but with identical

attributes and vorticity. This splitting is designed to be fully

conservative: the total volume-integrated parcel attributes do

not change.

However, splitting cannot be allowed to carry on indefi-

nitely, as it would lead to an explosive build-up in the total

number of parcels. Hence, we limit the volume of the smallest

parcel to 1∕63 or 1∕216 of the grid-box volume, and remove

smaller parcels conservatively (section 3.5 below). Again, the

accuracy of the model is not sensitive to this parameter as long

as it is substantially smaller than the original parcel volume

(as shown in section 4).

The principle behind this is that there is a trade-off between

representing subgrid-scale effects and ignoring subgrid-scale

velocity fluctuations (in the interpolation of parcel velocities

from gridded values). Parcel motions are generally dominated

by the larger-scale velocity field, but this cannot be expected

to hold for too great a separation between the parcel size and

the grid size. Nonetheless, a subgrid representation may be

highly beneficial, as has been demonstrated in contour-based,

Lagrangian simulations of two-dimensional fluid and mag-

netized turbulence (Dritschel and Ambaum, 1997; Dritschel

and Scott, 2009; Fontane and Dritschel, 2009; Dritschel and

Fontane, 2010; Dritschel and Tobias, 2012).

In two dimensions, velocity fluctuations tend to decay more

rapidly with decreasing scale than in three dimensions. The

kinetic energy spectral density (k) in two dimensions often

exhibits a k−3 form for large wavenumber k, while in three

dimensions (k) ∼ k−5∕3 (Davidson, 2015). As (k) ∝
k‖û‖2, this means that velocity fluctuations ‖û‖ typically

decay like k−2 in two dimensions and like k−4∕3 in three

dimensions. In either case, the large scales dominate the
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velocity field, but the small scales are much more active in

three dimensions.

Previous studies of two-dimensional turbulence conducted

using contour-based Lagrangian methods have shown that

the scale separation between the finest resolved Lagrangian

element and the grid scale can be as large as a factor of 16,

while still faithfully representing the flow field (in particular,

Dritschel and Scott, 2009 and Dritschel and Tobias, 2012).

In the present context, in three dimensions, we do not expect

such a large scale separation, and our choice of a factor of 6

is explained and justified in the results below.

As in parcel splitting, we ensure parcel removal is exactly

conservative. Each parcel transfers its vorticity and attributes

to the corners of the grid box containing it before it is

removed. These residuals are then re-interpolated to the

remaining parcels to ensure conservation. Notably, this acts

as a weak diffusion: a localized parcel disperses its properties

to all other parcels in its grid box as well as in the grid boxes

adjacent to this grid box.

3.1 The parcel vorticity equation

The parcel vorticity 𝝎i is updated using a mathematically

equivalent form of the vorticity equation 7 applied to each

parcel:
d𝝎i

dt
= S(xi, t) , (9)

where

S(x, t) ≡ (𝜵 ⋅ F, 𝜵 ⋅ G, 𝜵 ⋅ H) (10)

is the vorticity tendency, and

F = 𝝎u + b êy, G = 𝝎v − b êx, H = 𝝎w . (11)

In Equation 11, êx and êy are unit vectors in the x and y
directions respectively.

The vorticity tendency S is first found on the grid and then

interpolated to the parcel positions. Since 𝜵 ⋅ 𝝎 = 0, this

tendency is equivalent to that on the r.h.s. of Equation 7.

This form of the tendency is used because it better preserves

𝜵⋅𝝎p = 0 for the parcel-interpolated vorticity field𝝎p ( Cottet

and Koumoutsakos, 2000, pp. 244–245), as we have ourselves

verified. However 𝝎p does not generally satisfy the solenoidal

condition (which should hold if 𝝎p = 𝜵 × u). This discrep-

ancy can be removed by finding a scalar potential 𝜒(x, t) for

which 𝝎 ≡ 𝝎p −𝜵𝜒 is solenoidal. This implies 𝛻2𝜒 = 𝜵 ⋅𝝎p.

So, while 𝝎p may be localized on a parcel, 𝝎 is generally not.

One may think of 𝜵𝜒 as the field that threads all the parcels

together to ensure vortex lines never end in the fluid. Remark-

ably, 𝜵𝜒 does not contribute to the gridded velocity field u,

as shown in section 3.3.

3.2 Parcel interpolation

We next briefly describe the (mostly) standard means of

transferring parcel properties to the underlying grid, and

the inverse operation of interpolating grid properties at a

parcel position. In this subsection, a subscript i denotes a

parcel quantity while an overbar as in q̄ denotes a gridded

field.

In the MPIC model, both of these operations use tri-linear

interpolation, a simple method based on dividing a grid box

into sub-volumes which are then used as weights in the

interpolation. For example, the gridded value of the specific

humidity, q̄(x̄, t), at each grid point x̄ = (x̄, ȳ, z̄) is computed

from

q̄(x̄, t) = V̄−1
∑

i∈(x̄)
𝜙(xi − x̄)qiVi (12)

with V̄(x̄, t) =
∑

i∈(x̄)
𝜙(xi − x̄)Vi, (13)

where the tri-linear weights 𝜙 are given by

𝜙(xi − x̄) =(
1 − |xi − x̄|

Δx

)(
1 −

|yi − ȳ|
Δy

)(
1 − |zi − z̄|

Δz

)
(14)

and (x̄) is the set of all parcels within the eight grid boxes

surrounding x̄. Here Δx, Δy and Δz are the grid lengths in the

three coordinate directions. This interpolation scheme pre-

serves the global integral of q as well as its first moments

(integrals of xq, yq and zq). Moreover, compared to the origi-

nal VIC interpolation scheme that used V̄ = ΔV , whereΔV ≡
ΔxΔyΔz is the grid box volume, this scheme has the advan-

tage that the variance of q is non-increasing (Brackbill and

Ruppel, 1986; Cottet and Koumoutsakos, 2000, pp. 241–242).

In practice, it is not necessary to find the set (x̄) directly;

instead we sum over all parcels i and work out the grid box

they are contained within. From this, we add appropriately

weighted parcel properties to the eight corner grid points.

After interpolation, the volumes V̄(x̄, t) of boundary grid

points (at z = 0 and Lz) are doubled since these grid points

are surrounded by only four grid boxes rather than eight

in the interior. Similarly, the sum in Equation 12 is either

doubled or set to zero depending on symmetry of the field

(section 3.3 below). The buoyancy b̄ and specific humidity q̄
are set to fixed, uniform values at each boundary to simplify

the inversion problem discussed in section 3.3, though this is

not essential.

Note that, in an incompressible fluid, we would expect that

V̄(x̄, t) remains constant and equal to the grid box volume ΔV
everywhere. However, Lagrangian parcel advection does not

guarantee this. This may be regarded as a source of error, but

in practice V̄(x̄, t) differs little from ΔV if a sufficient num-

ber of parcels are used, as the results in section 4 demonstrate.

(With a minor change to the algorithm, we can enforce vol-

ume conservation, but this comes at the expense of numerical

diffusion; section 3.5 below.)

The reverse operation, to interpolate a gridded field value to

a parcel position xi(t), is performed as follows. For example,

the velocity of a parcel is computed from

u(xi, t) =
∑
x̄∈i

𝜙(xi − x̄) ū(x̄, t), (15)
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where i is the set of all eight grid points at the corners of the

grid box containing parcel i.

3.3 The inversion problem

Since the domain considered is horizontally periodic, it makes

sense to use Fourier series and Fast Fourier Transforms

(FFTs) to perform operations on gridded fields. In the vertical,

we also use Fourier series, for simplicity, though finite dif-

ferencing would be more computationally efficient. Fourier

series are not necessarily more accurate than second-order

finite differences, particularly when fields exhibit shallow

spectra, as is typical in turbulent flows (Shipton, 2008).

Nonetheless, they allow for the most straightforward com-

putational implementation. In fact, in the MPIC model, any
solver could be used which provides the velocity field and the

vorticity tendency on a regular grid.

Here we discuss how we obtain the (gridded) velocity field

u from the vorticity field 𝝎 together with appropriate bound-

ary conditions. This is a standard problem, but a few details

are provided for clarity. In this subsection, the overbar on

gridded quantities is dropped since there is no reference to

parcel quantities.

For the incompressible flow considered, we can satisfy

𝜵 ⋅u = 0 by taking u = −𝜵×A where A is a vector potential.

From the definition of vorticity and basic vector calculus, we

find

𝝎 = 𝜵 × u = 𝛻2A − 𝜵(𝜵 ⋅ A) . (16)

We are free to impose 𝜵 ⋅ A = 0 leading to

𝝎 = 𝛻2A , (17)

a (vector) Poisson equation to determine A = (A,B,C) from

𝝎 = (𝜉, 𝜂, 𝜁). To solve this, we must account for the boundary

conditions at z = 0 and Lz. First of all, the vertical velocity

component w must vanish. The horizontal components u and

v may be arbitrary (free slip). As u = Bz − Cy, v = Cx − Az,

w = Ay−Bx and 𝜵 ⋅A = Ax+By+Cz = 0, it is then sufficient

to take A = B = Cz = 0 on each boundary.

Because we use Fourier series in z, we represent A and B as

a sine series, and C as a cosine series. It is most straightfor-

ward to represent the vorticity components in the same way,

which then implies 𝜉 = 𝜂 = 𝜁z = 0 on each boundary (note

𝜉 = −vz and 𝜂 = uz there; uz = vz = 0 is sometimes referred

to as a “stress-free” boundary condition). This means vortex

lines are perpendicular to each boundary and pass “through”

them continuously. But for 𝜉 and 𝜂 to remain zero on the

boundaries, it is necessary to take the buoyancy b to be uni-

form – then from Equation 7 there is no baroclinic vorticity

generation.

If b is initially uniform on each boundary, in the absence of

condensation there, b will remain uniform (and constant) due

to material conservation of bl (Equation 2). In the future, we

will allow arbitrary b variations to study e.g. localized surface

heating and moisture sources. Recovering u from 𝝎 in this

case is not as straightforward (cf. Cottet and Koumoutsakos,

2000, pp. 92–96).

In the numerical method, we use Fourier series in x, y and z
(with corresponding wavenumbers kx, ky and kz). Depending

on the field, either a sine series or a cosine series is used in z
to match the required boundary conditions. After an FFT, the

Poisson problem Equation 17 reduces to an algebraic one,

giving

Â = −𝝎̂∕|k|2 (18)

directly, where k = (kx, ky, kz) and a hat indicates a spectral

quantity. Note k = 0 is excluded as the domain-averaged

value of 𝝎 is zero. From Â, the velocity components in spec-

tral space are found simply by wavenumber multiplication.

Finally, an inverse FFT provides the velocity field u at all

grid points.

The vorticity 𝝎 above includes the correction to the parcel

vorticity 𝝎p which makes it solenoidal, as discussed above in

section 3.1. That is, 𝝎 ≡ 𝝎p − 𝜵𝜒 where 𝛻2𝜒 = 𝜵 ⋅ 𝝎p. To

solve this Poisson problem, we expand 𝜒 and the source 𝜵 ⋅𝝎p
in a Fourier sine series in z and obtain 𝜒 as in Equation 18.

Notably this correction does not contribute to the velocity

u since 𝜵 × 𝛻−2
𝜵𝜒 = 0 for the boundary conditions consid-

ered. Nonetheless it is included to more accurately compute

the vorticity tendency S in Equations 10 and 11.

3.4 Filtering

A circular de-aliasing filter is applied to avoid spurious

modes arising when computing the nonlinear product terms

in the vorticity tendency Equation 10. The standard “2/3

rule” is applied, whereby we set to zero all coefficients with

wavenumbers greater than 2/3 of the maximum wavenum-

ber (Canuto et al., 2007). Rather than do this in kx, ky and kz
separately, we instead apply the circular filter

F(k) =
{

1 k < 2kmax∕3,
0 k ≥ 2kmax∕3,

(19)

where k = |k| and kmax =
√

(n2
x + n2

y + n2
z )∕6. This fil-

ter is applied to the vorticity field 𝝎 when it is corrected to

be solenoidal. The velocity field u is then automatically fil-

tered because of the linear relation between 𝝎 and u. No other

filtering or damping is used.

3.5 Parcel splitting and mixing

Turbulent flows exhibit a strong forward cascade of kinetic

energy to small scales where the energy is ultimately dis-

sipated or converted to other forms (Davidson, 2015). The

range of scales involved in the atmosphere is enormous, and

no numerical model is capable of resolving the full range

of scales. Inevitably, some form of numerical dissipation or

“eddy viscosity” (Meneveau and Katz, 2000; Pope, 2004)

must be used to limit this cascade to a restricted range

of scales. However, this dissipation invariably degrades the

accuracy of the resolved scales of motion.
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In the MPIC model, the small-scale end of this cascade is

modelled by parcel splitting and eventual removal at a pre-

scribed smallest scale. While we do not follow the shape of

each parcel, we do monitor the integrated vorticity stretching

𝛾i(t) = ∫
t

ti
(|𝝎i ⋅ d𝝎i∕dt|)1∕3 dt, (20)

where ti is the time when the parcel came into existence or

last split. Then, when 𝛾i(t) > 𝛾max, the parcel is split into two

adjacent pieces, each with half the volume of the original

parcel but identical vorticity and attributes. Here, 𝛾max is a

non-dimensional numerical parameter which must be cho-

sen a priori. The default value is 𝛾max = 4 but, as shown in

section 4, the results are not strongly sensitive to this choice.

A smaller value causes splitting to occur more frequently, and

vice versa. An intermediate value represents a compromise

between too frequent splitting and no splitting at all.

Note that parcel splitting, together with their eventual

removal, helps to ensure that parcels do not stay undiluted

for long times. In this way, some mixing of parcel properties

occurs, as would be expected at sufficiently small scales in a

turbulent flow.

When a parcel is split, it is replaced by two parcels sep-

arated by a distance ds = (2Vi∕𝜋)1∕3 along the direction

𝝎i∕‖𝝎i‖ of the original parcel’s vorticity vector. The formula

for ds comes from imagining that the original “stretched” par-

cel has the shape of a cylinder of radius R and length 4R;

this is then split into two adjacent cylinders separated by

ds = 2R centre to centre. More generally, it is consistent to

take ds∕R ∝ 𝛾max. However, the precise details do not matter;

up to 50% variations in ds have no appreciable impact on the

early to intermediate time flow evolution. If the z coordinate

of any new parcel lies below z = 0 or above Lz, it is placed

back on the respective boundary.

A more robust model of stretching and splitting would

allow each parcel to change shape, e.g. deform as an ellip-

soid (McKiver and Dritschel, 2003), in response to the local

strain tensor 𝜵u. While more physically based, this model

would require tracking five additional variables, and has not

been implemented for simplicity. Future work will examine

its feasibility.

Over the course of a simulation, typically parcels continue

to stretch and split, and thereby shrink in volume. When the

volume Vi < Vmin, the parcel is mixed into the surround-

ings and removed from the list of parcels. Here, we use

Vmin = ΔV∕63 by default, but again the numerical results

are not strongly sensitive to this choice (section 4 below).

The idea behind this parameter setting is to allow for some

subgrid-scale representation, but to limit the scale separation

of the smallest parcel and the advecting velocity field. The

parcel motion is mainly controlled by velocity field varia-

tions at larger scales, but this cannot be expected to hold for

a wide scale separation. As discussed at the beginning of this

section, a similar consideration applies in two-dimensional

flows, where the scale separation can be much larger (up to a

factor of 16) owing to the greater regularity of the advecting

velocity field (Dritschel and Ambaum, 1997; Fontane and

Dritschel, 2009).

To maintain global conservation after mixing, the volumes

Vi and volume-integrated properties bl iVi, qiVi and 𝝎iVi of

all parcels to be removed are spread to the corners of the

grid boxes they lie in, forming gridded residual fields. (In

this subsection, we again use a subscript i to denote a parcel

quantity and an overbar to denote a gridded field for clarity.)

For example, at each grid point x̄ the residual volume V̄res

and the residual volume-integrated specific humidity Q̄res are

given by

V̄res(x̄, t) =
∑

i∈res(x̄)
𝜙(xi − x̄)Vi, (21)

Q̄res(x̄, t) =
∑

i∈res(x̄)
𝜙(xi − x̄)qiVi, (22)

where res(x̄) is the set of all parcels to be removed (if any)

within the eight grid boxes surrounding x̄. (At the boundaries,

where there are only four grid boxes above or below x̄, both

V̄res and Q̄res are doubled for consistency.)

Likewise we can define analogous quantities for the origi-

nal parcels to be retained:

V̄ori(x̄, t) =
∑

i∈(x̄)
𝜙(xi − x̄)Vi, (23)

Q̄ori(x̄, t) =
∑

i∈(x̄)
𝜙(xi − x̄)qiVi, (24)

where (x̄) is the set of all parcels to be retained within the

eight grid boxes surrounding x̄ (with doubled values of V̄ori

and Q̄ori at the boundaries). The sums of these quantities,

V̄ori + V̄res and Q̄ori + Q̄res, respectively equal V̄ and Q̄ before

any parcels are removed.

The aim is to use V̄res and Q̄res to adjust Vi and qi so that

• the sums of Vi and of Qi over all parcels equate to the

original sums before any parcels were removed, and

• the sums of V̄ and Q̄ over all grid points also equate to the

original, and same, sums.

This adjustment can in fact be done in many ways. Here,

we adjust volumes and properties in proportion to the orig-

inal parcel volume Vi. This means that all parcels grow by

the same fraction (for reasons mentioned below). To ensure

global conservation, we must then divide V̄res and Q̄res by

V̄ori before interpolating the residuals to the parcel positions.

As a result, the new parcel volume and specific humidity are

obtained from

Vnew
i = Vi +

∑
x̄∈i

V̄res(x̄, t)
V̄ori(x̄, t)

𝜙(xi − x̄)Vi, (25)

qnew
i Vnew

i = qiVi +
∑
x̄∈i

Q̄res(x̄, t)
V̄ori(x̄, t)

𝜙(xi − x̄)Vi, (26)

where i is the set of all eight grid points at the corners of the

grid box containing parcel i. By direct calculation, the total
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volume is equal to

∑
i

Vnew
i =

∑
i

Vi +
∑

i

∑
x̄∈i

V̄res(x̄, t)
V̄ori(x̄, t)

𝜙(xi − x̄)Vi

=
∑

i
Vi +

∑
x̄

V̄res(x̄, t)
V̄ori(x̄, t)

∑
i∈(x̄)

𝜙(xi − x̄)Vi

=
∑

x̄
V̄ori(x̄, t) +

∑
x̄

V̄res(x̄, t) =
∑

x̄
V̄(x̄, t),

where the sum over i includes all retained parcels while

the sum over x̄ includes all grid points. Here we have used

Equation 13 to express the final sum in the second line as V̄ori.

Hence, sums over parcels equate to sums over grid points.

Similarly, the total volume-integrated specific humidity is

conserved; defining Qi ≡ qiVi, we have

∑
i

Qnew
i =

∑
i

Qi +
∑

i

∑
x̄∈i

Q̄res(x̄, t)
V̄ori(x̄, t)

𝜙(xi − x̄)Vi

=
∑

i
Qi +

∑
x̄

Q̄res(x̄, t)
V̄ori(x̄, t)

∑
i∈(x̄)

𝜙(xi − x̄)Vi

=
∑

x̄
Q̄ori(x̄, t) +

∑
x̄

Q̄res(x̄, t) =
∑

x̄
Q̄(x̄, t).

Indeed, all volume-integrated parcel properties are conserved.

Splitting and mixing are carried out at the end of every time

step. At this stage, we also ensure that no grid box has fewer

than a specified minimum number of parcels, nmin (default:

3), in order to ensure V̄ori(x̄, t) > 0 at each grid point x̄. If

fewer parcels are found, a single new parcel with volume Vi =
2Vmin is created at the centre of the grid box. To maintain

conservation, a fraction fV of the volumes V̄ori(x̄, t) of the eight

grid points at the corners of the grid box (in the set i) is

removed by creating residual volumes V̄res(x̄, t) (see below).

The fraction fV is given by

fV = 2Vmin

/∑
x̄∈i

V̄ori(x̄, t). (27)

Note that it is essential here to use the volume V̄ori associ-

ated with the parcels to be retained. The new parcel is also

assigned average properties found from the eight grid points.

For example, the parcel specific humidity is set to

qi =
∑
x̄∈i

Q̄ori(x̄, t)
/∑

x̄∈i

V̄ori(x̄, t). (28)

For consistency, we must reduce Q̄(x̄, t) (and all other

properties) by the same fraction fV . This is simply accom-

plished by subtracting fVQ̄ori(x̄, t), for all x̄ ∈ i, from the

residual field Q̄res(x̄, t), initially zero at all grid points. The

exact same operation is done for all properties, including vol-

ume. Hence, after all new parcels have been added (if any),

the residual fields may contain (negative) volume and other

volume-integrated properties which exactly compensate for

the parcel properties assigned.

Subsequently, we add the contributions of any parcels to be

removed, as in Equations 21 and 22, and update the remaining

parcels as in Equations 25 and 26, excluding any new parcels

created in grid boxes with too few parcels. The properties of

these new parcels are left unchanged. This is necessary to

ensure exact global conservation.

Although not implemented in the present algorithm, it is

possible to use the same procedure above to correct for errors

in volume conservation. Parcel advection does not ensure

incompressibility except in the limit of an infinite number

of parcels. To correct for this, we could determine a vol-

ume residue as above, but this time defined to be equal to

the difference between the grid box volume and the com-

puted parcel interpolated volume, ΔV − V̄(x̄, t). This residue

can then be interpolated back to the parcels to dilate their

volumes, adjusting other parcel properties to ensure that all

volume-integrated properties remain unchanged. However,

the numerical tests presented in section 4 indicate that errors

in volume conservation are small at least over the time-scale

of cloud development.

3.6 Time stepping

The time evolution is carried out using a fourth-order

Runge–Kutta method with an adaptive time step of length

Δt. At the beginning of each time step, the maximum

grid vorticity ‖𝝎‖max is calculated and Δt is set to

min(0.5∕‖𝝎‖max,Δtmax) where Δtmax is typically chosen to

be a quarter of the time interval between data saves. Notably,

there is no CFL condition. The time step is chosen entirely

for accuracy, and can be significantly larger than required in

grid-based models at high resolution. We have verified that

reducing Δt by a factor of 2 has a negligible impact on the

results at early to intermediate times (section 4 below); at later

times, errors amplify significantly, as expected in a turbulent

flow. Note that any other time-stepping method could have

been used.

A schematic of the procedures comprising the MPIC

algorithm is provided in Figure 1.

4 NUMERICAL TESTS AND PARAMETER
SETTINGS

We next examine the behaviour of the new MPIC model,

in particular its dependence on numerical parameter set-

tings, and illustrate how well the model compares with a

state-of-the-art conventional numerical model (the focus of

Böing et al., forthcoming). For this purpose, we study the

evolution of a moist, initially buoyant thermal located near

the ground level. The thermal rises at first through a neu-

trally stable lower atmospheric layer before encountering a

stable layer aloft. The initial fields of buoyancy b = bl and

fractional specific humidity q̃ = q∕q0 are shown in Figure 2

together with a schematic of the background environment.

Condensation (cloud formation) occurs once the thermal rises

past the lifting condensation level z = zc. The condensation

releases additional buoyancy, thereby increasing the vertical
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0.

1.

Initialise parcel state (separate programme)

2. Time step loop

Initialisation
1.1 Initialise dynamics
1.2 Initialise diagnostics, both gridded and subgrid level
1.3 Initialise log and read parcel state

3.

2.2 Parcel splitting
2.3 Parcel removal and creation
2.4 Diagnostics and parcel dump (at intervals)

2.1 RK-4 loop (4 stage)

Termination
3.1 Perform diagnostics
3.2 Perform parcel dump
3.3 Close log

2.1.1 Parcel to grid communication
Calculate gridded vorticity and buoyancy

2.1.2 Solve velocity on grid
Poisson solver with spectral filter

2.1.3 Solve vorticity tendency on grid, using spectral 
derivatives

2.1.4 Grid to parcel communication
Calculate parcel velocity and vorticity tendency

2.1.5 Update parcel properties
2.1.6 Update log file

FIGURE 1 A flow chart of the MPIC algorithm

acceleration, and takes the thermal past its level of dry neu-

tral buoyancy z = zd. Only when the thermal encounters the

level of moist neutral buoyancy z = zm (the nominal cloud

top) is the upward acceleration arrested. All these heights are

defined in terms of a non-mixing parcel which does not over-

shoot its height of neutral buoyancy. Throughout the evolution

of the thermal, significant turbulent entrainment occurs (see

below), so in fact only part of the thermal actually rises this

far. The remainder becomes increasingly well mixed with the

surrounding environment.

4.1 Non-dimensionalization

For convenience, we scale all variables in order to work

with the fewest parameter combinations possible. Lengths

are made dimensionless by taking the condensational scale

height 1∕𝜆 = 1 in Equation 5. Time is made dimension-

less by taking the characteristic squared buoyancy frequency

g𝜆Δ𝜃l0∕𝜃l0 = 1, where Δ𝜃l0∕𝜃l0 = 0.01 is a characteristic

fractional variation of the liquid-water potential temperature.

This gives a dimensionless gravity of g = 100. We scale

the specific humidity q by its saturation value q0 at ground

level (i.e. we use q̃ = q∕q0 in what follows), in terms of

which we obtain the following dimensionless expression for

the buoyancy b:

b = bl + bm max
(
0, q̃ − e−z) , (29)

where

bm =
gLq0

cp𝜃l0
. (30)

Here, we take L∕cp = 2, 500 K, q0 = 0.015 and 𝜃l0 =
300 K. This gives bm = 12.5. In terms of the original, dimen-

sional value of gravity g, the buoyancy b is scaled by the

characteristic value gΔ𝜃l0∕𝜃l0, which is here 1% of g.

4.2 Initialization

At the initial time t = 0, we place a spherical thermal of

weakly varying liquid-water buoyancy bl and uniform (frac-

tional) specific humidity q̃ = q̃th adjacent to the ground z = 0.

The thermal has radius R and is centred at x = (Lx∕2,Ly∕2,R).
To create an asymmetry in the subsequent evolution, we take

bl of the form

bl = bl th

(
1 +

e1x′y′ + e2x′z′ + e3y′z′

R2

)
, (31)

where x′ = x−Lx∕2, y′ = y−Ly∕2 and z′ = z−R, while e1, e2

and e3 are dimensionless constants. This preserves the mean

value of bl as well as the centre of mass of the perturbation.

The environment around the thermal extending to the base

of the stratified zone at z = zb is assumed to be well mixed,

with bl = 0 (without loss of generality) and having a uni-

form specific humidity q̃env a factor of 𝜇 times that in the

thermal, q̃th. We specify the lifting condensation level zc,

from which we obtain the specific humidity within the ther-

mal: q̃th = exp(−zc). In turn, given 𝜇, we obtain the specific

humidity in the environment around the thermal: q̃env = 𝜇q̃th.

Next we specify the relative humidity h = hb at z =
zb. This, together with the environmental specific humidity,

determines zb through zb = ln(hb∕q̃env). Finally, we specify

two further heights, the level of dry neutral stratification zd

for the thermal, and the level of moist neutral stratification

(the nominal cloud top) zm. From these values, we obtain the

thermal buoyancy

bl th = N2(zd − zb), where N2 = bm
e−zc − e−zm

zm − zd

(32)

is the squared buoyancy frequency in the stratified zone. This

follows from the requirements that (a) the thermal buoyancy

matches the background stratification at z = zd (normally

near or just above the condensation level zc), and (b) the

total buoyancy at cloud top z = zm matches the background

stratification, i.e.

bl th + bm

(
q̃ − e−zm

)
= N2(zm − zd) . (33)

The idea is that the thermal rises through the condensa-

tion level before its upward motion is inhibited at the level

of dry neutral stratification. Condensation will release buoy-

ancy, causing the thermal to accelerate until it reaches the

nominal cloud-top level.
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(a) (b) (c)

FIGURE 2 Initial distributions of (a) liquid water buoyancy bl and (b) specific humidity fraction q̃ in a vertical cross-section cutting through the initial

thermal. The basic-state stratification profile is shown in (c)

TABLE 1 List of physical parameters used in the simulations conducted. Units are included for
dimensional quantities; all other quantities are dimensionless

Physical parameter Value Comment

Mean liquid water potential temperature 𝜃l0 (K) 300 Default

Characteristic variation of 𝜃l0, Δ𝜃l0∕𝜃l0 0.01 Default

Non-dimensional condensational scale height 1∕𝜆 1.0 Default

Non-dimensional squared buoyancy frequency g𝜆Δ𝜃l0∕𝜃l0 1.0 Default

Saturation specific humidity q0 at ground level 0.015 Default

Scaled latent heat L∕cp (K) 2500 Default

Relative humidity h = hb at z = zb 0.8 Chosen

Condensation level zc 2.5 Chosen

Specific humidity ratio 𝜇 = q̃env∕q̃th 0.9 Chosen

Level of dry neutral stratification zd 4.0 Chosen

Level of moist neutral stratification zm 5.0 Chosen

Radius of spherical thermal R 0.8 Chosen

Thermal buoyancy asymmetry factors e1, e2 and e3 0.3, −0.4, 0.5 Chosen

Specific humidity fraction inside thermal q̃th 0.08208 Derived

Specific humidity fraction outside thermal q̃env 0.07388 Derived

Height of the top of the mixed layer zb 2.38222 Derived

Buoyancy frequency N in the stratified zone 0.97048 Derived

Thermal liquid water buoyancy blth 1.52369 Derived

Thermal fractional potential temperature anomaly (𝜃th − 𝜃l0)∕𝜃l0 0.01524 Derived

Latent buoyancy bm = gLq0∕(cp𝜃l0) 12.5 Derived

A full list of parameters used for the experiment conducted

is provided in Table 1.

4.3 Default numerical parameter settings

For testing purposes, we consider a computational domain

having side lengths Lx = Ly = 2𝜋 and a specified height

Lz (here also 2𝜋). This is large enough to accommodate the

condensational scale height 1∕𝜆, here unity. The upper bound-

ary has only a small influence until late times, t > 10.

The domain is divided into equal-sized grid boxes, with side

lengths Δx = Lx∕nx, Δy = Ly∕ny and Δz = Lz∕nz. Here, with

Lx = Ly = Lz we use an isotropic grid with nx = ny = nz = ng,

and choose ng = 128 as the default; other values are dis-

cussed below and in Böing et al. (forthcoming). As discussed

at the end of section 3, the time step Δt is adapted every

time step to be inversely proportional to the maximum vor-

ticity magnitude, i.e. Δt = 0.5∕‖𝝎‖max. This relationship is

justified below by comparing both smaller and larger time

steps (varying the prefactor 0.5 above). The only remaining

numerical parameters are the dimensionless maximum par-

cel stretch 𝛾max (default 4) and the minimum parcel volume

fraction V̂min = Vmin∕ΔV (default 1∕63). Below, we discuss

the impact of varying these parameters about their default

values.

4.4 Description of the flow evolution

To set the stage, we begin with a qualitative description of

the flow evolution as obtained using the default numerical

parameter settings. Images are rendered on a grid four times
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finer in each direction than the basic “inversion” grid (n3
g). In

fact any grid resolution could be used for the rendering, since

the parcels alone determine the field values but, given our

choice of the minimum parcel size, any finer rendering grid

would produce a grainy appearance. Details of the rendering

procedure may be found in Böing et al. (forthcoming).

Figure 3 illustrates a few stages in the flow evolution. Here

we show the total buoyancy b, specific humidity q̃, condensed

portion q̃c of q̃ (cloud amount), and the parcel vorticity mag-

nitude ‖𝝎‖, all in a vertical cross-section x = Lx∕2 slicing

through the centre of the thermal initially (other views are

similar). The parcel vorticity is shown in place of the total

vorticity since the former can be obtained directly on a fine

grid from the parcels and, moreover, dominates the resid-

ual correction required to make the total vorticity solenoidal.

The results shown compare closely with those obtained using

the Met Office/NERC cloud model (MONC) run at more

than double resolution (section 4.10 below and Böing et al.,
forthcoming).

At early times, the thermal deforms into a large vortex ring,

forming a strong updraught near its centre and entraining air

from the sides and below. This updraught is compensated

by subsidence mainly around the outskirts of the ring (not

shown). By time t = 2, part of the thermal has pushed through

the lifting condensation level at zc = 2.5 (corresponding to

z∕Lz ≈ 0.4 along the vertical axis) forming a small cap-like

cloud. The cap-like cloud is partially environmental air that

is pushed up by the actual thermal. The vorticity at this early

stage is concentrated in a narrow zone near the edge of the

thermal where horizontal gradients of b are largest. As time

advances, the thermal becomes progressively more turbulent,

entraining and mixing more low humidity air (see q̃c at t = 6

in particular). The vorticity partially collapses into a ring

with an intense core at t = 4, then subsequently destabilizes

and breaks down. This generates a multitude of billowing

fine-scale structures reminiscent of actual cumulus convec-

tion (e.g. q̃c at t = 4 in Figure 3). This process is described

in detail in Grabowski and Clark (1993). The turbulence at

the edge of a real cloud as it ascends is more intense than

in this simulation, but is better captured at higher resolution

(sections 4.9 and 4.10 below). By time t = 6, part of the ther-

mal reaches the level of moist neutral stratification zm = 5.0

(corresponding to z∕Lz ≈ 0.8), where it begins to spread out

and gradually dissipate. By the end of the simulation at t = 10,

the cloud has spread across most of the horizontal domain

and contains much weaker updraughts and downdraughts (not

shown).

This example serves to illustrate the rapid changes occur-

ring on small scales within clouds as a result of variations

in thermodynamic properties, as mentioned above. Modelling

this complexity, both accurately and efficiently, is a severe

challenge for any numerical model. We next examine how

robust the MPIC model is in faithfully capturing the evolu-

tion. In particular, we examine the dependence on various

numerical parameters, as well as on spatial and temporal

resolution.

4.5 Dependence on maximum parcel stretch

We first examine the maximum parcel stretch 𝛾max which is

used in Equation 20 to determine when a parcel should split

into two. The greater the maximum parcel stretch, the longer

a parcel stays intact. Here, we compare four values: 𝛾max = 2,

4 (the default), 8 and ∞ (for which splitting never occurs). In

Figure 4, we qualitatively illustrate the dependence on 𝛾max by

comparing cross-sections of the total buoyancy field b in each

simulation, at both an intermediate and a late time (t = 4 and

8). All simulations are closely comparable, but the one with

the smallest maximum stretch (𝛾max = 2) exhibits the greatest

differences overall. Evidently, too frequent splitting causes

numerical diffusion, removing small-scale features. On the

other hand, the case with no parcel splitting (𝛾rmmax = ∞) is

remarkably similar to the other two with moderate values of

𝛾max. Nonetheless, we argue that some parcel splitting is nec-

essary to more accurately resolve small-scale features, as well

as to represent the effect of small-scale mixing integrated over

the time evolution of the flow.

Differences between the simulations can be seen more

clearly in the kinetic energy spectrum (k) and in the par-

cel number density pvol(V̂), shown in Figure 5 at the same

times illustrated in Figure 4. The spectrum (k) is defined

as the sum of (ûû∗ + v̂v̂∗ + ŵŵ∗)∕2 over all wavevectors

k whose magnitude |k| lies between k − 1∕2 and k + 1∕2

(∗ denotes complex conjugation). Also, pvol(V̂)dV̂ gives the

number of parcels having a volume fraction lying between V̂
and V̂ + dV̂ . In practice pvol is computed using finite-sized

bins ΔV̂ uniformly spaced in log V̂ . In Figure 5, the case with

the smallest 𝛾max (= 2, black curve) exhibits the greatest dis-

crepancies, with noticeably less kinetic energy at small scales

(high total wavenumbers k). Likewise, the case with no split-

ting (magenta curve) has significantly less kinetic energy at

large and intermediate scales, and marginally greater kinetic

energy at small scales. In the parcel number density, pvol,

we can see that the high maximum stretch case 𝛾max = 8

(red curve) struggles to produce small parcels. (The magenta

curves remain unchanged since no parcels split in this case).

The low maximum stretch case 𝛾max = 2 (black curve) pro-

duces the greatest number of parcels, particularly at small

scales as expected. Note that the fluctuations seen in pvol at

larger volume fractions arise from splitting parcels by fac-

tors of 2 together with the low sample size. The fluctuations

diminish at later times (not shown) and are also weaker at

higher resolution.

Further differences are revealed by examining the evolu-

tion of global diagnostics such as field minima, maxima and

r.m.s. values (these diagnostics have been computed from

the gridded fields). In Figure 6, we show the time evolu-

tion of the r.m.s. velocity urms ≡ ‖u‖rms, the maximum
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FIGURE 3 Time evolution of (a, e, i, m, q) total buoyancy b, (b, f, j, n,,r) specific humidity q̃, (c, g, k, o, s) nominal cloud amount q̃c and (d, h, l, p, t) parcel

vorticity magnitude ‖𝝎‖. Time t increases downwards with t = (a–d) 2, (e–h) 4, (i–l) 6, (m–p) 8 and (q–t) 10. The fields in this and subsequent figures are

shown in a vertical cross-section cutting through the centre of the domain at x = Lx∕2

(total) vorticity magnitude 𝜔max ≡ ‖𝝎‖max, and the num-

ber of parcels n (with log10 scaling) for four values of 𝛾max

(these diagnostics are representative). Here, the case with no

parcel splitting (magenta curve) has significantly lower urms

and relatively high 𝜔max. This is found also for the large

maximum stretch case 𝛾max = 8 (red curve), albeit with a

smaller discrepancy in urms. The small maximum stretch case

𝛾max = 2 (black curve) compares closely with the default

case (𝛾max = 4, blue curve) for urms but shows much lower

values of 𝜔max. Collectively, these results, and others (not

presented) for 𝛾max = 1.5, 3 and 6, indicate that our default

choice 𝛾max = 4 produces the least anomalous behaviour

overall.

4.6 Dependence on minimum parcel volume fraction

We next consider the effect of the smallest parcel size, spec-

ified by the minimum volume fraction V̂min. Three values

are considered in Figure 7, namely V̂min = 1∕4.53 (large),

1∕63 (medium; default), and 1∕83 (small). Comparisons are

shown for t = 4 and t = 8 as before. Differences are slight

at t = 4 and mainly occur at the smallest scales, which are
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(a) (b) (c)

(g)

(d)

(e) (f) (h)

FIGURE 4 Comparison of the total buoyancy b at (a–d) t = 4 and (e–h) t = 8, for different values of the maximum parcel stretch 𝛾max: (a, e) 2, (b, f) 4, (c, g)

8 and (d, h) ∞

FIGURE 5 Kinetic energy spectra (k) at (a) t = 4 and (b) t = 8, together

with parcel number density pvol(V̂) where V̂ is the parcel volume fraction at

(c) t = 4 and (d) t = 8, for four different maximum stretch values: 𝛾max = 2

(black), 4 (blue), 8 (red) and ∞ (magenta). The kinetic energy spectra are

computed from the velocity field on a 1283 grid. The effect of the

de-aliasing filter is seen by the sudden drop in  near k = 128∕3. Here and

in subsequent figures, log denotes the base 10 logarithm

least predictable. However, by t = 8 larger-scale differences

emerge, which appear to be greater between the large and

medium values of V̂min than between the medium and small

values. A priori one expects the smallest V̂min to be most accu-

rate, since a wider range of scales is resolved in this case.

But this comes at a high computational expense (the number

of parcels is proportional to 1∕V̂min), and moreover there is

no explicit representation of the subgrid flow field to justify

retaining parcels well below the grid size.

Global measures such as the r.m.s. velocity urms and

the maximum vorticity magnitude 𝜔max confirm that the

two smallest volume fractions produce the most comparable

results. This is shown in Figure 8 along with the number of

parcels n. The red curve in these plots corresponds to the

largest minimum volume fraction. This case underestimates

both urms and 𝜔max, the latter even at early times (t > 1). Judg-

ing from the behaviour of n, there is an excessive removal of

small parcels, and these parcels typically contain the largest

vorticity magnitudes. From these results, and by examining

other measures such as the minimum and maximum vertical

velocity, we selected V̂min = 1∕63 as the default value, as a

compromise between accuracy and efficiency.

4.7 Dependence on time step

In the MPIC model, the time step Δt need only be chosen for

accuracy – there is no stability restriction. In this subsection

we examine three choices for Δt differing by factors of two:

Δt = 1∕‖𝝎‖max, 0.5∕‖𝝎‖max (the default), and 0.25∕‖𝝎‖max.

The inverse scaling on maximum vorticity magnitude in the

domain ensures that the most rapidly spinning motions are

at least marginally resolved. We have also tested an inverse

scaling on the maximum velocity gradient, which is a bet-

ter measure of how rapidly parcel trajectories can change.

This produces closely comparable results since in practice the

maximum velocity gradient is roughly proportional to maxi-

mum vorticity magnitude. However, computing the velocity

gradient requires extra computational work, so we have taken

the simpler approach here.

Figure 9 compares the three time step choices, with time

step decreasing from left to right, at the same two times t = 4
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FIGURE 6 Time evolution of (a) the r.m.s. velocity, (b) the maximum vorticity magnitude and (c) the number of parcels, for four different maximum stretch

values: 𝛾max = 2 (black), 4 (blue), 8 (red) and ∞ (magenta)

(a) (b) (c)

(d) (e) (f)

FIGURE 7 Comparison of the total buoyancy b at (a–c) t = 4 and (d–f) t = 8, for different values of the minimum parcel volume fraction V̂min: (a, d) 1∕4.53,

(b, e) 1∕63 and (c, f) 1∕83

and 8 illustrated in the previous comparisons. At t = 4,

differences are almost negligible. Larger differences emerge

by t = 8, but they are generally less significant than seen

either for variations in 𝛾max or V̂min (cf. Figures 4 and 7).

Again the two smallest time steps are most comparable apart

from the fine details. Differences in global measures such as

urms and 𝜔max are also much less significant (not shown). In

short, the dependence on time step is particularly weak. We

have selected Δt = 0.5∕‖𝝎‖max as the default setting, but

if necessary a value twice this large could be used to lower

computational cost with only a small loss of accuracy.

4.8 Incompressibility

As already discussed above, parcel-based methods do not

guarantee incompressibility (or mass conservation in gen-

eral), in the sense of parcel volume at each grid point remain-

ing homogeneous. Advection of a finite number of parcels

inevitably leads to a discrepancy between the grid box volume

ΔV and its parcel-interpolated approximation V̄(x̄, t). How-

ever, we have found that the MPIC model approximates the

incompressibility constraint accurately, as shown below. This

is likely due to the fact that a large number of parcels (10s
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FIGURE 8 Time evolution of (a) the r.m.s. velocity, (b) the maximum vorticity magnitude and (c) the number of parcels, for three different minimum parcel

volume fractions: V̂min = 1∕83 (black), 1∕63 (blue) and 1∕4.53 (red)

(a) (b) (c)

(d) (e) (f)

FIGURE 9 Comparison of the total buoyancy b at (a–c) t = 4 and (d–f) t = 8, for different time steps Δt: (a, d) 1∕‖𝝎‖max, (b, e) 0.5∕‖𝝎‖max, and (c, f)

0.25∕‖𝝎‖max

to 100s) contribute to the calculation of V̄(x̄, t) at each grid

point x̄.

To demonstrate this, we analysed a 2563 simulation of the

rising thermal test case at times t = 0, 2, ..., 10. First, we

computed the standard deviation in the volume fraction

𝜎(Δz) =
√

n−3
g

∑
x̄
{V̄(x̄, t)∕ΔV − 1}2, (34)

where the sum is taken over all grid points and ng =
256 in this case. Here Δz = Lz∕ng is the z grid length

(recall Lz = 2𝜋). We then performed a 1-2-1 average in

each direction to obtain V̄ on a grid twice as coarse, then

repeated the above calculation for the variance (in which Δz

is doubled). We continued averaging to successively coarser

grids until we reached a 43 grid, thereby calculating the vari-

ance 𝜎(Δz) as a function of scale Δz. In this way, we gain an

understanding of how errors in volume conservation depend

on scale.

The results are shown in Figure 10 in log–log scaling, for

all six times analysed. First, the error grows in time, though it

rapidly saturates. Second, the error is small: less than 5% for

the variance at the smallest scale and at the latest time. Hence,

over the lifetime of cloud development in this test case, the

errors in incompressibility are small. For much longer simu-

lations, it may be necessary to correct this error. This would
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FIGURE 10 Volume fraction variance 𝜎 versus grid scale Δz (or scale of

averaging) at times t = 0 (black), 2 (blue), 4 (red), 6 (magenta), 8 (green)

and 10 (cyan)

require a minor modification of the numerical method, as

discussed above in section 3.5, and will be implemented only

if the errors at long times prove significant.

4.9 Dependence on resolution

Finally, we examine the dependence on resolution ng. This has

by far the greatest impact among all parameter variations con-

sidered. But increasing resolution also has the highest price

tag; it is not something that can be done indefinitely.

Ideally, one would hope that the results converge with

increasing resolution, but this is unlikely in the present model

framework. Each increase in resolution activates new and

intense motions, particularly in vorticity, leading to stronger

turbulence, and thereby greater entrainment and mixing. In

fact, one can only hope for convergence at the large to

intermediate scales, and expect the loss in predictability to

move upscale as time advances. This is because the scales

of motion below any fixed scale do eventually impact those

above it, due to nonlinear interactions. The importance of

those interactions controls the predictability time of any given

scale.

Figure 11 shows the total buoyancy field b simulated at

three resolutions, increasing by factors of 2 (in each coordi-

nate direction) from left to right, with the 1283 case previously

illustrated shown in the middle. Here, times t = 2, 4, 6 and

8 are compared. At all times, there is a substantial increase

in complexity of the flow field with resolution. Moreover, the

small-scale structures grow in intensity, predominantly in the

vorticity field (see below). At the earliest time shown, t = 2,

the large-scale features are captured at all resolutions, with

the agreement between each increase in resolution improv-

ing and extending to smaller scales. This is not immediately

obvious in this visual comparison because we are not compar-

ing images filtered to the same resolution. But convergence

is seen in the kinetic energy spectra  shown in Figure 12,

which includes a lower-resolution case with ng = 32. At

the earliest time shown, t = 2, the spectra compare well

across all commonly resolved scales. Then, as time advances,

predictability is lost for progressively larger scales. In the

spectra, this is seen by the splaying apart of the various curves

for different resolutions. The agreement between the spectra

erodes in time, though as expected the two highest resolutions

show the closest agreement over the largest range of scales for

the longest times.

At the highest resolution, the rapid crinkling of the buoy-

ancy field b is due to the generation of intense vortical

structures on the sharp interface between the thermal and the

surrounding environment as the thermal rises. With increas-

ing resolution, the crinkling occurs on smaller scales at a

faster rate. This is limited ultimately by diffusion at scales

well beyond the reach of any current numerical model.

Despite this lack of convergence at small to intermedi-

ate scales, the large-scale structure of the rising thermal is

captured at all resolutions, though more realistically at higher

resolution.

The convergence with resolution can also be seen in the

global measures such as urms and 𝜔max shown in Figure 13

together with the total number of parcels n. In urms, a measure

of the kinetic energy content of the flow, the two highest res-

olutions ng = 128 and 256 (red and magenta curves) remain

closest for longest, and only depart significantly by around

t = 5. At progressively lower resolution, the curves depart

more strongly and at earlier times from the highest-resolution

results for urms. On the other hand, there is no convergence

for the maximum vorticity 𝜔max. Each doubling in resolution

doubles 𝜔max at early times. This is simply a consequence of

the fact that vorticity is generated by horizontal gradients in

buoyancy, and the initial buoyancy is not continuous across

the thermal boundary. Thus, the maximum numerical buoy-

ancy gradient is inversely proportional to the horizontal grid

spacing, i.e. proportional to ng. Nonetheless this very large

variation in 𝜔max has little impact on urms, which is an inte-

grated measure of the vorticity throughout the domain. That

is, high localized vorticity values do not appreciably impact

the velocity field, in an average r.m.s. sense. Finally, the num-

ber of parcels n increases in proportion to the total number

of grid boxes n3
g, since the number of parcels per grid box is

roughly the same in all cases.

While the resolutions examined here are modest, they are

high compared to what can be presently afforded by GCMs

and even cloud-permitting models on a global domain. If

MPIC can still resolve general aspects of moist processes

at very coarse resolutions, then MPIC would offer a poten-

tially significant improvement in modelling such processes.

To examine this, we consider three coarser resolutions, ng =
8, 16 and 32. When ng = 8, the grid length is equal to the

radius of the thermal. Figure 14 compares the total buoyancy

field b at these three resolutions, at times t = 2, 4, 6 and 8.

The higher resolution results may be found in Figure 11 for

comparison. Remarkably, broad features of the evolution are

still captured at these resolutions, with only the coarsest res-

olution standing out to some extent. At this resolution, the

thermal development is a little delayed, yet at later times a
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FIGURE 11 Comparison of the total buoyancy b at t = (a–c) 2, (d–f) 4, (g–i) 6, and (j–l) 8, for resolutions ng = (a, d, g, j) 64, (b, e, h, k) 128 and (c, f, i, l) 256

similar amount of condensation occurs (see below). Despite

the very poor resolution, MPIC still manages to resolve moist

convection without any parametrizations. The key advantage

of MPIC is the explicit representation of sub-grid processes

via parcels.

We conclude this comparison across resolution by an exam-

ination of the nominal cloud amount q̃c, shown in Figure 15

at two times, first when the cloud is at its most developed

stage (t = 6), and second when the cloud has begun to decay

(t = 8). Here, resolutions ng = 64, 128 and 256 are compared.

While the lower resolution captures only gross features, the

two higher resolutions begin to exhibit billowing fine-scale

structures observed in real cumulus convection. These images

provide a glimpse into the detail which may be captured by

the MPIC model at yet higher resolution. Such detail is likely

to be important for entrainment and mixing, and as such the
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FIGURE 12 Kinetic energy spectra (k) at (a) t = 2, (b) 4, and (c) 6 for four different resolutions: ng = 32 (black), 64 (blue), 128 (red) and 256 (magenta)

FIGURE 13 Time evolution of (a) the r.m.s. velocity, (b) the maximum vorticity magnitude and (c) the number of parcels, for four different resolutions:

ng = 32 (black), 64 (blue), 128 (red) and 256 (magenta)

MPIC model may facilitate the study and understanding of

these processes in real clouds.

To understand what MPIC may offer for resolving clouds

in global models, Figure 16 shows the cloud amount cap-

tured at low resolutions, specifically ng = 8, 16 and 32.

All resolutions exhibit cloud formation, albeit without any of

the fine detail seen at higher resolutions in Figure 15. Nev-

ertheless, the ability of MPIC to capture cloud formation at

such coarse resolutions is promising.

4.10 Comparison with MONC

In this paper, we have tested only the internal consistency of

the MPIC model. A detailed comparison with an entirely dif-

ferent numerical model, the Met Office/NERC cloud model

(MONC), is the focus of Böing et al. (forthcoming). Here

we simply illustrate how well MPIC compares with MONC.

Not one aspect of the methods used in the two models

is similar, except that both models attempt to solve the

same equations and start with the same initial condition.

MONC employs either a TVD (total variation diminish-

ing) advection scheme or a Smagorinsky subgrid model

to control small-scale motions (full details are available in

Böing et al., forthcoming). MONC uses finite differences

on a staggered grid, and takes velocity, buoyancy and spe-

cific humidity to be the prognostic variables, and is entirely

Eulerian.

Given the substantial differences in model formulations,

the results shown in Figure 17 display surprisingly close

correspondence. This figure zooms in on part of the domain

at t = 6, with results for two MONC simulations at 10243

resolution using different subgid models, and for an MPIC

simulation at 3843 resolution showing both reconstructed and

gridded fields. (Note that the vertical} velocity w is avail-

able only on the grid.) Overall, the comparison is excellent,

though details differ as expected in a highly turbulent flow

such as this. The vorticity amplitudes in MPIC are sub-

stantially higher than in MONC, due to MPIC’s explicit

subgrid representation. In other words, MPIC can carry sub-

stantially more information at small scales despite using a

coarser grid resolution (this is examined further in Böing et
al., forthcoming). Notably, the differences in the two MONC

simulations are comparable to the differences between the

MONC and the MPIC simulation.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 14 Comparison of the total buoyancy b at t = (a–c) 2, (d–f) 4, (g–i) 6 and (j–l) 8, for resolutions ng = (a, d, g, j) 8, (b, e, h, k) 16 and (c, f, l) 32

5 CONCLUSIONS

In this paper, we have outlined and tested a noncon-

ventional, alternative numerical method for modelling

moist atmospheric convection. The proposed “Moist

Parcel-In-Cell” (MPIC) model is currently only a prototype

for modelling real convection, and has been developed in an

idealized manner simply to demonstrate its potential in this

context. In a forthcoming paper (Böing et al., forthcoming),

we carry out a detailed comparison of the MPIC model

with a conventional convection-permitting model, the

Met Office/NERC cloud model (MONC). There, we show

that MPIC offers distinct advantages primarily due to its
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(a) (b) (c)

(d) (e) (f)

FIGURE 15 Comparison of the condensed portion q̃c of the specific humidity (nominal cloud amount) at t = (a–c) 6 and (d–f) 8, for resolutions ng = (a, d)

64, (b, e) 128 and (c, f) 256

(a) (b) (c)

(d) (e) (f)

FIGURE 16 As Figure 15, but for resolutions ng = (a, d) 8, (b, e) 16, and (c, f) 32

explicit subgrid model of convection and its exceptionally

weak numerical diffusion.

To facilitate further realistic developments of the model,

the next step is to incorporate MPIC into MONC as both an

alternative advection scheme and an alternative dynamical

core. This will enable full parallelization of the model, permit

studies at higher resolution, and allow access to a number of

useful design features in MONC.
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FIGURE 17 (a, d, g, j) Liquid water cloud amount q̃c, (b, e, h, k) magnitude of the vorticity ‖𝝎‖ and (c, f, i, l) vertical velocity w in MONC and MPIC at t = 6.

Only part of the domain is shown. For MPIC, both (j, k, l) grid scale fields and (g, h, i) fields reconstructed using a detailed interpolation algorithm are shown

There are a number of extensions under consider-

ation. A priority is to replace the present idealized

formulation of saturation specific humidity with a more accu-

rate pressure/temperature-dependent formulation. Another

priority| is to allow for surface heating and moisture fluxes, to

enable studies of sustained or cyclic convection. We also plan

to relax the incompressible Boussinesq approximation to per-

mit a more accurate treatment of deep convection, either by an

anelastic formulation or a fully compressible one. Finally, we

are currently attempting to include cloud microphysical pro-

cesses by evolving a droplet size distribution and including a

description of precipitation.
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