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Symmetric Shape Morphing for 3D Face and Head Modelling

Hang Dai1 Nick Pears1 William Smith1 and Christian Duncan2

1 Department of Computer Science, University of York, UK
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Abstract— We propose a shape template morphing approach
suitable for any class of shapes that exhibits approximate
reflective symmetry over some plane. The human face and
full head are examples. A shape morphing algorithm that
constrains all morphs to be symmetric is a form of deformation
regulation. This mitigates undesirable effects seen in standard
morphing algorithms that are not symmetry-aware, such as
tangential sliding. Our method builds on the Coherent Point
Drift (CPD) algorithm and is called Symmetry-aware CPD (SA-
CPD). Global symmetric deformations are obtained by removal
of asymmetric shear from CPD’s global affine transformations.
Symmetrised local deformations are then used to improve the
symmetric template fit. These symmetric deformations are fol-
lowed by Laplace-Beltrami regularized projection which allows
the shape template to fit to any asymmetries in the raw shape
data. The pipeline facilitates construction of statistical models
that are readily factored into symmetrical and asymmetrical
components. Evaluations demonstrate that SA-CPD mitigates
tangential sliding problem in CPD and outperforms other com-
peting shape morphing methods, in some cases substantially. 3D
morphable models are constructed from over 1200 full head
scans, and we evaluate the constructed models in terms of age
and gender classification. The best performance, in the context
of SVM classification, is achieved using the proposed SA-CPD
deformation algorithm.

I. INTRODUCTION

Point set registration is a key component in many tasks,

such as 2D/3D image registration, morphable model con-

struction and shape recognition. The goal is to register a

source point set to a target point set, where typically the

source point set is iteratively transformed and the target point

set is fixed. The aim is to align the source to the target with

minimal error, often requiring non-rigid deformation of the

source. If the algorithm converges successfully, this yields

a set of point pairs that are in close proximity across the

source and target. The two shapes then have their points (or

a subset of their points) in correspondence, although there

will be some form of positional error distribution.

Point set registration can be used to register data to data, or

some form of shape template to data - here we are interested

in the latter. Thus we refer to the source point set as the

template and the target point set as the data. In particular,

we wish to register a 3D shape template of the human head

to a collection of raw 3D images of the human head. These

have missing parts and some level of noise. The end result

is a set of deformed templates (one per 3D image) that share

the same number of vertices and the same triangulation,
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Fig. 1. Symmetry contour comparisons after template deformation. Blue
points are the symmetry contour on the target data. Red points are from the
symmetry contour indices of the source template. The deformed templates
in (iii)-(v) show varying amounts of tangential sliding.

as defined by the template topology. The set of deformed

templates allows us to generate a statistical shape model

comprised of a mean shape and the (major) modes of shape

variation via the use of standard alignment techniques, such

as Generalised Procrustes Analysis (GPA) and standard linear

morphable model construction techniques (PCA).

Our work builds on Myronenko and Song [1], who derived

the Coherent Point Drift (CPD) point registration algorithm

in the context of both global affine deformations (CPD-

affine) and local non-rigid deformations (CPD-nonrigid). Our

hypothesis is that a restriction to symmetric deformations

may improve template morphing processes for (near) sym-

metric shapes; for example, it will not be possible for the

sagittal symmetry contour of the template to deform via

shearing and tangential surface sliding, which can occur in

CPD-affine and CPD-nonrigid respectively.

Our approach requires strong but not perfect symmetry,

as a final stage in our algorithm morphs the symmetrically

deformed template to any asymmetries in the data. Therefore,

our algorithm also permits the decomposition of shape into

symmetric and asymmetric components, which is an inter-

esting aspect of the study of shape variations and covaria-

tions within datasets. We call our method Symmetry-aware

CPD (SA-CPD). Evaluations demonstrate that the proposed

method outperforms other template morphing (point regis-

tration) methods in the elimination of shape difference and

sliding error. As can be seen in Fig.1, the shape difference in

(iii)-(v) is small. However, (iii) has a large tangential sliding

error, whereas (iv) and (v) have small sliding error, with

(v) being the best. The proposed method can also deal with

noise, outliers, and missing data. We also provide a means

to perform gender and age classification from 3D shape.

The proposed template deformation method gives the best

performance in both gender and age classification tasks, as

compared to other leading template deformation algorithms.

In the next section we overview related work. Section978-1-5386-2335-0/18/$31.00 c©2018 IEEE



III presents our proposed SA-CPD algorithm, while Sec. IV

presents our evaluations.

II. RELATED WORK

Symmetry has been studied widely in both the Computer

Graphics community [2], [3] and the Computer Vision com-

munity [4], [5], [6]; for example Mitra et al’s method of

symmetrisation [2] is widely used and can be employed

for registration of articulated bodies. However, the authors

themselves state that is not suitable for computing correspon-

dence for general models, e.g. in order to perform complex

morphing operations.

The Iterative Closest Points (ICP) algorithm [7], [8] is the

standard rigid-motion registration method. Several extensions

of ICP for the nonrigid case were proposed [9], [10], [11],

[12], [13], [14]. One such method is based on modelling the

transformation with thin plate splines (TPS) [15] followed

by robust point matching (RPM) and is known as TPS-RPM

[16]. Amberg et al. [9] defined the optimal-step Nonrigid

Iterative Closest Points (NICP) framework. Recently Booth

et al. [10] used the same NICP template morphing approach

with error pruning to built a Large Scale Facial Model

(LSFM). Li et al. [17] show that using proximity heuristics

to determine correspondences is less reliable when large de-

formations are present. Global correspondence optimization

solves simultaneously for both the deformation parameters

and correspondences [17].

Myronenko et al. consider the alignment of two point

sets as a probability density estimation [1] and they call

the method Coherent Point Drift (CPD). There is no closed-

form solution for this optimisation, so it employs an EM

algorithm to optimize the Gaussian Mixture Model (GMM)

fitting. Algorithms are provided to solve for several shape

deformation models such a affine (CPD-affine) and generally

non-rigid (CPD-nonrigid). The ‘non-rigid’ motion model in

[1] employs an M ×M Gaussian kernel G for motion field

smoothing, and the M-step requires solving for an M × 3
matrix W that generates the template deformation (GMM

motion field) as GW. Such motion regularisation is related

to motion coherence, and inspired the algorithm’s name.

The non-rigid extensions of ICP have good performance

in shape difference elimination but have problems in over

fitting and point sliding. TPS-RPM is slow in large-scale

point set registration [18], [19], [20], [21], [22]. The CPD

method was has been extended by various groups [23], [24],

[25], [26]. Compared to TPS-RPM, CPD offers superior

accuracy and stability with respect to non-rigid deformations

in presence of outliers. A modified version of CPD imposed a

Local Linear Embedding topological constraint to cope with

highly articulated non-rigid deformations [27]. However, this

extension is more sensitive to noise than CPD. A non-rigid

registration method used Students Mixture Model (SMM) to

do probability density estimation [28]. The results are shown

to be more robust and accurate on noisy data than CPD.

Dai et al. [29] proposed a hierarchical parts-based CPD-LB

morphing framework to avoid under-fitting and over-fitting.

Fig. 2. Symmetry aware CPD process. The left dashed outline shows
alignment processes applied to the input data. The right dashed outline
shows deformation processes applied to the template data. All but the final
regularised projection are symmetric deformations.

It overcomes the sliding problem to some extent, but the end

result still has a small tangential sliding error.

III. SYMMETRY-AWARE COHERENT POINT DRIFT

We propose a CPD-based morphing process that only per-

mits symmetric deformation, called Symmetry-aware CPD

(SA-CPD). An overview of the process is shown in Fig. 2.

This consists of (i) a global symmetric deformation, which

is a symmetrised affine transformation, derived from CPD-

affine and (ii) a local symmetric deformation, derived from

CPD-nonrigid. Note that small residual asymmetries can

be accounted for by using a final regularised closest-point

projection of the symmetrically deformed template onto the

data mesh, which is the final step shown in Fig. 2. The

remainder of this section describes the component processes

in Fig. 2 in more detail.



A. Approximate input scan alignment

The data in our Headspace dataset is not pose normalised

and needs to be aligned to an approximate frontal pose,

such that it approximately matches the pose of the template.

This does not need to be accurate. It is sufficient that the

initial alignment process reorientates the input scan such

that it is within the convergence basin of CPD-affine. This

alignment approach was described in our previous work [29].

In brief summary, our 3D input scans have an associated

and registered colour-texture channel from which we detect

2D features using the approach of Zhu and Ramanan [30].

These 2D points are then projected to 3D points allowing

pose normalisation by reorientating the detected 3D features

to a template set of desired positions. The procedure was

successful on all 1212 scans tested in the Headspace dataset.

B. CPD-affine for global symmetric deformation

The global scale parameter in CPD’s so-called ‘rigid’

deformation formulation (a similarity transform) is often

insufficiently general to give good deformation results. We

prefer to use anisotropic scaling, which allows each dimen-

sion of the template to be scaled independently. Of course,

the affine motion model can express this, but it also allows

for XY and XZ shear, which are not permitted when the

symmetry plane is at x = 0, although YZ shear is. The

isotropically-scaled similarity motion model (termed ‘rigid’

in [1]) is given as:

T (ym;R, t, s) = sRym + t (1)

and the analysis to extract the optimal motion employs

the orthogonality constraint RTR = I. If we augment

the isotropic scale, s, to anisotropic scaling matrix Sa =
D(sx, sy, sz), and we include a symmetric shear, we have a

non-rigid symmetric transformation:

Usx =





sx 0 0
0 sy m
0 0 sz



 , (2)

then the motion model is more flexible than the similarity

case, but is restricted to symmetric deformation and becomes:

T (ym;R,Usx, t) = RUsxym + t (3)

where the subscript sx denotes that the deformation is

symmetric about the X = 0 plane. We can optimise for

CPD’s global symmetric motion (R,Usx, t) and variance

(σ2) parameters directly, but this is complicated as, in

addition to the orthogonality constraint on R, we need to

handle the structural constraint on Usx. An alternative is

to optimise with respect to a general affine motion, with the

translation component expressed seperately, i.e. Ta = [B, t].
This is a more straightforward unconstrained optimisation,

and the solution is presented in [1], which here we term

CPD-affine. We then determine how to extract the nearest

symmetric deformation to the general affine transformation.

We achieve this by decomposing the affine transformation

into a rigid part (a rotation) and a non-rigid part:

B = RU (4)

where U is an upper-triangular matrix with anisotropic

scalings on its diagonal and shears on its off-diagonal. Due

to the orthogonality of R, we have equivalent symmetric

matrices such that

BTB = UTU (5)

The known left side of the above equation is real and square-

symmetric, and so we can form its Cholesky decomposition

as:

BTB = LTL (6)

and we set U = LT as the upper-triangular matrix repre-

senting non-rigid deformation. We then extract the rotation

matrix as

R = BU−1 (7)

Given we have U, we can zero any non-symmetric shears

in the X-Y and X-Z planes by zeroing the off-diagonal

elements, in the first row of that matrix to give a deformation

matrix Usx. Finally we can reconstruct the symmetrised

affine matrix from its rigid and non-rigid parts as:

B = RUsx (8)

Recalling the template deformation model from Eqn. 3,

we split the update across the template and data such that

the (inverse) rigid part of the affine update is applied to

the data and the non-rigid part is applied to the template.

The intent is to maintain the template in a frame where

its sagittal symmetry plane is coincident with the X = 0
plane, thus maintaining simplicity of form in any reflection

matrix required for subsequent processing. Thus we update

M template points ym non-rigidly as:

ym ← Usxym, m = (1 . . .M) (9)

and N data points xn rigidly as:

xn ← RT (xn − t), n = (1 . . . N). (10)

These operations are indicated in the process flow in Fig. 2.

C. CPD-nonrigid for local symmetric deformation

We now propose to find the nearest (LS sense) local

symmetric deformation to the non-rigid component of any

CPD-nonrigid deformation. For the required local shape

deformation, we need to ensure that the displacement of

proper symmetric point pairs is reflected across the symmetry

plane. We assume the template maintains the pose of its

symmetry plane on the Y Z axis, with the inverse rigid

motion being applied to the data, as described in the previous

section.

Non-rigid CPD displaces the template,Y, according to

some displacement function, v:

T (Y, v) = Y + v(Y) (11)

The general non-rigid motion can be considered to incor-

porate some (possibly zero) global-symmetric deformation.



Hence, we decompose the displacement function as global

and local symmetric displacements:

v(Y) ≈ vsg(Y) + vsl(Y) (12)

Our aim is to employ non-rigid CPD to generate the small

displacements v(Y), which can then be decomposed, to

some approximation, into its symmetric global (sg) and

symmetric local (sl) components. The vector field v(Y)
will be a smooth motion field, with CPD-nonrigid using a

Gaussian kernel to ensure smoothness. Any (small) global

symmetric deformation, vsg(Y), contained within this can be

determined from the process described in Sec. III-B, using

the template points before and after the non-rigid deforma-

tion as the initial points and target points of this incremental

global-symmetric deformation respectively. Finally, we need

to find an optimal, symmetrised, residual motion field vsl(Y)
in Eqn. 12, after vsg(Y) is subtracted from v(Y).

1) Notation: Here we define notation and suggest a simple

left-right data structuring that allows a simple formulation of

symmetry maintenance. We represent the template motion

field as a matrix V ∈ R
M×3. or as a vector v ∈ R

3M =
vec(V) = [vx1

, vy1
, vz1 , . . . , vzM ]T . The mth vertex motion

in the template, vm ∈ R
3,m ∈ [1,M ] is given by vm =

[v3m−2, v3m−1, v3m]T . Our CPD-based template morphing

algorithm aims to maintain template extrinsic symmetry and,

for any vertex motion m, its symmetric partner is given by

sym(m). Vertices (motions) lying on the symmetry plane are

self-symmetric, i.e. m = sym(m).
The template is composed of M = 2P + S vertices, S of

which are self-symmetric, leaving P = (M − S)/2 pairs of

proper symmetric vertices (hence the notation P , not to be

confused with probability discussed earlier). Without loss of

generality, we assume that the ordering of vertices is such

that the proper-symmetric vertices on one side of the mesh

(e.g. left) come first, followed by the self-symmetric vertices

and finally the proper-symmetric vertices on the other (e.g.

right) side. Let the residual local template motions, not

explained by globally symmetric deformations, be defined

as;

v(Y)− vsg(Y) = v =





vleft

vself

vright



 (13)

with vertex motion selection matrices:

vleft = Sleftv, vself = Sselfv, vright = Srightv (14)

where

Sleft =
[

I3P 03P×3(P+S)

]

∈ {0, 1}3P×3M ,

Sright =
[

03P×3(P+S) I3P
]

∈ {0, 1}3P×3M ,

Sself =
[

03S×3P I3S 03S×3P

]

∈ {0, 1}3S×3M

are selection matrices that select the proper symmetric ver-

tices from the left and right halves of the template and the

self symmetric vertices respectively. The vectors vleft and

vright are assumed to appear in symmetry pair order and so

the symmetry operator has a very simple form:

sym(m) =











m+ P + S if 1 ≤ m ≤ P

m if P + 1 ≤ m ≤ P + S

m− P − S if P + S + 1 ≤ m ≤M

(15)

2) Proper symmetric deformation: We define a reflection

in the x = 0 symmetry plane by the matrix F, where

F =





−1 0 0
0 1 0
0 0 1



 . (16)

and we define vs
left as the symmetric-left non-rigid local

motion field that we wish to recover (symmetric deformation

is distinguished from non-symmetric by the superscript). The

required symmetric-right motion is recovered by a reflection

of this. The reflection can be applied to the P vertices on

the left side of the template motion by

G(P ) = IP ⊗ F (17)

so that

vs
right = G(P )vs

left (18)

is the reflection of vs
left (we use ⊗ to denote the Kronecker

product). Then we can formulate the computation of a proper

symmetric motion field as:
[

IP
G(P )

]

vs
left =

[

Sleft

Sright

]

v (19)

and we solve this linear LS problem for the symmetric-left

motion vs
left and we recover the right symmetric motion as

from Eqn. 18.

3) Self-symmetric deformation: Finally, we require the

motion of the self-symmetric points on the template symme-

try plane to be restricted to that plane. The closest in-plane

motion vectors to those of CPD-non-rigid are obtained by

projecting to the x = 0 plane with matrix, Px

Px =





0 0 0
0 1 0
0 0 1



 . (20)

we define

Px(S) = IS ⊗Px (21)

and the optimal S self-symmetric vertices vsym
s

are com-

puted as:

vs
self = Px(S)Sselfv (22)

D. Regularised projection using Laplace-Beltrami

After symmetric template deformation, point projection

to the aligned input data can eliminate any (normal) shape

error. The template shape before and after this projection

represents the symmetrised and non-symmetrised versions of

template deformation respectively. Point projection is fragile

if the input data is incomplete or noisy and may cause

large artefacts. We overcome this by treating the projection

operation as a mesh editing problem with two ingredients.

First, position constraints are provided by those vertices with



mutual nearest neighbours between the deformed template

and raw data. Using mutual nearest neighbours reduces

sensitivity to missing data. Second, regularisation constraints

are provided by the Laplace-Beltrami (LB) operator which

retains the local structure of the mesh. We write the LB mesh

editing problem as a linear system of equations. Given the

vertices of a data scan stored in the matrix X ∈ R
N×3 and

the deformed template obtained by CPD whose vertices are

stored in the matrix Y ∈ R
M×3, we define the selection

matrices S1 ∈ [0, 1]Q×M and S2 ∈ [0, 1]Q×N as those that

select the Q vertices with mutual nearest neighbours from

deformed template and data respectively. This linear system

can be written as:
(

λL
S1

)

Yproj =

(

λLY
S2X

)

(23)

where L ∈ R
M×M is the cotangent Laplacian approximation

to the LB operator and Yproj ∈ R
M×3 are the projected

vertex positions that we wish to solve for. The parameter λ
weights the relative influence of the position and regularisa-

tion constraints, effectively determining the ‘stiffness’ of the

projection. As λ → 0, the projection tends towards nearest

neighbour projection. As λ → ∞, the deformed template

will only be allowed to rigidly transform.

IV. EVALUATION

We evaluate several deformation methods qualitatively

and quantitatively using 1212 3D images in the Headspace

dataset [29], [31], [32], which will be made public. The fol-

lowing subsections describe (A) qualitative and quantitative

tangential sliding evaluation, (B) robustness to noise, and (C)

gender and age classification performance using SVMs.

A. Tangential sliding evaluation

1) Qualitative Evaluation: We compare our method with

NICP [9], the LSFM pipeline [10] (an NICP extension [9]),

Li‘s method [17], standard CPD (affine and nonrigid) [1]

and CPD-LB [29]. Fig.3 illustrates deformation methods

applied to the first scan in the dataset. All methods excluding

the proposed and CPD-affine have observable tangential

sliding problems. However, CPD-affine by itself significantly

underfits to the target shape, some form of more flexible

yet non-sliding deformation is required, as is provided by

our method. We apply our method to over 1212 subjects. In

order to demonstrate performance, we build a 3D morphable

model [33], [34] based on the deformation results. (A video

is included in the supplementary material.) As shown in

Fig.4, the symmetry contour is stable in the middle when

shape is varied from +3SDs to -3SDs over the first ten prin-

cipal components. This validates that the proposed method

significantly mitigates tangential sliding over the full dataset.

2) Quantitative Evaluation: Pseudo ground truth sym-

metry contours are shown in blue in Fig. 1 and can be

compared to the template sagittal symmetry plane contour,

shown in red. We compare our method with the LSFM

pipeline [10] and CPD-LB [29]. Since the correspondence

between the template and data target is unknown, it is

not possible to compute the correspondence error directly.

Instead, we employ two metrics: 1) the Nearest Point Error

(NPE) to quantify the shape difference from the deformed

template to the target; 2) Symmetry Contour Error (SCE) to

quantify the tangential sliding error. The NPE is computed

by measuring the nearest point distance from the deformed

template to raw scan and averaging over all vertices. As

illustrated in Fig. 5 (a), 87% of the NPE from our method

is under 1mm, which compares to 30% for CPD-LB and

28% for the LSFM pipeline. We use piecewise-trimmed ICP

between the raw scan and its reflection [35] to detect the

local symmetry contour (blue contour in Fig. 1) in the raw

scan and we use this as a pseudo ground truth. This allows

us to compute the SCE metric. (This blue symmetry contour

is far less subject to surface sliding problems as it employs

local-piecewise registration of the data to its self-reflection

[5], and it employs robust outlier rejection. This contour

can track local asymmetries, such as the nose bending to

the left/right.) Fig. 5 (b) shows that 99% of SCE from our

method is under 2mm, which compares to 82% for CPD-

LB and 0.6% for LSFM. Overall, the proposed method

significantly outperforms the other two methods across both

metrics.

B. Robustness

We use a 3D data mesh with outliers, missing data

and Gaussian noise to test the robustness of the proposed

method. When dealing with these situations, deformation

algorithms need to choose the proper parameters. So in this

section, it is unfair to compare other algorithms with the

proposed method, without extensive parameter tuning. We

add Gaussian noise data to 100 3D meshes in the dataset.

The mean of the Gaussian noise is set at the mean of the

target data and variance is set to be compatible with head

size,by scaling a unit normal distribution by 80mm, as shown

by the blue points in Fig.7 row (3). We define ’ratio of noise’

as the number of Gaussian noise points as a fraction of the

number of template points, M . In Fig. 6, we demonstrate the

NPE of the proposed method when dealing with different

percentage of Gaussian noise. Fig.7 shows the qualitative

results of the proposed method when dealing with outliers,

missing data and Gaussian noise (ratio 0.6) along with error

metric computations. Overall, the proposed method is robust

to outliers, missing data and Gaussian noise.

C. Gender and Age Classification

We use the deformation results of the proposed SA-

CPD, LSFM [10], and CPD-LB [29] to build three 3D

morphable models. Then all of the 1212 face meshes in the

dataset are reparameterised using each of the the models.

Using the demographic information (metadata) within the

Headspace dataset we train a Support Vector Machine (SVM)

classifier for each model, which maps the corresponding

shape vectors to the gender groups and four age groups (0-

11, 12-21, 22-60 and over 60). To measure the classification

accuracy, we use the classifier to predict the age bracket



Fig. 3. Deformation of the template to the first scan using competing methods. Note the tangential sliding in all methods except the proposed and
CPD-affine. CPD-affine is likely to have some small shear and significantly underfits, but the proposed method has an excellent fit to the target data.

Fig. 4. 3D morphable model constructed using SA-CPD. The mean and
the first five principal components are shown at +3SD (top row) and -3SD
(bottom row). Note the stability of the symmetry contour, with no tangential
sliding across the main eigenvectors.

Fig. 5. (a) Proportion of subjects with a Nearest Point Error (NPE) less
than abscissa value. (b) Proportion of subjects with a Symmetry Contour
Error (SCE) less than abscissa value.

and the gender for the test subjects via a 10-fold cross-

validation evaluation so that no test subject ever appears

in the classifier’s training set. This provides an application-

oriented evaluation of the quality of the correspondence and

low-dimensional representation. As can be seen in Table. I

and II, the proposed SA-CPD deformation method has the

best performance in both gender and age classification.

V. CONCLUSIONS

We proposed a Symmetry-aware Coherent Point Drift (SA-

CPD) algorithm and evaluated it on 3D images of the hu-

TABLE I

GENDER CLASSIFICATION RESULTS

Precision Recall F-score
LSFM 0.79 0.80 0.79
CPD-LB 0.81 0.81 0.81
Proposed 0.84 0.84 0.84

Fig. 6. (a) NPE and (b) SCE for 100 3D data scans against level of
Gaussian noise.

Fig. 7. Deformation results against: (1) outlier, NPE = 1.3023, SCE =
0.2843; (2) cranial data missing, NPE = 0.4418, SCE = 0.3081; (2) Gaussian
noise (ratio 0.6), NPE = 0.9342, SCE = 0.6992.

TABLE II

AGE CLASSIFICATION RESULTS

Precision Recall F-score
LSFM 0.73 0.73 0.73
CPD-LB 0.73 0.74 0.73
Proposed 0.75 0.76 0.75



man head. This deformation method mitigates the tangential

sliding problem seen in competing morphing algorithms,

sometimes significantly, thereby improving the correspon-

dence quality. The proposed method is also robust against

outliers, missing data and Gaussian noise. The constructed

morphable model based on the proposed deformation method

has the best performance in both gender and age SVM-based

classification compared to the leading competing methods.

The deformation method is applicable to any shape sets that

exhibit bilateral symmetry over a reflective symmetry plane.
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