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ABSTRACT 

Grasslands store about 34% of the global terrestrial carbon (C) and are vital for the provision 

of various ecosystem services such as forage and climate regulation. About 89% of this 

grassland C is stored in the soil and is affected by management activities but the effects of 

these management activities on C storage under different climate settings are not known. In 

this study, we synthesized the effects of fertilizer (nitrogen and phosphorus) application, 

liming and grazing regime on the stock of SOC in global grasslands, under different site 

specific climatic settings using a meta-analysis of 341 datasets. We found an overall 

significant reduction (-8.5%) in the stock of SOC in global managed grasslands, mainly 

attributable to grazing (-15.0%), and only partially attenuated by fertilizer addition (+6.7%) 

and liming (+5.8%), indicating that management to improve biomass production does not 

contribute sufficient organic matter to replace that lost by direct removal by animals. 

Management activities had the greatest effect in the tropics (-22.4%) due primarily to heavy 

grazing, and the least effect in the temperate zone (-4.5%). The negative management effect 

reduced significantly with increasing mean annual temperature and mean annual precipitation 

in the temperate zone, suggesting that temperate grassland soils are potential C sinks in the 
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face of climate change. For a sustainable management of grasslands that will provide 

adequate forage for livestock and mitigate climate change through C sequestration, we 

recommend that future tropical grassland management policies should focus on reducing the 

intensity of grazing. Also, to verify our findings for temperate grasslands and to better inform 

land management policy, future research should focus on the impacts of the projected climate 

change on net greenhouse gas exchange and potential climate feedbacks.  

KEYWORDS: Grassland soils, soil improvement, land management, climate change, carbon 

sequestration, nitrogen amendment. 

 

1.    Introduction 

Grasslands cover approximately 40% of the earth’s surface (excluding Antarctica and 

Greenland), are distributed across all continents and over a wide range of geological and 

climatic conditions (Suttie et al., 2005; White et al., 2000). About 34% of the global 

terrestrial carbon (C) is stored in grasslands and a significant (89%) amount of the C 

sequestered by the grassland vegetation is stored in the soil (Ajtay et al., 1979; White et al., 

2000), which is vital for the provision of ecosystem services and particularly for climate 

regulation (Buckingham et al., 2013).  

The distribution and productivity of grasslands is mainly limited by climate and inherent soil 

properties. Globally, 28% of grasslands are distributed in semi-arid areas, 19% in arid areas, 

23% in humid areas and 20% in cold areas (White et al., 2000). Climate exerts an overriding 

influence on the size of the grassland soil C store through its control on plant growth, and 

therefore rates of litter and plant exudate inputs to soil and the rates of C loss through 

decomposition, leaching and erosion, and these processes are particularly sensitive to 

precipitation and temperature patterns (Albaladejo et al., 2013; Bellamy et al., 2005; Rees et 
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al., 2005). Currently, climate is changing, with nearly 0.8oC rise in global average 

temperature since the 19th Century and a greater warming as well as altered precipitation 

patterns expected throughout the 21st Century (IPCC, 2013; Jenkins et al., 2008). Thus 

grasslands that naturally exist at the margins of their climatic and edaphic envelope, or whose 

continued existence depends on management activities may be particularly sensitive to 

climate change, with poorly understood consequences for soil C stocks and feedback to 

climate change.   

Globally, grasslands are managed to increase biomass productivity in order to support 

livestock production, and are either being directly grazed, or cut for fodder, typically as hay 

or silage, or a combination of all three. Management activities are primarily used to change 

the status of soil properties thereby creating optimum conditions for plant growth. Soil 

characteristics that have been associated with rapid grassland establishment and increased 

productivity include relatively high sand and silt and low clay contents, and therefore 

moderate drainage, friable consistency, small aggregates, slightly acidic condition, and high 

nutrient levels (Epstein, 2012; Fay et al., 2012; Gibbs, 1980). Nutrient levels and acid status 

can be improved by fertilisation and liming to raise the soil pH, and these are typically the 

most common management activities for improving or maintaining grassland productivity. 

As well as the intended increase in aboveground biomass, fertilisation and liming potentially 

lead to greater production of root exudates and litter, and often have unintended effects on 

soil properties such as microbial populations and their activities that influence decomposition 

processes (Alonso et al., 2012; Hoffmann et al., 2014; Soussana et al., 2007). These 

management activities therefore have implications for soil C storage and sequestration. 

Grazing regime itself may also influence net soil C storage. For example, soil C gain may 

result from over-compensatory plant growth (Tanentzap and Coomes, 2012) and increased 
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inputs from enhanced root production (Frank et al., 2002). Conversely, overgrazing could 

lead to soil C loss through reduced plant productivity and litter inputs (Conant and Paustian, 

2002; Mestdagh et al., 2006), or to exposure of bare soil and C loss via erosion (Evans, 

1997). Thus a complex array of direct grazing effects and indirect grazing-related 

management effects on soil C storage may occur simultaneously. It is perhaps not surprising, 

therefore, that observed effects of liming, fertilizer application and grazing regime on soil C 

stock have been contradictory, and that increases, decreases and no change in soil C stock 

have been reported in different grassland ecosystems (Table S1) with specific climatic and 

soil conditions. 

A number of global-scale reviews and meta-analyses have also reported inconsistent effects 

of grazing (Dlamini et al., 2016; McShery and Ritchie, 2013; Pineiro et al., 2010; Zhou et al., 

2016), fertilizer application (Geisseler et al., 2016; Liu and Greaver, 2010; Lu et al., 2011; 

Yue et al., 2016), liming (Paradelo et al., 2015) and grassland improvement (Conant et al., 

2001; 2017) on grassland soil C stock. For example, Zhou et al. (2016) reported a 10.28% 

grazing-induced reduction in soil C stock, whereas Pineiro et al. (2010) and McShery and 

Ritchie (2013) showed that grazing caused an increase, a decrease and no change in soil C 

stock with grazing effect size ranging from -0.33 to +0.38, depending on soil characteristics, 

climate and grazing intensity. Also, in separate analyses, N addition has been reported to 

cause a decrease (effect size = -0.0026; Lu et al., 2011), no change (Liu et al., 2010) and an 

increase (+19.75%; Yue et al., 2016) in the C stock of grassland mineral soil layers. The 

differences in outcome could be attributed to a failure to account for context-specific 

differences in management, such as rates of fertilizer and lime application in different 

climatic zones (Dessureault-Rompré et al., 2010; Iturri and Buschiazzo, 2016), or grazing 

regimes that vary depending on climatic influences on productivity (Oba et al., 2000), or 
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failure to consider the influence of soil type and characteristics (Mills et al., 2005; 

Srinivasarao et al., 2009).   

The interactive effects of non-management factors (e.g. climate and soil) and fertilizer or 

lime application rates have not been synthesized for global grasslands. The few global studies 

(Dlamini et al., 2016; McSherry and Ritchie, 2013; Zhou et al., 2016) that considered 

interactive effects of grazing regime and non-management factors reported conflicting 

results. For example, McShery and Ritchie (2013) reported that grazing-induced changes in 

soil C stock were insensitive to either climate or soil texture, Dlamini et al. (2016) reported 

that significant soil C reduction due to over-grazing occurred only in cold (mean annual 

temperature, MAT < 0oC) and dry (mean annual precipitation, MAP < 600 mm) climates, and 

in acidic (pH<5.0) and coarse-textured (< 32% clay) soils, whereas Zhou et al. (2016) found 

a significant reduction in soil C only in semi-humid and humid regions (MAP ≥ 400 mm). In 

order to inform appropriate management decisions in global grasslands and models that 

integrate climate and land management, there is need to resolve the conflicting results of 

previous studies. This may be better achieved if the effects of site-specific characteristics and 

grazing-related management activities within different climatic zones are considered. 

Our aim in this study is to investigate how grassland SOC stock responds to management 

activities in different climatic zones, and the influence of soil properties, in a single meta-

analysis. Specifically, we determine the effect size (relative size of change in SOC stock) 

attributable to grazing-related management (liming and fertilizer addition) and grazing 

regime in different climatic settings, using a global meta-analysis approach. We focus on soil 

C stock rather than greenhouse gas inventory because understanding the fate of C stock is 

important not just for climate change mitigation but the provision of other ecosystem services 

such as maintaining soil quality, which is of immediate concern to farmers that manage the 
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grasslands for livestock production. The result of this study will not only help to detect the 

overall pattern of response of SOC stock to major grassland management activities but also 

identify grasslands that are most likely to serve as either a C sink or a C source in the face of 

climate change. This will better inform policy decisions on future grassland management for 

sustainable provision of ecosystem services. We hypothesize that 1) the response of SOC 

stock to management activities will be significantly influenced by site-specific climatic 

setting and soil characteristics, and 2) fertilizer application, liming and grazing will result in 

an overall reduction in SOC stock.  

2.    Methodology 

2.1 Data selection and extraction 

All the data used for this study were extracted from peer-reviewed journal articles published 

before January 2017. A search for the articles was conducted in Web of Science between 

June and December 2016, using all combinations of the following groups of search terms: 1) 

management, liming, lime addition, fertilizer, nitrogen addition, nitrogen fertilizer application 

or grazing, 2) soil carbon, soil carbon stock, soil carbon storage or carbon sequestration, 3) 

grassland, pasture or meadow.  

Our searches produced 2881 journal articles which we screened following a number of 

criteria: 1) they were grassland field studies in which SOC data (concentration in % or g/kg, 

stock in g/m2 or Mg/ha, or both) were recorded in response to either liming, fertilizer 

application or grazing regime, 2) SOC data were recorded for both the managed field and a 

well-defined control field, and measurements were made at the same temporal and spatial 

scales, 3) only one of the target management practices such as grazing regime or nitrogen 

fertilizer varied while other management activities were absent or remained constant, 4) the 

depth of soil samples used for SOC determination were clearly specified, 5) the mean, sample 
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sizes, measures of variability such as standard deviation, standard error or coefficient of 

variation can be extracted from the study, 6) experimental and control plots were established 

within the same ecosystem and had similar environmental characteristics at the beginning of 

the study, 7) management activities such as grazing intensity were clearly described 

quantitatively and/or qualitatively, and 8) experimental duration was clearly specified and 

was at least one entire growing season in order to avoid the effect of short term noise. In 

cases where two or more studies reported the same data from the same experiment, we chose 

one of the studies and excluded others, except if they provided supporting environmental 

information about the site. In order not to violate the key assumption of meta-analysis that 

studies must be independent, we chose data for the last year of sampling in studies where 

sampling was conducted annually from the same site. We excluded studies where either 

multiple nutrient fertilizers (e.g. NPK fertilizers) or organic manure (e.g. livestock slurry or 

industrial effluent) were applied. This was done to enable us to detect the exact effects of 

single nutrient fertilizers and prevent the confounding effects of high C and multiple nutrient 

contents of organic manures. We considered different management levels (e.g. different N 

levels or forms, or livestock stocking densities) sharing the same control plot as independent 

observations. 

After a thorough screening, we selected 136 articles which yielded 341 pairs of independent 

studies (Tables S1 and S2), distributed among management activities as follows: 232 (grazing 

regime), 89 (fertilizer application) and 20 (liming). The selected studies, especially those on 

grazing, were distributed in most continents (Figure 1). Data was only available for N and 

phosphorus (P) fertilizers. We extracted data directly from tables or texts in the selected 

articles, or indirectly from figures using WebPlot Digitizer 

(http://arohatgi.info/WebPlotDigitizer/app/). 
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In addition to SOC, management, and duration data, we extracted data for the following 

characteristics when available: longitude, latitude, elevation, MAT, MAP, SOC at the 

beginning of the experiments (initial SOC), aboveground biomass (AGB), belowground 

biomass (BGB), clay content of the soil and soil bulk density. When MAT or MAP or either 

were not reported, we used ArcMap to extract the data from WorldClim-global climate 

database (http://worldclim.org/) with a spatial resolution of 30 arc seconds. Where only 

standard errors were reported, we converted them to standard deviations using the sample 

size. 

Thirty–one studies did not report any measures of variability and we calculated their standard 

deviations following a method used by Geisseler et al. (2016). This involved calculating the 

average coefficient of variation (CV) across each management activity for all the datasets for 

which standard deviations were reported and using these average CVs to calculate the 

missing standard deviations. This was done separately for the control and the experimental 

datasets. 

The equivalent soil mass method is recommended for comparing SOC stock changes in 

managed ecosystems (Lee et al., 2009), in order to overcome the effect of compaction. This 

approach was not used here because not all the studies that we selected reported their SOC 

data on such basis. However, we considered extent of sampling depth as a moderator in our 

meta-analysis and grouped our data into three depth categories: 0 – 19cm, 0 – 40cm and 0 – 

100cm. In order to compare SOC stock across studies we converted reported SOC 

concentrations (%) to SOC stock (Mg/ha) using reported bulk density and sampling depth 

values as follows:  

𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘 (𝑀𝑔ℎ𝑎−1) = 𝑆𝑂𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (%) × 𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔𝑐𝑚−3) ×𝑑𝑒𝑝𝑡ℎ(𝑐𝑚)                                                                                                                                        (1)  

http://worldclim.org/
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Thirty–one studies reported SOC only as concentrations in %, and did not report their 

corresponding bulk density values. To overcome this problem and maximise the number of 

studies available for meta-analysis, we estimated bulk density based on the relationship 

between SOC (%) and bulk density in all other studies (Figure S1). The best function with the 

highest coefficient of determination was exponential:  

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔𝑐𝑚−3) = 1.3961𝑒𝑆𝑂𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (%) (𝑅2 = 0.6246, 𝑝 < 0.05)              (2)  

Bulk densities calculated with equation (2) were subsequently used to convert SOC 

concentrations to stock using equation (1). This approach has previously been used to 

calculate missing bulk density values (e.g. Hopkins et al., 2009; Xiong et al., 2016).
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Figure 1: Global distribution of datasets used for meta-analysis.
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The management activities (fertilizer application, liming and grazing) were divided into 

different categories so as to understand the variations within each management activity. We 

adopted the grazing intensity classification (i.e. light grazing, moderate grazing and heavy 

grazing) as used by the authors. This qualitative description was chosen because: 1) there was 

no consistency in the quantitative description of grazing given by the various authors, with 

different animals (e.g. sheep and cattle) and different units of measurement (e.g. sheep 

equivalent and percentage forage utilization) reported, and 2) we recognise that the carrying 

capacity of grasslands will vary depending on their climatic and geomorphic setting. In a few 

instances in humid areas where no clear qualitative description was given by the authors, we 

grouped the reported stocking densities into grazing intensities as follows: light grazing, < 5 

sheep/ha; moderate grazing, 5 – 10 sheep/ha; heavy grazing, > 10 sheep/ha. We considered 

this classification appropriate for humid areas unlike the arid and semi-arid areas where the 

use of 2 sheep/ha could be considered as heavy grazing because of lower plant productivity. 

In some of the studies, grasslands were grazed by either cattle or yak. In such cases, we used 

5 sheep units for 1 cattle and 3 sheep units for 1 yak based on equivalence values suggested 

by Li et al. (2011) and Xie and Wittig (2004). Similarly, where grazing intensity was reported 

only as percentage forage utilization (FU), we adopted the following classification based on 

the reports of Evans et al. (2012) and Krzic et al. (2014): light grazing (< 40% FU), moderate 

grazing (40 – 65% FU) and heavy grazing (> 65% FU).  

The fertilizer studies were first grouped into N fertilizer type (ammonium chloride, 

ammonium nitrate, ammonium sulphate, calcium nitrate, potassium nitrate and urea) and P 

fertilizer type (calcium phosphate, potassium phosphate and sodium phosphate). As with our 

classification of grazing intensity, we adopted qualitative descriptions of N fertilizer intensity 

(low N, moderate N, and high N) as used by the authors of individual studies. Where this was 
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not indicated by the author, we grouped the intensity of N fertilizers into three N rates: low 

N, < 50 kg N/ha; moderate N, 50 – 150 kg N/ha; high N, > 150 kg N/ha. The lowest class 

boundary (50kg N/ha) was chosen to give an appropriate classification that could account for 

the wide range of N fertilizers (from less than 10 kg N/ha to over 600 kg N/ha) used globally. 

We also used the qualitative description of P fertilizer intensity given by the authors, and 

where this was not available, we grouped P fertilizer rates as follows: low P, < 50 kg P/ha; 

moderate P, 50 – 100 kg P/ha and high P, > 100 kg P/ha. Calcium lime was used in all the 

liming experiments and could not be further categorised based on lime form, however, liming 

intensity was categorised into three rates: low lime, < 3 t/ha lime; moderate lime, 3 – 5 t/ha 

lime; and high lime, > 5 t/ha lime. This is based on the range of lime rates recommended for 

application to grasslands (e.g. DEFRA, 2011; Edmeades et al., 1985).  

We also categorised other factors which we thought could influence the effect of 

management activities on SOC. Based on the latitudes where experiments were conducted, 

three climatic zones were identified: Tropics (0 – 23.5o N and S), Subtropics (24 – 40o N and 

S), and Temperate (41 – 66o N and S). MAT in oC was divided into five categories: -5.0 to -

0.1, 0.0 – 5.0, 5.1 – 10.0, 10.1 – 20.0 and 20.1 – 30. MAP was grouped into three categories: 

dry (< 600 mm), intermediate (600 – 1000 mm) and wet (> 1000 mm) based on previously 

identified global climate regimes (Dai and Wang, 2017). The duration of management 

activities was grouped into three: short term (< 10 years), medium term (10 – 30 years) and 

long term (> 30 years). The clay content was used to group soils into three textural classes: 

sand (< 20% clay), loam (20 – 30% clay) and clay (> 30% clay) which have been shown to 

be suitable for modelling large scale soil processes (Bormann, 2007). 
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2.2 Data analysis 

Descriptive statistics such as minimum, maximum, mean and standard deviations were first 

computed for all the variables we considered, using SPSS Statistics (version 22). 

Subsequently, we conducted a meta-analysis based on the response-ratio approach described 

by Hedges et al. (1999) using the mixed-effect model of MetaWin software (Rosenberg et al., 

2000). In brief, the effect size of management activities (liming, fertilizer addition and 

grazing regime) on SOC stock was estimated using the natural logarithm of the response ratio 

(R), which is the ratio of the mean SOC stock in managed plots to mean SOC stock in control 

plots. i.e.  

𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 =  ln 𝑅 =  ln (𝑆𝑂𝐶 𝑖𝑛 𝑚𝑎𝑛𝑎𝑔𝑒𝑑 𝑝𝑙𝑜𝑡𝑆𝑂𝐶 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑙𝑜𝑡 )                      (3) 

As some of the management practices have relatively small sample sizes, the 95% confidence 

intervals of average effect sizes were generated through 4999 bootstrap iterations in order to 

overcome any violation of normality assumptions. The management effect size was 

considered significant (at 5% probability level) if the 95% confidence intervals did not 

overlap zero. A negative effect size means that management resulted in a reduction in SOC 

stock whereas a positive effect size implies a management-induced increase in SOC stock. 

The mean effect sizes of management categories were also calculated using the approach 

described in the preceding paragraph. The total heterogeneity (QT) in each type of 

management practice was calculated and partitioned into within group heterogeneity (QW) 

and between group heterogeneity (QB). A significant QB (at 5% probability level) meant that 

management categories within that management type differed in their effects, and the exact 

effect of any management category was considered significantly different from that of 
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another category when their 95% confidence intervals did not overlap. The percentage effect 

size of management activities was calculated from the equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = (exp (ln 𝑅) − 1) × 100               (4) 

The effect size of management activities was further categorised according to duration of 

management, extent of sampling depth, clay content, climatic zone, MAT and MAP, using 

the categorical meta-analytic model of MetaWin software. Also, the continuous model (a 

weighted least square regression) of the Meta-Win software was used to analyse the linear 

relationships between the management effect sizes and elevation, MAT, MAP, initial SOC, 

clay content of the soils and duration of management. The linear model is represented as: 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = 𝑎 + 𝑏(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + Ԑ                                       (6) 

Where a = intercept, b = slope of the model, Ԑ = error term. The value and significance of the 

slope (at 5% probability level) was used to assess the influence of the independent variables 

on the effect of management activities on SOC stock. A negative slope indicates a greater 

management-induced reduction in SOC stock whereas a positive slope indicates that the 

negative effect of management on SOC is decreasing. Finally, we ensured that there was no 

publication bias (i.e. the tendency for only statistically significant results to be published by 

journals) by running a fail-safe test in MetaWin software. 

                                                                                                                                                                                                          

3.   Results 

The datasets used in this study (Table 1) covered a wide range of climatic and elevation 

gradients ranging from latitudes 44oS to 65oN, longitudes 121oW to 175oE and altitudes 14 to 

4800 m above sea level, with MAT that ranges from -4.8 to 26.8oC and MAP of 120 to 2000 

mm. Most of the experiments were conducted in permanent grasslands with few in sown 
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grasslands or rotated pasture (Table S1). Fertilizers were applied at the rates of 10 to 376 kg 

P/ha and 10 to 640 kg N/ha whereas 0.4 to 25.0 t/ha of lime was applied. The duration of 

management activities was from 0.5 to 146 years. The belowground biomass was generally 

higher than aboveground biomass, and both belowground biomass and aboveground biomass 

were slightly higher in unmanaged sites (2074 g/m2 and 357 g/m2) than in managed sites 

(2034 g/m2 and 348 g/m2) respectively. The grassland soils varied in texture from sandy 

(1.37% clay) to clayey (60% clay) and the average stock of OC within the top 2.5 to 100 cm 

of the soils was 40 ± 32 Mg/ha in managed grasslands and 43 ± 35 Mg/ha in unmanaged 

grasslands.  

 

3.1 Effects of management activities on SOC stock 

Our meta-analysis showed that management types and their intensity (Table 2 and Figure 2) 

and management duration (Table 3) affected SOC stock in different ways. Liming, fertilizer 

application and grazing resulted in an overall significant reduction (-8.5%) in SOC stock. The 

three management activities differed significantly (p < 0.05) in their separate effects on SOC 

stock. Grazing significantly reduced SOC stock by -15%, liming resulted in a non-significant 

increase (+5.8%) whereas fertilizer application significantly increased SOC stock by +6.7%. 

Significant variability was observed between the categories of each of these management 

practices. There was a progressive decline in SOC stock as the intensity of grazing increased 

from light (-6.9%) and moderate grazing (-13.2%) to heavy grazing (-27.1%), and the 

reduction in SOC stock was statistically significant at all the three levels of grazing intensity. 

There was a very small and insignificant (+0.3%) effect of P fertilizer addition on soil C 

stock but N fertilizers significantly increased (+8.1%) SOC stock (Table 2). Considering the 

forms of N fertilizers applied, ammonium nitrate, ammonium sulphate and calcium nitrate 
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increased SOC stock by +12.6%, +13.1% and +26.9% respectively, while there were no 

significant effects of ammonium chloride, urea, and potassium nitrate (Table 2). Low N rates 

resulted in a non-significant increase (+0.3%) in SOC stock whereas moderate N and high N 

rates significantly increased SOC by +5.2% and +13.3% respectively. The response of soil C 

stock to increasing lime intensity followed a completely different pattern: there were non-

significant increase in SOC stock at both low (+6.8%) and high (+2.8%) lime rates, whereas 

moderate lime rate led to a significant increase (+14.1%) in soil C stock (Table 2). 

There were no significant relationships (p > 0.05) between the duration of liming, fertilizer 

addition and grazing regime, and their individual effects on SOC stock (Table 3). Generally, 

an increase in the duration of liming and fertilizer addition was associated with a greater 

decline in SOC stock; on the other hand, an increase in the duration of grazing leads to an 

increase in SOC stock. However, the overall effect of these three management activities on 

SOC stock was statistically significant in the short (< 10 years; -5.3%) and medium (10 – 30 

years; -14.3%) term but was not significant in the long term (> 30 years; -4.5%). 

 

3.2 Influence of climate and other site-specific characteristics on the response of SOC stock 

to grassland management 

The effects of liming, fertilizer addition and grazing on SOC stock were statistically 

significant irrespective of elevation, clay content, the extent of soil depth sampled and the 

SOC contents at the start of management (Table 4). However, the modifying effect of clay on 

management activity was only significant in fertilized grasslands, with increasing clay 

content resulting in a greater reduction in SOC stock (b = -0.0008, p = 0.042) (Table 4). 

The overall management-induced reductions in SOC stock were significant across all climatic 

zones in the order: tropics > subtropics > temperate, and across all MAT classes with effect 
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size increasing with increasing temperature class above 0oC (Table 5). There were 

statistically significant relationships between MAP, MAT and the effects of management 

practices on SOC stock. The smallest effect of management on SOC stock was found when 

MAT was in the range of 0 – 5.0oC (-4.9%). Management effects on SOC stock were greater 

at MAT below 0oC (-8.4%) and above 5.0oC (-17.2%). The management effect was only 

significant when MAP was below 600 mm (-11.7%; Table 5).  

On further analysis, it was only in the temperate zone that the relationships between MAT, 

MAP and the effects of management activities on SOC stock were statistically significant. 

Within the temperate zone, the overall negative effect of management practices decreased 

with increasing MAT (b = 0.0108, p = 0.00054, n = 195) and MAP (b = 0.0002, p = 0.0000, n 

= 195) (Table 5). When management activities were considered individually, the effects of 

grazing and N fertilizer application exhibited a positive relationship with MAT and MAP, 

whereas the negative effect of liming decreased with increasing MAT and increased with 

increasing MAP (Table 6; Figure 3). When the relationships between management and 

temperate zone climatic parameters were explored by management intensity, the MAP-

grazing relationship was only significant for heavy grazing (b = 0.0007, p = 0.00063), the 

MAP-N fertiliser relationship was only significant for low N fertilisation (b = 0.0004, p = 

0.01167), the MAT-N fertiliser relationship was only significant for moderate N fertiliser (b 

= 0.0082, p = 0.04342), and MAP-lime (b = -0.0001, p = 0.02246) and MAT-lime (b = 

0.0198, p = 0.00885) relationships were only significant for low lime categories (Table 6). 
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Table 1: Characteristics of datasets used for meta-analysis. n = number of datasets. 

Variable n Minimum Maximum Mean Standard deviation 

SOC of managed sites (Mg/ha) 341 0.93 204.12 40.14 32.30 

SOC of control sites (Mg/ha) 341 1.80 200.81 43.39 35.35 

Aboveground biomass of managed sites (g/m2) 131 7.20 7998.00 348.43 988.55 

Aboveground biomass of control sites (g/m2) 131 7.40 6225.00 356.75 686.30 

Belowground biomass of managed sites (g/m2) 50 27.70 32487.00 2033.77 4650.11 

Belowground biomass of control sites (g/m2) 50 82.50 26188.00 2074.02 4111.07 

Initial SOC of sites (%) 35 0.19 17.40 4.46 4.42 

Clay content of study sites (%) 98 1.37 60.00 19.57 13.60 

Elevation (m) 341 14.00 4800.00 1619 1324 

Latitude (o) 341 -44.00 65.04 31.13 26.34 

Longitude (o) 341 -121.75 175.75 45.36 91.90 

Mean annual temperature (oC) 341 -4.80 26.80 5.60 6.60 

Mean annual precipitation (mm) 341 120.00 2000.00 594.00 377.00 

Duration of management (years) 341 0.50 146.00 18.97 22.25 

Soil depth (cm) 341 2.50 100.00 14.70 12.10 

Calcium lime (t/ha) 20 0.40 25.00 7.44 8.32 

Nitrogen fertilizer rate (kg N/ha) 71 10.00 640.00 137.41 129.30 

Phosphorus fertilizer rate (kg N/ha) 18 10.00 376.00 83.08 88.64 
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Table 2: Effect of management (mgt) activities on SOC stock. * = significant, ns = not significant at 5% probability level, n = number of data. 

Management type Management category Effect on SOC stock (%) Management intensity Effect on SOC stock 

(%) 

All mgt type (n = 341)  -8.5*   

Grazing (n = 232)  -15.0* Light grazing (n = 100) -6.9* 

Moderate grazing (n = 67) -13.2* 

Heavy grazing (n = 65) -27.1* 

Liming (n = 20)  +5.8ns Low lime (n = 8) +6.8ns 

   Moderate lime (n = 5) +14.1* 

Fertilization (n =89)  +6.7* High lime (n = 7) +2.8ns 

 All nitrogen fertilizer (n = 71) +8.1*   

 Ammonium nitrate (n = 28) +12.6* Low nitrogen (n = 19) +0.3ns 

 Ammonium chloride (n = 3)  -5.4ns Moderate nitrogen (n = 29) +5.2* 

 Ammonium sulphate (n = 9) +13.1* High nitrogen (n = 23) +13.3* 

 Urea (n = 24) +3.6ns   

 Potassium nitrate (n = 4) -1.0ns   

 Calcium nitrate (n = 3) +26.9*   

 All phosphorus fertilizer (n = 18) +0.3ns Low phosphorus (n = 8) -2.1ns 

 Calcium phosphate (n = 10) -5.0ns Moderate phosphorus (n = 6) +5.6ns 

 Potassium phosphate (n = 5) +7.5* High phosphorus (n = 4) +1.7ns 

 Sodium phosphate (n = 3) -7.8ns   
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Figure 2: Effect sizes of fertilizer application, liming and grazing on SOC stock (bars 

represent mean plus and minus 95% confidence intervals) 
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Table 3: Influence of management duration on the response of SOC stock to fertilizer, liming 

and grazing. * = significant, ns = not significant at 5% probability level, n = number of 

datasets, a = intercept, b = slope, p-valueS = p-value for the regression slope. 

 Management duration (years) Range (years) Management 

effect on 

SOC (%) 

                   Effect size 

   a            b    p-valueS 

< 10 years (n = 164)  -5.3*  

10 – 30 years (n = 124)  -14.3*  

> 30 years (n = 53)  -4.5ns  

Grazing duration (n = 232) 1 – 91   -0.1731 0.0006 0.37041 

Liming duration (n = 20) 0.5 – 73   0.0877 -0.0007 0.57725 

Fertilizer duration  (n = 89) 3 – 146   0.0567 -0.0002 0.62739 

All management duration (n = 341)  1 – 146   -0.0960 0.0004 0.48688 

 

 

Table 4: Overall effect of fertilizer, liming and grazing on SOC stock under different site 

characteristics. * = significant, ns = not significant at 5% probability level, n = number of 

datasets, I = initial, a = intercept, b = slope, p-valueS = p-value for the regression slope. 

Factor Factor category Range Effect 

on 

SOC 

(%) 

              Effect size 

     a            b          p-valueS 

Depth extent 0 – 19 cm (n = 248)  -6.6*    

 0 – 40 cm (n = 85)  -11.9*    

 0 – 100 cm (n = 8)  -24.0*    

Clay content  < 20% Clay (n = 57)  -11.9*    

 20 to 30% Clay (n = 27)  -11.8*    

 > 30% Clay (n = 14)  -16.9*    

 %Clay in grazed site (n = 70) 1.4 – 60  -0.2477 0.0025 0.22596 

 %Clay in limed site (n = 5) 29 – 29  -0.0254 -0.0005 1.00000 

 %Clay in fertilized site (n = 23) 4.3 – 23    0.1135 -0.0088* 0.04248 

Elevation Elevation (m) (n = 341) 14 – 4800   -0.1007  0.0000 0.38066 

ISOC ISOC of grazed site (%)(n = 18) 0.2 – 7.0  -0.1241 -0.0029 0.86654 

 ISOC of limed site (%) (n = 4) 6.4 – 17.4   0.1584 -0.0087 0.62526 

 ISOC of fertilized site (%) (n = 13) 0.2 – 8.6     0.0642 -0.0153 0.47418 
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Table 5: Overall effect of fertilizer, liming and grazing on SOC stock under different climate 

conditions. MA = mean annual, T = temperature, P = precipitation, Mgt = management, n = 

number of datasets, bold values are significant at 5% probability level, italicized value is the 

largest slope, a = intercept, b = slope, p-valueS = p-value for the slope. 

Factor   Factor category Range Mgt effect 

on SOC 

stock (%) 

         Effect size 

   a         b            p-valueS 

Climatic zone Tropics (n = 24)   -22.4  

 Subtropics (n = 122)  -12.5  

 Temperate (n = 195)  -4.5  

MAT -5.0 to -0.1oC (n = 55)  -8.4  

 0 to 5.0oC (n = 138)  -4.9  

 5.1 to 10.0oC (n = 84)  -10.2  

 10.1 to 20.0oC (n = 48)  -12.8  

 20.1 to 30.0oC (n = 16)  -17.2  

MAP < 600 mm (n = 223)  -11.7  

 600 to 1000 mm (n = 66)  0.4  

 > 1000 mm (n = 52)  -5.2  

MAT MAT (oC) (n = 341) -4.8 – 26.8  -0.0581 -0.0053 0.00465 

 MAT tropics (oC) (n = 24) 4 – 26.8  -0.4056  0.0074 0.40919 

 MAT subtropics (oC) (n = 122)  -4.3 – 19.0  -0.0753 -0.0092 0.00008 

 MAT temperate (oC) (n = 195) -4.8 – 15.5  -0.0878  0.0108 0.00054 

MAP MAP (mm) (n = 341) 120 – 2000   -0.1387  0.0001 0.01079 

 MAP tropics (mm) (n = 24) 520 – 1230   -0.5338  0.0004 0.07645 

 MAP subtropics (mm) (n = 122) 120 – 1850   -0.1332  0.0000 0.91539 

 MAP temperate (mm) (n = 195) 120 – 2000   -0.1362  0.0002 0.00000 
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Table 6: The relationship between climatic variables in the temperate zone and the effect 

sizes of management intensity on SOC stock. Bold values are significant at 5% probability 

level, n = number of datasets, a = intercept, b = slope, p-valueS = p-value for the slope. 

Management effect 

size 

           Temperate MAT 

  n          a          b    p-valueS 

             Temperate MAP 

n          a        b          p-valueS 

 

Grazing 113 -0.1702  0.0057 0.32638 113 -0.2511  0.0002 0.00219  

Light grazing 50 -0.0709 -0.0062 0.52051 50 -0.1291   0.0001 0.36422  

Moderate grazing 39 -0.1591 0.0136 0.12257 39 -0.2135   0.0002 0.05223  

Heavy grazing 24 -0.4712 0.0250 0.13653 24 -0.7038   0.0007 0.00063  

Liming 14 -0.0709  0.0235 0.00196 14 0.2492   -0.0001 0.01021  

Low lime 7 -0.0543  0.0198 0.00885 7 0.2273   -0.0001 0.02246  

Moderate lime 4 -1.6644  0.1869 0.45149 4 0.2451  -0.0001 0.51269  

High lime 3 -1.5918  0.1792 0.06106 3 0.2756   -0.0002 0.86640  

Nitrogen fertilizer 56  0.0468 0.0107   0.00356 56 0.0170  0.0001    0.04711  

Low nitrogen 10 0.0059  0.0130 0.15058 10 -0.1680   0.0004 0.01167  

Moderate Nitrogen 23 0.0261  0.0082 0.04342 23 0.0112   0.0001 0.20137  

High nitrogen 23 0.0847 0.0132 0.15513 23 0.0699   0.0001 0.36717  
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Figure 3: Statistically significant relationships between temperate MAT and the effect size of 

all management (a), nitrogen addition (b), and lime (c) on SOC stock; and between temperate 

MAP and the effect size of all management (d), nitrogen addition (e), lime (f) and grazing (g) 

on SOC stock. The interactive effect of grazing effect size and MAT was not significant and 

was therefore excluded in the figure. 
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4. Discussion 

This study reveals an overall significant reduction (-8.5%) in the stock of SOC in global 

managed grasslands, mainly attributable to grazing (-15.0%), and only partially attenuated by 

fertilizer addition (+6.7%) and liming (+5.8%), indicating that management to improve 

biomass production does not contribute sufficient organic matter to replace that lost by direct 

removal by animals. Management activities had the greatest effect in the tropical zone (-

22.4%) and in zones with low MAP (-11.7%), suggesting a sensitivity at extremes of the 

climate envelope. The large effect in the tropical zone likely reflects the drastic change in 

plant biomass inputs to soil when forests are converted to grasslands. In the temperate zone 

the overall size of the negative management effect was small (-4.5%), but was positively 

related to MAT and MAP, indicating that soil C stocks may be relatively robust to 

management under anticipated future regimes of climate warming. Our two hypotheses that 

grassland management practices will result in SOC decline and that this effect will be 

influenced by climatic settings were therefore confirmed. 

 

4.1 The net effect of liming, fertilizer addition and grazing on the stock of C in grassland 

soils  

This study showed that grazing had an overriding effect on grassland SOC stock. The 

significant reductions in SOC stock resulting from grazing (-15%) is larger but consistent 

with the results of previous published meta-analyses (e.g. -9%, Dlamini et al., 2016; -10%, 

Zhou et al., 2016). In our study, the negative effect of grazing doubles as the intensity of 

grazing increased from light to moderate grazing, and from moderate to heavy grazing. 

Heavy grazing therefore resulted in the most significant reduction in SOC stock (-27.1%) and 

this can primarily be attributed to excessive removal of vegetation and consequently limited 
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litter returns to the soil. Hans et al. (2008) reported a 74% forage utilization under heavy 

grazing, with the amount of litter returns being only 45% of the values in lightly grazed sites. 

This happens because a significant proportion of grassland vegetation fed to livestock is 

subsequently lost from the ecosystem through animal respiration, methane expulsion and 

export of products such as milk (Soussana et al., 2007). There is also the tendency for plant 

meristems to be removed under heavy grazing, leading to a reduction in plant growth 

capacity (Conant and Paustian, 2002; Mestdagh et al., 2006). Of the plant C ingested by 

animals, only about 25-40% is returned to the grassland as excreta (Soussana et al., 2007). 

Even this relatively small amount of C that is returned to the soil as animal excreta does not 

always imply an increase in soil C because the excreta contains readily utilizable substrates 

that stimulate soil microbial activities in grasslands (Clegg, 2006), leading to a greater 

decomposition of organic materials and soil C loss (Grayston et al., 2004). This was 

demonstrated when livestock was excluded for 7 years from a grassland in northern England, 

which resulted in a 20% reduction in the activity of soil microorganisms (Medina-Roldan et 

al., 2012). In addition, Ritz et al. (2004) found a higher microbial biomass due to increasing 

sheep urine patches and Williams et al. (2000) reported an increase in active bacteria number 

relative to fungi with the addition of synthetic sheep urine.  

The removal of standing plants and litter also exposes the soil to erosive precipitation and 

wind thereby accelerating erosion and C loss (Steffens et al., 2008; Tanentzap and Coomes, 

2012; Xie and Wittig, 2004). For example, Han et al. (2008) found that only 33-36% of the 

ground was covered by vegetation after two years of heavy grazing. Heavy grazing may also 

cause soil C loss through trampling and poaching (Ma et al., 2016). Trampling from grazing 

animals results in soil compaction, characterised by increased bulk density and reduced 

infiltration (Marshall et al., 2014, 2009). This may increase runoff events and export 

particulate soil C to surface waters (Meyles et al., 2006; Robroek et al., 2010). It has also 
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been reported that the rate of photosynthesis decreases significantly under simulated sheep 

trampling (Clay and Worrall, 2013). This reduces plant productivity and potential amount of 

C inputs to the soil.  

The practice of improving grassland productivity by applying high rates of lime and N 

fertilizer is likely not to increase soil C storage under heavy grazing regimes. In this study, 

SOC stock declined from 14.1% at moderate liming (3 – 5 t/ha) to 2.8% at high liming rate 

(>5 t/ha). Wang et al. (2016) also found that increasing the rate of liming (e.g. by 12.5 t ha-1) 

led to a decrease of about 14% in SOC at the surface (0-10 cm) soils of some pastures in 

Australia. At high lime rates, soil acidity-related constraints are removed (Orgill et al., 2015) 

and this leads to an increase in microbial respiration, a faster decomposition of organic 

materials and an increase in the level of dissolved organic C (DOC) in soil solution, which is 

prone to leaching and erosion losses (Hornung et al., 1986; Mijangos et al., 2010; Staddon et 

al., 2003). In addition, if root growth is stimulated by liming, there is an increase in the 

release of exudates from grass species at higher soil pH levels which acts as a primer to 

enhance SOM decomposition and C loss (Grayston et al., 2004). Generally, the potential 

contribution of liming to global grassland SOC stock gain is limited because the practice is 

confined to acidic soils which are mostly found in sites that are heavily leached by 

precipitation (i.e. high MAP). This can be seen in this study because relative to all the 

management activities we considered, liming studies were very few and the bulk of the 

papers we used were from low MAP areas, reflecting the climatic zone in which grasslands 

naturally occur.  

At high rates of N fertilizer application, additional SOC stock gained by grassland soils for 

every unit of N fertilizer added has been shown to decline (i.e. a reduction in C gain 

efficiency at high rates of N fertilizer addition). Ammann et al. (2009) found that the 
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application of 230 kg N ha-1 year-1 for six years in a Swiss grassland caused only about 6% 

increase in soil C gain, compared to the 13% gain at high N rate (>150 kg N/ha) in our study.  

Fornara and Timan (2012) studied the effect of 27 years of N addition (ranging from 0 to 270 

kg N/ha) on C sequestration in prairie grassland soils in Minnesota, USA, and found that 

SOC stock increased with increasing N rates but net C gain per unit of added N significantly 

decreased after 10 kg N/ha. Also, after six years of subjecting some grasslands in Northern 

China to six levels of N addition (ranging from 0 to 560 kg N/ha), He et al. (2013) reported 

an increase in SOC stock from 118 to 131 t/ha within the surface 0-100 cm of the soil, but 

there was a decreasing C gain efficiency as added N increased. These findings are 

comparable with our study because we found a greater decline in soil C stock as the duration 

of fertilization increased, however, this negative effect peaks in the medium term (10 – 30 

years) and becomes insignificant afterwards. Overall, there is evidence that the positive effect 

of high N addition declines over time and may also increase the risk of emissions of other 

more potent greenhouse gases such as nitrous oxide (N2O) into the atmosphere beyond 

background levels (Jarvis et al., 2001; Vuichard et al., 2007), thereby negating any C 

sequestration benefits. Our study focused only on the potential for long term C accrual in 

managed grassland soils rather than net greenhouse gas emissions, and there is a need for 

future studies to synthesize the net effect of management activities on the balance of 

greenhouse gases. This will provide a clearer picture of the full implication of grassland 

management to climate change.  

This study indicates that intensive grazing-related grassland management activities 

(particularly liming and N fertilization) and heavy grazing are not a sustainable management 

regime. Management intensification depletes SOC stock potentially increasing the 

atmospheric CO2 concentration and exacerbating the already climate warming trajectory. 

Future grassland management policy particularly in the tropics with the greatest 
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management-induced decline in SOC stock, should therefore focus mainly on reducing the 

intensity of grazing. This can be best achieved by excluding grasslands from grazing (Xiong 

et al., 2016). However, since there is need to balance the goal of soil C sequestration with the 

need for livestock production, grasslands should be maintained under moderate grazing 

regimes and governments should consider setting up environmental schemes as an incentive 

to encourage farmers to adopt less intensive management activities. 

4.2 Influence of climate on the response of SOC stock to liming, fertilizer application and 

grazing 

This study revealed that climate significantly influenced the overall effect of liming, fertilizer 

application and grazing on SOC stock. This is in line with reports in previous studies (e.g. 

Chimner and Welker, 2011; McSherry and Ritchie, 2013; Zhou et al., 2016) which showed 

that climate exerts significant influence on the effects of management on grassland C cycling. 

In our study, the temperate zone had the smallest management-induced decline in SOC stock 

(-4.5%) and yet exhibited a greater interactive effect of climate compared to either the tropics 

or the sub-tropics. Negative effects of management declined significantly with increasing 

MAT and MAP which is a strong indication that increasing temperature and precipitation in 

temperate grasslands has the potential to reverse the overall management-induced decline in 

SOC stock of these areas and possibly increase C sequestration. The strong positive 

temperature-management interactive effects on SOC stock of temperate grasslands can be 

explained by temperature-induced increase in the length of growing season. Increasing 

temperature extends the length of the growing season in temperate environments (Hunt et al. 

1991) thereby enhancing plant growth and C additions to the soil (Chang et al., 2016). For 

example, relative to 1961-1990 average of 252 days, the length of growing season in England 

increased to 282 days in 2012 (DECC, 2013) in response to about 1.7oC increase in MAT 
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(Jenkins et al. 2008). Xia et al. (2014) observed that increasing spring temperature at 

latitudes between 30 and 90 oN stimulates the onset of leaf unfolding which results in an 

earlier start of the growing season and enhances ecosystem productivity.  

The positive response of SOC stock to increasing temperate and precipitation in the 

temperate zone may also result from greater nutrient availability and biomass production due 

to removal of restrictions on mineralization imposed by cold and dry conditions. In dry (MAP 

<600mm) and/or cold conditions (MAT<0oC), characteristics of many temperate grasslands, 

there is lower biomass production which limits litter inputs to the soil leading to low C stock 

(De Deyn et al., 2008; Garcia-Pausas et al., 2007). As the climate becomes warmer and 

wetter, increased mineralisation of organic materials by soil microbes increases nutrients 

available for plants’ uptake thereby increasing grassland biomass production (Davidson, 

2015; Guo and Gifford, 2002; Xiong et al., 2016) and litter returns to soil. High temperatures 

(e.g. > 20oC) stimulates higher soil microbial activities such as respiration and organic matter 

(OM) decomposition, which results in the loss of soil C as CO2 or methane (CH4) into the 

atmosphere (Ward et al., 2013) or as dissolved organic C (DOC) in soil solution. However, it 

is not likely that increased warming of the temperate zone in the 21st Century (IPCC, 2013) 

will stimulate higher C loss via soil microbial respiration compared to enhanced biomass 

production resulting from warmer and wetter climate and grassland improvement activities 

such as liming and N fertilization. 

Thus, temperate grasslands will potentially serve as a C sink in the face of climate change 

due to increasing temperature. This will contribute significantly to global climate regulation 

because temperate grasslands are widely distributed in most continents (Dixon et al., 2014) 

e.g. the Pampas of South America, the Plains and Prairies of North America, the Steppes of 

Eurasia, the Downs of Australia and New Zealand, and the Veldts of Africa. However, since 
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the climate change trajectory in temperate zones is an all-season increase in temperature, an 

increase in winter precipitation and a decrease in summer precipitation (Jenkins et al., 2008), 

there is still a possibility for the legacy effects of high rate of evapotranspiration in summer to 

negate effects of increased precipitation in winter, which may lead to drier conditions and 

enhance management-induced soil C loss.   

Therefore, in order to ensure sustainable provision of various ecosystem services by 

temperate grasslands particularly forage for livestock and climate change mitigation via 

carbon sequestration, there is need to further study how projected changes in climatic 

conditions (e.g. warming, drought and wetter conditions) will influence SOC storage and 

fluxes. A number of manipulative experiments have already been conducted in temperate 

grasslands to study the effects of climate change on the ecosystem, and involved the use of 

regulated heating to simulate desired temperature increase, with either an addition or 

exclusion of water to simulate wet or drought condition. The results of these climate 

experiments in temperate grasslands were synthesised by White et al. (2012) but they found a 

mixed and complex results with no consistent pattern of grassland response. White et al. 

(2012) concluded that climate change effects on temperate grasslands remain poorly 

understood and this underscores the need for further research. As temperate grasslands are 

subjected to different management regimes, it is necessary to conduct more site specific 

experiments that consider the interactive effects of climate change and grassland management 

activities such as fertilizer application and liming under different grazing regimes. This will 

provide an improved understanding of mechanisms operating at each of the global regions of 

temperate grasslands, and help inform appropriate policy decisions.  
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5.    Conclusion 

There was an overall significant reduction (-8.5%) in the stock of SOC in global managed 

grasslands, due primarily to grazing (-15%), which was partly weakened by fertilizer addition 

(+6.7%) and liming (+5.8%). This indicated that grazing-related management activities to 

improve biomass production does not contribute sufficient soil C to replace the C loss via 

animal grazing. SOC loss was greatest in the tropics and mainly under heavy grazing, and we 

recommend that future grassland management policy should focus on reducing the intensity 

of grazing. Temperate grasslands had the least management-induced decline in SOC stock 

but it was positively related to MAT and MAP such that increasing MAT and MAP reduced 

the negative management effects. This was an indication that temperate grasslands are 

potential C sinks in the face of climate change. However, the understanding of the 

mechanisms of interactions between climate change and management activities in temperate 

grasslands is still poor. Therefore, in order to ensure a sustainable management of grasslands 

that will provide adequate forage for livestock and mitigate climate change through C 

sequestration, we recommend further studies looking at the interactive effects of projected 

climate change and management regimes on soil C stock. 
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