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Abstract. Numerical prediction of aerosol particle properties has become an important activity at

many research and operational weather centres due to growing interest from a diverse set of stake-

holders, such as air quality regulatory bodies, aviation and military authorities, solar energy plant

managers, providers of climate services, and health professionals. The prediction of aerosol particle

properties in Numerical Weather Prediction (NWP) models faces a number of challenges owing to5

the complexity of atmospheric aerosol processes and their sensitivity to the underlying meteorolog-

ical conditions. Errors in aerosol prediction concern all processes involved in the aerosol life cycle.

These include errors on the source terms (for both anthropogenic and natural emissions), errors di-

rectly dependent on the meteorology (e.g., mixing, transport, scavenging by precipitation), as well

as errors related to aerosol chemistry (e.g., nucleation, gas-aerosol partitioning, chemical transfor-10

mation and growth, hygroscopicity). The main goal of current research on aerosol forecast consists

in prioritizing these errors and trying to reduce the most important ones through model development

and data assimilation. Aerosol particle observations from satellite and ground-based platforms have

been crucial to guide model development of the recent years, and have been made more readily

available for model evaluation and assimilation. However, for the sustainability of the aerosol parti-15

cle prediction activities around the globe, it is crucial that quality aerosol observations continue to

be made available from different platforms (space, near-surface, and aircraft) and freely shared. This

white paper reviews current requirements for aerosol observations in the context of the operational

activities carried out at various global and regional centres. Some of the requirements are equally ap-

plicable to aerosol-climate research. However, the focus here is on the global operational prediction20

of aerosol properties such as mass concentrations and optical parameters. Most operational models

are based on bulk schemes that do not predict the size distribution of the aerosol particles. Others are

based on a mix of “bin” and bulk schemes with limited capability to simulate the size information.

However the next generation of aerosol operational models will have the capability to predict both

mass and number density which will provide a more complete description of the aerosols properties.25

A brief overview of the state-of-the-art is provided with an introduction on the importance of aerosol

prediction activities. The criteria on which the requirements for aerosol observations are based are

also outlined. Assimilation and evaluation aspects are discussed from the perspective of the user

requirements.

1 Introduction30

Over the last two decades, the concept of global observing systems and the importance of defining

user requirements for the purpose of monitoring and forecasting elements of the Earth System has

gained momentum. This also applies to atmospheric composition in general and aerosol in particular

with the studies of Barrie et al. (2004) for atmospheric composition monitoring, Reid et al. (2011) for

operational aerosol forecasting, Benedetti et al. (2011) for operational verification of aerosol prop-35
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erties, and Colarco et al. (2014) on the use of Earth Observing System data for aerosol operational

systems. Indeed, at the time of writing this document, there are at least nine operational centres pro-

ducing and distributing real-time global aerosol forecasting products, including: ECMWF Coperni-

cus Atmosphere Monitoring Service (CAMS), Japan Meteorological Agency (JMA), NASA Global

Modelling and Assimilation Office (GMAO), NOAA National Centre for Environmental Prediction40

(NCEP), US Navy’s Fleet Numerical Meteorology and Oceanography Centre (NREL/FNMOC), UK

Met Office, Météo-France and the Finnish Meteorological Institute (FMI). Barcelona Supercomput-

ing Center (BSC) is not an operational centre but provide operational aerosol forecasting products

as well. Each of these centres has its own internal requirements for data to support data assimi-

lation, verification and development of their aerosol forecasting programs. Commissioned by the45

World Meteorological Organization (WMO), this document outlines the requirements of the aerosol

prediction system developers (the data “users” in this context). It has been compiled through con-

sultation with experts in aerosol modelling, assimilation and evaluation both from the operational

centres and the aerosol research community. Clearly establishing these requirements is important

for many issues also involving the provision of aerosol variables and the evolution towards future50

technical requirements.

1.1 Context and needs of the numerical atmospheric composition prediction community

Numerical atmospheric aerosol prediction (NAAP) is still an activity in its infancy. It can be seen

as a sub-component of the larger and far more mature field of numerical weather prediction (NWP)

As such, it is reasonable to expect that NAAP will follow best practices set up by the NWP com-55

munity. This includes in particular best practices in using and setting requirements for observational

data. Just as there are requirements for radiosonde releases and weather station data transmission,

one would expect similar considerations for parameters such as PM10 (total mass of particles with

diameter less than 10 µm), PM2.5 (total mass of particles with diameter less than 2.5 µm) and other

key parameters such as Aerosol Optical Depth (AOD), extinction coefficient, mass concentrations of60

individual chemical components, and light scattering and absorption coefficients. To a large degree

this type of data is already being collected in many countries around the world and inter-calibration

procedures are in place in existing surface networks. There are, however, a number of unique chal-

lenges facing the NAAP community that should be addressed and integrated in the development of

relevant global aerosol data streams. There is a long history of reporting and sharing meteorological65

data because it is understood to be of mutual benefit to all parties in the exchange and, weather being

considered an “act of nature” there is less political motive behind data policies. Atmospheric compo-

sition data, however, is often related to air quality through anthropogenic emissions of pollutants and

thus has local regulatory or even international treaty ramifications. There can subsequently be some

local hesitance to report unfavourable data, or at the least to provide additional funding to ease its70

distribution. One exception is dust storms, and indeed reporting of dust observation and prediction is
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more mature than any other aerosol species, even though there are only a few ground stations in key

source areas. Compositional data collection also requires expensive and, often, difficult to calibrate

equipment. While NWP has suffered at times with diversity in, for example, commercial radiosonde

providers and instrument efficacy, aerosol measurement has considerably more degrees of freedom75

in its measurement technology, overall maintenance, and reporting. While institutions such as the

World Meteorological Organization (WMO), the United States Environmental Protection Agency

(EPA) or the European Environment Agency (EEA) set benchmark levels for air quality monitoring,

they are by no means universally applied. The research community is nevertheless making a huge

effort to intercompare and standardize their measurements. The ability to report with a given time-80

liness is related to measurement technology. A host of potential variables can be generated relating

to mass, composition, optical properties, or microphysics. Deployed instruments and their locations

are also constantly evolving. The authors of this paper are keenly aware of the difficulties associated

with aerosol measurements and the efforts made to improve these. The "requirements" or recom-

mendations made herein should not be interpreted as criticisms of the existing observing system but85

as a mean to move forward. They are not meant to introduce more rigidity and should be interpreted

practically. Given the early state of the field and diversity in development approaches and customer

requirements at aerosol prediction centres, the community requires flexibility as it finds its way. Re-

gardless of data type, whether in situ or from remote sensing, there are three guiding principles that

should be considered.90

1. Data should be easily accessible, distributable, and for baseline quantities, encoded into a simi-

lar format. Currently data distribution is diffuse and potential users have difficulty maintaining

and evaluating global scale data outside of the largest and most consistent networks (for ex-

ample the NASA Aerosol Robotic Network-AERONET sun photometer dataset). While long

term sites are preferred, the operational reality has been for a reduction in support for key su-95

persites, such as Atmospheric Radiation Measurement (ARM) or Global Atmospheric Watch

(GAW). Thus, future data distribution models could mimic meteorological data, where ob-

servations are broadcast and consolidated for use (e.g., 6 or 12 hourly PM2.5 or PM10 data).

However, care must be taken to avoid ongoing legacy issues in the current broadcast system.

2. Timeliness requirements also vary by center. Based on the consensus of centers, 3 hour latency100

is preferred, and 6 hours is adequate, especially for satellite products. There is nevertheless

value in 12 hour or even multi day delivery for verification purposes, including surface partic-

ulate matter monitoring. Timeliness should be a goal, but not necessarily a requirement. This

is especially true for compositional data requiring laboratory work for analysis.

3. Realistic error bars or error models must be provided. The operational community can easily105

cope with uncertain data, provided that uncertainty is known. Indeed, error tolerances are

strongly customer related.
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Mindful of these considerations, specific issues and definitions of user requirements are addressed

in the following subsections. Note that in this paper no mention is made of volcanic ash aerosols.

While the prediction of this type of aerosol is essential for numerous applications, we believe that110

there is a need for a separate study dealing with specific requirements for the prediction of volcanic

ash aerosols. Several communities are dealing with this topic, for example the Global Atmospheric

Watch (GAW) Scientific Advisory Group (SAG) on Volcanic Ash, the GAW SAG on Applications,

the global aerosol lidar network GALION, and others. The AEROSOL Bulletin 3 available from

WMO provides an overview of current efforts on this topic.115

1.2 The nature of user requirements

The notion of user requirements implies that the specific technology or science application has an

underlying group or community that has an interest in using the data, be it data from an observa-

tional platform or from a model. Communities use the data for their applications, and this (implicitly

or explicitly) sets the requirements. One of the principles behind user requirements implies that120

data requirements should be put forward by the relevant communities independently of the current

technologies and systems available, with the overarching goals of supporting the applications of the

community in question, for example weather prediction, ocean modeling, climate investigation etc.

Specifically for observation requirements, no consideration is given to what type of instruments,

observing platforms or data processing systems are necessary or even possible to meet them. Even125

though in practice, it is not possible to make user requirements completely technology-free and cur-

rent availability of technology influences their formulation, it is a useful exercise to understand data

gaps and also to establish if new observing systems can meet all or part of the user requirements.

This process of formulating user requirements establishes also a direct link between model devel-

opers and data providers, which is extremely important. Many data products that are provided by130

environmental agencies or individual scientists, end up not being in the model development/ assim-

ilation/ assessment loop as they do not correspond with what is needed by the modellers (e.g., in

terms of accessibility, timeliness, quality, or uncertainty). Vice versa, often model developers have

unrealistic expectations, do not specify their priorities and end up using only a sub-set of available

observations. Dialogue between these two communities is what ultimately fosters progress on both135

sides. The requirements for observations are usually given in terms of the following criteria: (i) res-

olution (horizontal and vertical and sometimes temporal), (ii) sampling (horizontal and vertical),

(iii) frequency (how often a measurement is taken in time), (iv) timeliness (i.e., availability), (v)

repetition cycle (how often the same area of the globe is observed), and most importantly (vi) un-

certainty either related to the actual instrument accuracy and/or to the algorithm used to perform the140

retrieval in case of derived observations (for example aerosol optical depth or total column ozone).

Additionally, the user must specify what physical or chemical variables should be measured.
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Resolution and sampling differ in that resolution relates to the area and time period a measurement

is representative of, whereas sampling indicates the distance between two successive measurements

both in space and time. Frequency is related to the temporal sampling of an instrument whereas145

repetition gives a measure of how often the same location is observed. For example, an instrument

on a polar orbiting satellite may have very high frequency but low repetition.

Uncertainty can be divided into accuracy, which relates to the bias of the measurement, and pre-

cision, which relates to the random error. For example in the presence of biased observations, aver-

aging more observations does not generally improve the accuracy, but may improve the precision.150

For each application, it is generally accepted that improved observations in terms of resolution, sam-

pling, frequency and accuracy, etc. against some baseline are generally more useful than coarser, less

frequent and less accurate counterpart observations. The latter, however, could still be useful. Some

of the criteria may come into play depending on the particular area of application. For example, time-

liness is a criterion which is not included in the requirements for climate research whereas due to the155

constraints on the timely delivery of the forecasts, it is a crucial parameter for operational prediction

and assimilation. The usefulness of an observation is dependent on the specific application and its

availability. This is specified in the requirements by adding three values per criteria: the “goal”, the

“threshold” and the “breakthrough”. The goal is the value above which further improvement of the

observation would not bring any significant improvement to the application. Goals may evolve de-160

pending on the progress of the application and the capacity to make better use of the observations.

The threshold is the value below which the observation has no value for the given application. An

example of threshold requirement for assimilation is, for example, the timeliness of the data: obser-

vations that are delivered beyond a certain time (normally three to six hours for near-real time NWP

applications) cannot be used in the analysis. The breakthrough is a value in between the goal and165

the threshold that, if achieved, would result in a significant improvement for the application under

consideration. Of these three parameters the most elusive is the breakthrough because its value may

change more drastically than the other two with system developments. While the usefulness class of

requirement is conceptually straightforward it is less so functionally and consequently can have an

arbitrary nature in a rapidly developing field such as NAAP. Thus, while this document will provide170

examples of usefulness, there is a hesitation to be overly specific at this time. In particular break-

through and goal values for different variables are not independent: accurate measurements of one

variable may lower the usefulness of another less accurately-measured variable because the variables

are related in the model. For instance AOD measurements become less valuable if measurements of

the extinction coefficient become available with the required sampling and accuracy.175
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1.3 Rolling Review of Requirements and Task Team on Observational Requirements and

Satellite Measurements

The WMO has developed a framework for different thematic areas such as Global Numerical Weather

Prediction, High-resolution Numerical Weather Prediction, Nowcasting and Very Short Range Fore-

casting, Ocean applications, and Atmospheric Chemistry, among others, to be reviewed periodically180

in terms of design and the implementation of various observing systems, using as guidance the

user requirements set-out by the relevant community (Barrie et al., 2004). This process is called the

rolling review of requirements (RRR) and it involves several steps. For each application area, these

steps are as follows: (i) a review of “technology-free” user requirements (i.e., not taking into account

the available technology) for observations in one of the thematic areas; (ii) a review of current and185

future observing capabilities (space-based and surface-based); (iii) a critical review of whether the

capabilities meet the requirements; and finally (iv) a statement of guidance based on the outcomes

of the critical review. This statement of guidance is often called gap analysis as it shows whether

the current observing system is suitable for the given application and what is needed in the future

observing system in order for it to meet the requirements set out by the user community. To facilitate190

this process, the WMO maintains an online database on user requirements and observing system

capabilities called Observing Systems Capability Analysis and Review tool (OSCAR). Details on

the RRR are provided in Eyre et al. (2013), and references therein.

Recently, the WMO GAW set up an ad-hoc Task Team on Observational Requirements and

Satellite Measurements as regards Atmospheric Composition and Related Physical Parameters (TT-195

ObsReq, http://www.wmo.int/pages/prog/arep/gaw/TaskTeamObsReq.html) to review the user re-

quirements specifically for atmospheric composition. Application areas related to atmospheric com-

position include: (i) Forecasting Atmospheric Composition which covers applications from global

to regional scales (≈10 km and coarser) with stringent timeliness requirements (NRT) to support op-

erations such as sand and dust storm and chemical weather forecasts, (ii) Monitoring Atmospheric200

Composition which covers applications related to evaluating and analysing changes (temporally and

spatially) in atmospheric composition regionally and globally to support treaty monitoring, clima-

tologies and re-analyses, assessing trends in composition and emissions/fluxes, and to better un-

derstand processes, using data of controlled quality (and with less stringent time requirements than

needed for NRT). (iii) Providing Atmospheric Composition information to support services in urban205

and populated areas, which covers applications that target limited areas (with horizontal resolu-

tion of a few km or smaller) and stringent timeliness requirements to support services related to

weather/climate/pollution, such as air quality forecasting.

The WMO GAW TT-ObsReq analysed the role of atmospheric composition observations also

in support of the other WMO application areas (http://www.wmo.int/pages/prog/www/OSY/GOS-210

RRR.html). After the Second Workshop of the TT-ObsReq (12-13 August 2014, Zurich), the com-

mittee identified key parameters needed for Forecasting Atmospheric Composition. For aerosols

7
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these parameters were: aerosol mass, size distribution (or at least mass in three fraction sizes: up

to 1, 2.5 and 10 micron as it is common practice in air quality, speciation and chemical composi-

tion, AOD at multiple wavelengths, absorption AOD (AAOD), ratio of vertically integrated mass215

to AOD, vertical distribution of aerosol extinction). Some of the parameters outlined for Monitor-

ing Atmospheric Composition may also be relevant to the operational prediction of aerosol particle

properties, which is one of the application areas (Forecasting Atmospheric Composition) and is the

focus of this study. Because recommendations from the committee are technology-free, they differ

slightly from those identified by the Scientific Advisory Group on Aerosol (GAW report 227), which220

limits recommendation to variables that can be directly measured.

Requirements are outlined based on what is needed for the fundamental components of an aerosol

prediction system which are: (i) modelling processes (aerosol particles emission and removal), (ii)

data assimilation (when present), and (iii) model evaluation. Section 2 briefly presents current op-

erational and pre-operational aerosol systems both at the global and the regional scales. Section 3225

describes the data needs and the requirements for emission and removal processes, section 4 out-

lines those for the assimilation component, and finally section 5 describes those related to model

evaluation. Section 6 summarizes those data needs and includes some final thoughts.

2 Aerosol Prediction Models

Several centres with operational capabilities are currently running aerosol prediction systems. These230

are BSC, ECMWF, FNMOC/NRL, JMA, Met Office, NASA, NCEP, on the global level and BSC,

the Chinese Meteorological Agency (CMA), the Korean Meteorological Agency (KMA), the Institut

national de l’environnement industriel et des risques (INERIS), Météo-France, the Deutscher Wetter-

dienst (DWD), to mention a few on a regional level. Some centres such as BSC, the UK Met Office,

NCEP, Météo-France and FMI currently run operational dust forecasting systems, and have also de-235

veloped capabilities for other aerosol species (sea salt, carbonaceous aerosols, sulphates). Most of

these systems also have assimilation capabilities. A detailed description of the individual models is

beyond the scope of this paper. For a review of the current systems that provide aerosol forecasts,

some with focus on dust, see for example Benedetti et al. (2014) and Sessions et al. (2015).Ensemble

systems are presented in Rubin et al. (2016) and Di Tomaso et al. (2017). An overview of regional240

aerosol forecasting systems can be found in Menut and Bessagnet (2010); Kukkonen et al. (2011);

Zhang et al. (2012a, b); Baklanov et al. (2014).

In the rest of the paper, we will mainly focus on requirements for global models, acknowledging

that regional (i.e., limited-area) models may have different sets of requirements, including some for

boundary conditions. Regional ground-based networks can for example address some of those needs245

while not providing sufficient coverage for global models. Global observations can be of use also

for regional applications but the requirement on the resolution, for example, may differ from that of
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a global model. In general most of the requirements below will apply to both global and regional

models.

2.1 Multi-model consensus ensemble predictions250

In recent years, aerosol forecasting centres have been turning to ensemble prediction to describe the

future state of the aerosol fields from a probabilistic point of view. Multi-model product consensus

ensembles of deterministic aerosol forecast models have been developed to alleviate the shortcom-

ings of individual models while offering an insight on the uncertainties associated with a single-

model forecast. Examples include the International Cooperative for Aerosol Prediction (ICAP) Multi255

Model Ensemble (ICAP-MME, Sessions et al. (2015) (http://www.nrlmry.navy.mil/aerosol/) for global

aerosol forecasts and the WMO Sand and Dust Storm Warning Advisory and Assessment System

(SDS-WAS) North African and Middle East Regional Node for regional dust forecasting (http://sds-

was.aemet.es/; Terradellas et al. (2016)). The ICAP initiative itself has demonstrated that simply

collecting different forecasts in a single database and generating web pages with common plotting260

conventions is an effective tool for developers to assess and improve their forecasting systems. Use

of ensemble forecast techniques is especially relevant for situations associated with unstable weather

patterns, or in extreme conditions. Ensemble approaches are also known to have more skills at longer

ranges (> 3 days) where the probabilistic approach provides more reliable information than a single

model run due to the model error increasing over time. Moreover an exhaustive comparison of dif-265

ferent models with each other and against multi-model products as well as observations can reveal

weaknesses of individual models and provide an assessment of model uncertainties in simulating

the aerosol cycle. Multi-model ensembles also represent a paradigm shift in which offering the best

product to the users as a collective scientific community becomes more important than competing

for achieving the best forecast as individual centres. This new paradigm fosters collaboration and270

interaction, and ultimately results in improvements in the individual models and in better final prod-

ucts.

3 Modeling of aerosol particle emission and removal processes

3.1 General concepts

Modeling of aerosol particle sources and sinks are of uppermost importance, because these processes275

largely control the spatio-temporal distributions of aerosol particle concentrations and size distribu-

tions. In addition, in polluted environments, uncertainties are dominated by emissions whereas in

remote regions aerosol processes control the uncertainty. For a given source strength, sinks also

control the atmospheric residence times of aerosol particles, which is in turn a key indicator of long-

range transport of aerosol species. A good representation of aerosol particle sources and sinks is280

particularly important to determine the overall analysis and forecast of particle mass, surface area,

9
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and number concentrations in regions with few observations for data assimilation. A discrepancy in

aerosol sources and/or sink processes can cause a systematic drift in aerosol particle concentrations

and AOD over the forecast range in a forecasting system with data assimilation. This is because

often the data assimilation corrects for the bias in sources and/or sinks. This correction is often not285

retained in the subsequent forecast integration due to the fact that the model does not represent the

emission/removal processes adequately. For this reason, it is useful to set user requirements also for

source and sink observations of aerosol particles. Efforts to formulate aerosol DA with emission

fluxes as well as / instead of mixing ratios as a control variable might have a role to play in correct-

ing these forecast drifts, although such observations would remain important constraints in such a290

framework.

It is appropriate to differentiate sources of aerosols and aerosol precursors that are directly emit-

ted by human activities from those (natural or anthropogenic) emissions that depend on natural pro-

cesses. User requirements for directly-emitted anthropogenic emissions can be articulated around

the following criteria: accuracy, spatial resolution, temporal resolution, speciation, and aerosol size295

distribution. User requirement for emissions that depend on meteorological processes also include

requirements on key meteorological and environmental quantities that control such emissions, for

example wind and surface conditions or any other parameters that may lead to aerosol formation.

3.2 User requirements for emissions: anthropogenic and biogenic aerosols

What is generally perceived as anthropogenic air pollution is in fact a result of complex and poorly300

understood photochemical processing as well as emissions from point and area sources. Often, an-

thropogenic emissions are taken to be those associated with domestic, industrial, and mobile sources.

However, agricultural emissions, including fertilizers and open maintenance burning, are inconsis-

tently included in the terms biogenic and anthropogenic, respectively. This ambiguity can be initially

handled by accepting that, from an aerosol point of view, it is all a single class of processes and305

“anthropogenic” and “biogenic” emissions follow a similar processing rubric in models. Gridded

emissions inventories are commonly generated for primary particles (e.g., sea salt, dust, primary

organic matter (POM), and black carbon (BC)). Sulfates, nitrates, other inorganics, secondary or-

ganic aerosol (SOA), and black carbon (BC) are supplemented by emissions of key gases important

in secondary aerosol particle production (e.g., SO2, NOx, ammonia, isoprene, alkenes, aromatics,310

terpenes, etc.). These inventories are the result of large scale land classification maps, fuel invento-

ries, and transportation corridor databases. Individual “source” classifications vary by study author,

but often include power production, heavy industry/smelting, domestic and biofuel, mobile sources,

road dust, agricultural field emissions, agricultural/domestic stack and burn piles as well as plant

emissions of such species as isoprene and terpenes. We hold as distinct larger open biomass burning,315

including agriculture field burning.
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3.2.1 Accuracy

Aerosol particle sources are usually prescribed from compiled emission inventories. Despite the ef-

forts put in emission inventories by the community and continuous progress, there remain inherent

difficulties in producing accurate inventories. This is because of a number of reasons such as the large320

variety of point and diffuse sources, uncertainties in emission factors, unknown or unaccounted for

sources as well as the model emission approach that is applied (López-Aparicio et al., 2017). Among

emission uncertainties there exist a hierarchy of errors. While point and area sources are less uncer-

tain year after year thanks to satellite data, emission factors remain uncertain due to the impossibility

to measure them in “realistic" conditions and their strong dependence on the environment.325

Since the error on emission inventories automatically translates into a similar or even larger er-

ror in concentrations, a user requirement on emission uncertainties might be tempting. However it

should be kept in mind that uncertainties and biases in emissions are difficult to estimate and reduc-

ing the error to a single number might not be possible. Aerosol source inversion techniques (e.g.,

Huneeus et al. (2012); Escribano et al. (2017)) have made some progress but are not yet at a stage330

where they can constrain emission inventories to better than the user requirement. Such studies can

nevertheless point to regional problems in emission inventories.

3.2.2 Spatial resolution and sampling

One ideally requires emission inventories that have a resolution as good as the model resolution.

For global modelling systems, this amounts to a spatial resolution and sampling of typically 50 km,335

although of course many benefits in modelling aerosol transport and deposition may be gained by

running NWP at high resolution, even if sources are not known at that resolution. As computing

power increases, it is relatively easy to increase model resolution. Sub-grid scale information in

emission inventories can be use to post-process and downscale, at least statistically, the simulated

model concentrations (Wang et al., 2014). New methods based for example on population density as340

a proxy are also being used (Mailler et al., 2017).

For these reasons, it is appropriate that global emission inventories always aim for spatial resolu-

tion and sampling that are higher than that of models at a given time (i.e., we recommend a minimum

of 10 km resolution given the current state of play). Even higher resolutions (< 1km) are required for

regional air quality models given that the typical scale for emissions is very small (e.g., the width of345

a road for surface traffic).

3.2.3 Temporal distribution and sampling

Temporal distribution of emission inventories can be critical as emission inventories need to sample

the diurnal, weekly and seasonal cycles in emissions. Since some aerosol data products are only

available at day (e.g., AOD retrieved in the visible part of the electromagnetic spectrum), it is im-350
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portant to deal with the diurnal cycle in emissions so as not to introduce biases in the simulated

quantities. As modeling improves, it may become necessary to move from static gridded inventories

to include feedbacks with societal (e.g., public holidays, agricultural practices) or meteorological

(e.g., influence of cold spells on emissions from heating/biofuel systems or dry spells/wind on stack

burning) conditions. Biogenic emissions from plants have also a strong dependency on temperature355

and water stress.

3.2.4 Speciation

Aerosol particle speciation in global aerosol models should be reflected in global emission invento-

ries with a minimum of aerosol precursors such as SO2, NH3, NOx, and primary aerosol particles

such as elemental or black carbon and primary organic carbon. Industrial dust and fly ash are often360

left out but can be important in some regions (as China), and should be included in user require-

ments. Requirements on speciation for volatile organic compounds (VOCs) are more difficult to set

out because it is unclear what level of complexity is required in global aerosol models whose aim is

to reproduce mass or number concentrations or optical thickness due to secondary organic aerosols

(SOA). We argue here that speciation of VOCs is directly related to the complexity of the aerosol365

scheme considered and is more difficult to link to user requirements. This is further complicated

by SOA production likely being a product of joint anthropogenic emissions. At the minimum bulk

seasonal emissions of key classes of reactive VOCs are required (e.g., alkenes, aromatics, isoprene,

terpenes).

3.2.5 Size distribution370

Aerosol particle properties, such as size and composition, play an important role in determining

the aerosol particle radiative efficiency and the ability to serve as cloud condensation nuclei, as

well as in having health-related impacts. User requirements on aerosol particle mass or number

size distributions translate into user requirements on aerosol particle size resolution at the emission

points. Such user requirements can be expressed in several ways, i.e. on PM10, PM2.5 and PM1375

emission rates, or in combined requirements on aerosol particle mass and number emission rates for

typical aerosol size ranges. Historically, the focus has been first on PM10, then PM2.5 and lastly on

PM1 both for health impacts and its connection to cloud formation. The concept itself of PM at a

given size cut-off is directly linked to the availability of sampling inlets, but with more current and

future instruments we can expect to have a complete information on the aerosol size distribution.380

3.3 User requirements for emissions: open biomass burning aerosols

Biomass burning emissions represent a highly temporally and spatially variable source of aerosols

to the atmosphere and reliable and timely estimates are a key input to air quality and atmospheric

composition forecasts. Here we define open biomass burning emissions as emissions by fire con-
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suming open vegetation in fields, grasslands or forests. Biofuel or stacked agricultural burning are385

included in the anthropogenic and biogenic emissions and not considered as open biomass burning.

Within the International Global Atmospheric Chemistry (IGAC) project, there is at present about

half a dozen advanced global aerosol models that include emissions from vegetation fires that could

be included in a multi-model ensemble forecast. Only half of the IGAC-participating models are

currently operational, the others remain in a research and development stage (for some, only the390

vegetation fire component is not operational).

Several real-time smoke forecasting products exist, and are related to satellite based active fire

hot spot or burn area databases. The most established global aerosol forecasts are represented in

the International Cooperative in Aerosol Prediction (ICAP). Four models include dedicated smoke

treatment: CAMS (ECMWF and partners), MASINGAR (MRI-JMA), GEOS-5 (NASA), NAAPS395

(US Navy), where the first two use emissions from the Global Fire Assimilation System (GFAS,

Kaiser et al. (2012)), the second from a similar FRP-based Quick Fire Emissions Database (QFED,

Darmenov and da Silva (2013)), and the last from the hot spot-based Fire Locating and Modeling of

Burning Emissions (FLAMBE) system (Reid et al., 2009).

Currently most models scale biomass burning emissions to reach acceptable values of biomass400

burning aerosol optical thickness close to observations (MODIS or AERONET). This scaling factor

ranges from 1.7 for the Met Office Unified Model limited area model configuration over South

America that was used for the SAMBBA campaign (Kolusu et al., 2015) to 1.8-4.5 for GEOS-

5 (Colarco et al., 2011) and 3.4 for CAMS (Kaiser et al., 2012). In CAM5 (Tosca et al., 2013),

regional scaling factors are used (Lynch et al., 2016). The need for this scaling factor arises either405

from possible underestimation of the biomass burning aerosol emissions or from model biases.

There are still large uncertainties in how to convert between the observed fire radiative power

and the total amount of dry matter actually burned during the event. In addition when the total

burnt dry matter is estimated, the conversion into chemical volatile elements only takes into account

static maps of vegetation cover (Heil et al., 2010).Several studies have shown this is quite a crude410

assumption as fuel moisture and weather conditions (e.g temperature and humidity) can largely

influence the amount of emissions (French et al., 2004, 2011). Vertical and/or horizontal resolution

may also play a role.

A major challenge in modeling biomass burning aerosols (BBA) is therefore to better quantify the

errors that lead to the use of these scaling factors and to improve the emission datasets and/or the415

models so as to reduce their use.

Extensive work in drawing user requirements has recently been done by the Interdisciplinary

Biomass Burning Initiative (IBBI) and GAW APP-SAG. A draft Concept Note and Expert Rec-

ommendations for a Regional Vegetation Fire and Smoke Pollution Warning and Advisory System

(RVFSP-WAS) was written, which form the basis of user requirements for biomass burning aerosols420

(WMO GAW Report No. 235, available at http://www.wmo.int/pages/prog/arep/gaw/documents).
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3.3.1 Estimating Fire emissions

Reasonably fast and comprehensive estimates of smoke constituent emissions are derived from satel-

lite observations of fires. There are three fundamentally different approaches:

– Active Fire and Fire Radiative Power:425

Vegetation fires exhibit both smoldering and flaming combustion, with flame radiometric tem-

peratures of between 750 and 1200 K appearing dominant. Wien’s Displacement Law indi-

cates that the peak of thermal emission from bodies at these temperatures occurs in or close

to the shortwave infrared (SWIR; 1.6–2.5 µm) and middle infrared (MIR;3–5 µm) atmo-

spheric windows. Fires are typically very much more active by day than by night (Giglio,430

2007; Roberts et al., 2009), and the presence of relatively strong solar reflective signals in

the SWIR region by day means that active fire detection algorithms are generally focused on

exploitation of the MIR signal. Many publications have outlined the basis by which elevated

MIR signals are used to detect actively burning fires (Robinson, 1991). In the MIR wavelength

range, the spectral radiance emitted from an open vegetation fire can be up to four orders of435

magnitude higher than that from the ambient temperature background, therefore allowing even

extreme sub-pixel fires (e.g. covering down to 0.1 -0.01% of a pixel) to significantly affect the

measured MIR pixel signal. Detection of these elevated MIR channel signals, either on the

basis of spectral radiance or brightness temperature measures, is the basis of most active fire

detection algorithms. However, by day solar-heating of bare ground and specular sun glints440

from unmasked clouds or water bodies can also increase MIR pixel signals far above those of

the surroundings, and thus especially by day a series of additional optical and thermal channel

spectral and/or spatial tests need to be deployed to discriminate “true" fire pixels from “false"

alarms. In particular, areas that are homogeneously warm due to solar heating tend to have

spatially consistent and rather similar MIR and TIR brightness temperatures whereas the pres-445

ence of a sub-pixel sized fire within the FOV elevates the brightness temperature difference

between these two channels (MIR-TIR)), usually over just a few pixels corresponding to the

location of the active flaming and/or smouldering zone. Furthermore, whilst elevated (MIR-

TIR) values also occur due to sun glint effects, such pixels also show a markedly increased

VIS/NIR channel, which is not the case for fires. Based on these principles, fire detection uses450

a series of multispectral MIR, TIR and VIS/NIR channel tests to first discriminate “potential"

active fire pixels, and then confirm which of these are “true" fire pixels.

All these channels can be observed in real time from Geostationary sensors such as GOES

(e.g., Prins et al. (1998)) and polar orbiting sensors such as AVHRR (Flasse and Ceccato,

1996) and MODIS (e.g., Giglio et al. (2013)). If a quantitative fire black body temperature is455

extracted, then it can be interpreted as “fire radiative power” (FRP). Under certain conditions

FRP can be proportional to the biomass combustion rate (Wooster et al., 2005). Subsequently,
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instantaneous emission rates of various smoke constituents can be calculated with assumed

emission factors from the scientific literature (Heil et al., 2010). The advantages of this ap-

proach are the immediate availability of the observations and emission estimates, even while460

the fires are still burning, and the relatively weak dependence on the fire type for above-ground

burning. However given the uncertainties in the conversion parameters, the final emissions

tend to be overall underestimated. Satellite overpass times, cloud cover and fuel geometry all

feed into active fire hotspot and radiative power product efficacy. Historically observations

from AVHRR, GMS, GOES, MODIS and SEVIRI satellite sensors have been used to gen-465

erate fire products. Current generation satellite sensors, including spatial resolution down to

375 m (e.g., with NPP-VIIRS) and a temporal resolution 10 minutes (e.g., from Himawari-8

and GOES 16) is possible when all available satellite data is used. This approach of multiple

satellite sensor types is used to calculate emissions in near-real time with the FLAMBE and

GFAS systems. Even so, differences between such databases in terms of fires processed and470

emissions can easily span an order of magnitude (Hyer et al., 2013). Even subtle differences

in geolocation and fuel maps can result in substantial differences (Hyer and Reid, 2009).

– Burnt Area: The definition of burned areas works from temporal pairs satellite imageries,

examining changes in an index derived from the solar reflective band measurements that show

large differences when land changes from a vegetated to a “burnt" state. In this way, areas that475

have changed from “non burnt" to “burnt" between the date of the two satellite overpasses are

highlighted, along with their best estimated date or burn. Shapefiles can be then be generated

from this output, and cumulative area burnt can be derived from accumulations and filtering

of this information. Burnt areas are therefore available after the event has ended (e.g., Barbosa

et al. (1999)), however they provide an accurate estimation of how much dry matter has been480

burnt from which smoke emission can be calculated. The estimation of emissions from burnt

areas has the advantages of being well established for a long time, being relatively close to

in-situ methods employed locally by foresters on the ground (so that much validation and cal-

ibration has been performed in the past) and of being based on persistent burnt area signal that

can be detected even after any observation gap, e.g. due to cloud cover. The spatial resolution485

is also relatively good, down to 250 m for global coverage. On the other hand, the burnt area

observation is only possible after a burn so that true real-time applications cannot be realized.

If an active fire satellite observation can only distinguish between “fire" and “no fire", e.g.,

due to its MIR channel saturating, this binary product is called a “hot spot" product. Some-

times, relatively simple assumptions are used to estimate burnt area from such products and490

emissions can subsequently be calculated as above. This has been done to correct for missing

small fires in GFED (Randerson et al., 2012) or to calculate emission in real time, e.g. with

FINN (Wiedinmyer et al., 2011). One of the best-known examples of burnt-area product is the

GFED inventory Van der Werf et al. (2010).
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– Nighttime visible: While active fire products have been the mainstay of fire emission es-495

timates, historically some of the first satellite observations were associated with day/night

imagers on the Operational Linescan System (OLS) on Defense Meteorological Satellite Pro-

gram (DMSP; see Elvidge et al. (1996); review by Fuller (2000)). Increased availability of

day/night band data from Suomi NPP VIIRS has renewed interest in fire detection through

shortwave fire light (Miller et al. (2012); Polivka et al. (2016)).500

– Smoke detection: Shortly after a fire is burning, its smoke plume can be detected in the atmo-

sphere. Aerosol optical depth and carbon monoxide are relatively well observed by satellites,

so that they can be used to infer the fire emissions using inverse methods. The advantage is

that the atmospheric effect is relatively directly constrained for the observed species and that

the effect of any unobserved fire is also included. On the other hand, this methodology cannot505

distinguish fire from other sources and has limited temporal and spatial resolution.

Combining the FRP and the burnt area has recently been shown to be a promising approach to

derive quantitative estimates of fuel consumption.

3.3.2 Uncertainties in fire emission factors and BBA optical properties

Emissions of aerosols, and other pollutants, associated with open biomass burning are estimated510

using emission factors which convert between the mass of fuel consumed (derived from FRP or

burnt area observations) and the species of interest via the carbon content of the fuel (e.g., Andreae

and Merlet (2001); Akagi et al. (2011); Kaiser et al. (2012)). These emission factors are typically

calculated using laboratory or field campaign measurements of smoke constituents which, while

providing accurate measurements, may not be fully representative of all biomass burning and smoke515

conditions. In particular large uncertainties, and missing observations, persist in emission factors

for different fuel types (e.g. peat), fire conditions (smouldering vs. flaming), and smoke processing

scenarios (e.g. in the presence of clouds, day-time vs. night-time conditions) following, e.g., (Akagi

et al., 2011). Increased and more extensive in situ measurements of different fire types would provide

the data required to improve emission factors currently used in the operational models. Incorporating520

meteorological parameters, such as surface temperature, humidity and soil moisture, which could be

done in NRT in the operational models will also be beneficial in adapting otherwise static emission

factors to particular environmental conditions.

Peat fires are an important contributor to global carbon emissions, especially during ENSO re-

lated events in Indonesia (for example see the dedicated section in the BAMS State of the Climate525

2015 (Benedetti et al., 2016) or Huijnen et al. (2016)). The signal from peat fires is relatively small

and the proportionality to biomass burnt is less certain for these fires than for above-ground fires.

Finally, the emission factors vary for individual fires so that estimates on a small scale have a limited
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accuracy. Observations that would help in better constraining the fire emission factors would be of

great usefulness.530

The uncertainties in emission estimates from smoke observations are still large due to variable

and relatively poorly known optical properties of aerosols, poorly characterized errors of the used

atmospheric chemistry and transport models, and noise in the satellite observations.

For burnt area products, uncertainties arise mostly from small fires remaining undetected in the

burnt area observations and large uncertainties in the estimates of the rather variable input of avail-535

able fuel load and combustion completeness. For peat fires in particular, the burn depth is not con-

strained with global observations.

3.3.3 Observations and data production for verification and assimilation

Beyond a regional increase in number and coverage of observations, near-real time access to site-

observation data for assimilation and verification is an important point. Currently fire products from540

sensors on low orbit (MODIS, VIIRS) and geostationary satellites (SEVIRI, GOES, Himawari-8) are

available. To estimate emissions, observation gaps may occur due to cloud cover or when satellite

observations are not available, and the consistent merging of FRP from different satellites is still

an open research topic, because their values are often very different and globally biased. However,

combining the high temporal resolution of the geostationary products, which would greatly help in545

accounting for the usually strong diurnal cycle of fire emissions, and the higher precision and global

reach of low Earth orbiting products is an important objective. Future satellite observations might

help in reducing the discrepancy between low Earth orbiting and geostationary products.

To support the assessment of fire impacts, measurements of the combustion species (aerosols,

reactive and greenhouse gases) are needed. There are several stations that can support verifications550

of haze forecast, but their number is very limited and some existing stations do not share data in a

timely manner. There is also a network of ground-based observations, including Global Atmosphere

Watch (GAW) stations and other global networks (e.g., AERONET). Lidar networks can also help

with identifying the plume height.

Fire emissions occur most of the time in the Planetary Boundary Layer (PBL). However, for some555

large fires, estimated at roughly 15% of all fires, (Val Martin et al. (2010) and Sofiev et al. (2012)),

fire emissions are released in the free troposphere above the PBL. In some extreme cases, fire emis-

sions can even reach the Upper Troposphere – Lower Stratosphere region (Fromm et al., 2006).

The height in the atmosphere at which this occurs is often referred to as the injection height. An

observational dataset of injection heights exists through the MISR Plume Height Project (MPHP,560

Nelson et al. (2013)), based on a combination of MISR smoke aerosol and MODIS thermal anomaly

products. This dataset has recently been updated and extended to produce the MPHP2 dataset. These

observations have been very useful in calibrating and/or evaluating global biomass burning emis-

sions injection height datasets (Sofiev et al. (2013)). Satellite products that can provide, in near-real
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time, an estimate of this injection height would greatly help in accurately forecasting large biomass565

burning events. Another factor of uncertainty, to a lesser extent, is also the shape of the vertical

injection profile. In this case, profiling observations would be required.

3.4 User requirements for emissions: Desert mineral dust

For mineral dust, important source regions globally include the Sahara/Sahel, Southwest Asia/ Mid-

dle East, Taklimakan/Gobi deserts of China, Australia and the Southwest United States/adjacent570

Mexico. However throughout the world there are many individual sources such as in Patagonia, the

Arctic plains, and countless dry or drying lake beds. Recent research has shown that current meteo-

rological models struggle to realistically represent some key physical mechanisms of gust generation

associated with dust emission (Knippertz and Todd, 2012). Surface wind speed is also poorly rep-

resented in many models and this induces errors both in dust emissions and subsequent transport575

(Menut et al., 2015). This is particularly true for northern Africa but many aspects apply to other

source regions around the world, too. For example, many models create too much vertical mixing

in the stable nighttime planetary boundary layer over arid areas, leading to an underestimation of

nocturnal low-level jets and a too flat diurnal cycle in surface winds (Fiedler et al. (2013); Largeron

et al. (2015); Roberts et al. (2017)). This is also partly related to an underestimation of turbulent580

dust emission during the day (Klose and Shao, 2012). Another substantial problem is the lack of

dust generation related to cold pools (haboobs) associated with moist convection over the Sahel and

Sahara (and many other desert areas), a process largely absent in models with parameterized con-

vection (Marsham et al. (2011); Heinold et al. (2013); Pantillon et al. (2015, 2016)). This leads to

even reanalyses missing the summertime maximum in dust generating winds in the central Sahara585

(Roberts et al., 2017). A too simplistic treatment of surface roughness in many models can also lead

to significant differences in near-surface wind speed locally, particular in the semi-arid Sahel with

its seasonal vegetation (Cowie et al., 2013; Kergoat et al., 2017).

It is challenging to improve model representation of dust generation due to an enormous lack of

observations from key source regions. The logistically difficult and politically unstable Saharan and590

Middle East region has large areas void of any ground stations. What is required to better understand

and specify the meteorology of dust production, is a much denser network of stations that observe

standard meteorological parameters such as wind, temperature, humidity and pressure, ideally lo-

cated in some of the main source regions. Given the large diurnal cycle and the short lifetime of

some dust-raising mechanisms, particularly moist convection, an hourly or better time resolution595

would be desirable (Cowie et al., 2015; Bergametti et al., 2017). A first step in creating such a net-

work was undertaken during the recent Fennec project (Hobby et al., 2013; Roberts et al., 2017).

The lack of observations in combination with the difficult-to-represent meteorology also leads to

substantial deviations between different analysis products, even on continental scales (Roberts et al.,

2015), creating substantial differences in dust emission (e.g. Menut (2008)). Particularly the depth600
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of the Saharan heat low, which is crucial for the large-scale circulation over northern Africa and thus

a dominating factor for dust generation, can vary substantially between different analyses or model

simulations with different resolution (Marsham et al., 2011). A much denser network of high-quality

pressure observations is needed to better constrain models in this regard.

In addition, our knowledge of the amount and the size distribution of the emitted mineral dust par-605

ticles is limited. This is to some extent due to uncertainties in the actual emission parameterization

(e.g. Kok et al. (2014)), but also due to limited knowledge of relevant soil parameters that can vary

markedly in space and time. To address this aspect, a network of ground stations is required that in

addition to standard meteorology measures mineral dust emission, ideally including mass or number

size distributions of emitted particles. Some such efforts were made during recent field campaigns610

such as Fennec (Marsham et al., 2013), the Bodélé Dust Experiment (BoDEx) (Washington et al.,

2006) and the Japanese Australian Dust Experiment (JADE) (Ishizuka et al., 2008). Longer-term

monitoring stations, however, are very rare, with the African Monsoon Multidisciplinary Analysis

(AMMA) Sahelian Dust Transect being a notable exception (Marticorena et al., 2010; Bergametti

et al., 2017). Worth mentioning are also the CV-DUST project (Pio et al., 2014) and the Cape Verde615

Atmospheric Observatory (CVAO) with its long term dust record (Fomba et al., 2014). An extension

of such activities to more remote source areas would be highly desirable, especially one that ac-

counted for the large particles. Further, knowledge about the mineralogy of the dust, i.e. the amount

of soluble iron, is an important parameter to quantify the impact of dust emission on the biogeo-

chemistry of the oceans (Mahowald et al., 2005).620

Given the relative lack of in-situ data a continued reliance on remote sensing is anticipated in com-

ing years, but a number of challenges remain. First, obscuration of dust by cloud (Kocha et al., 2013)

is likely a problem that cannot be solved. Second, much summertime dust is emitted at night (Mar-

sham et al., 2013) but most current products are day-time only, requiring better information from

wavelength other than visible. Infrared products are being developed but still have biases related to625

atmospheric moisture (Banks et al., 2013). These would need to be further improved and provided

in near-real time for data assimilation. Newly developed dust optical depth products from infrared

high-spectral sensors such as Infrared Atmospheric Sounder Interferometer (IASI) are also promis-

ing (Peyridieu et al., 2013; Capelle et al., 2014). In addition, location of AERONET stations closer to

source regions would allow evaluation of models and satellite retrievals near source (e.g., the short-630

term deployment during the Fennec field campaign Banks et al. (2013)), and retrievals from such

observations should in future account for particles with diameters exceeding 30 µm (Ryder et al.,

2013). Vertical profiles are also very important as discussed in Ansmann et al. (2017).

3.5 User requirements for emissions: Marine aerosol particles

Sea spray provides the largest mass flux of any aerosol type (Andreae and Rosenfeld, 2008) and635

sea salt aerosol dominates the total aerosol loading over the remote oceans (Haywood et al., 1999).
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There are few long-term measurement sites of marine aerosol, all restricted to islands or coastal sites

(e.g., MAN, http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html). The source of

sea spray aerosol is strongly dependent upon environmental conditions, primarily the local surface

wind speed, but also on wave state (Norris et al., 2013b), water temperature, salinity, and the presence640

of surfactants (De Leeuw et al., 2011). Biological material in the surface water can contribute to a

significant organic component to the sea spray aerosol, increasingly so with decreasing particle size

(De Leeuw et al., 2011). Most models, however, use simple source functions formulated in terms of

wind speed only; the most widely used is that of Monahan et al. (1986), which is often applied well

beyond the range of conditions from which it was derived and for which it is valid (Spada et al.,645

2013). Indeed, there appears to be a number of physical and biological effects that can strongly

perturb the bubble/aerosol production relationship (Keene et al., 2017).

Extensive in situ measurement of aerosol particles within the marine atmospheric boundary layer

is unlikely to be viable. Satellite remote sensing approaches offer the possibility of estimating both

ambient aerosol loading and the source flux of marine aerosol. Passive measurement of reflected650

solar radiation can provide aerosol optical depth (Remer et al., 2005), and some information on

both size and vertical distribution (Kokhanovsky, 2013). Active remote sensing can provide much

better vertical resolution, and if multiple wavelengths are used, size distributions can be inferred.

Both passive and active techniques suffer, however, from the fact that aerosol retrievals are only

possible under cloud free conditions. Moreover, complicating matters is that there is more diversity655

in individual size measurements of sea spray than any other aerosol species (Reid et al., 2006).

The source of sea spray aerosol is breaking waves and the bursting of bubbles generated by them.

Many source functions, including that of Monahan et al. (1986), scale a production flux of sea spray

per unit area whitecap – integrated over its lifetime – by a whitecap fraction parameterized as a func-

tion of wind speed. There remains, however, an order of magnitude uncertainty in the parameteriza-660

tion of the whitecap fraction, and there is increasing evidence that neither the production of aerosol

per unit area whitecap nor the lifetime of a whitecap are independent of the scale of wave breaking

or other water properties (Norris et al. (2013a); Callaghan (2013); Spada et al. (2013), Salter et al.

(2014, 2015)). Recent work on satellite retrievals of the whitecaps (Anguelova and Webster, 2006;

Anguelova and Gaiser, 2011, 2013) shows significant promise as a means of providing this driving665

parameter for sea spray source functions, and implicitly accounting for the wide range of important

controlling factors in addition to wind speed (Salisbury et al., 2013, 2014). It might, also, ultimately

allow a source function to be specified directly in terms of the satellite measurements. While such

an approach would provide near global coverage, the temporal sampling interval is dependent on

satellite orbit.670

The combination of satellite based estimate of both aerosol loading and source flux offer the

optimum means of constraining operational model representation of marine aerosol. Future progress

depends on improvements to, and validation of, the retrievals, and on improved estimates of the
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dependence of sea spray production on wave breaking and water properties. Measurements at very

high wind speeds are also required to better constrain the parameterized source functions under675

extreme conditions, when sea spray production is greatest, for example during hurricanes or tropical

storms.

3.6 User requirements for removal processes

Wet and dry deposition and sedimentation are important removal processes that control the predi-

cation the atmospheric aerosol distribution. However, the aerosol deposition fluxes themselves may680

become important NAAP forecast products, for example to forecast the soiling of solar panels.

The removal processes are modeled as a function of available meteorological variables describ-

ing boundary layer mixing. Wet deposition requires information about the occurrence of convection,

precipitation and fog. Dry deposition modeling needs information about the state of the land surface

and the vegetation, in particular for soluble aerosols. NAAP takes these meteorological variables685

from the underlying operational NWP models. It should be noted that improving the forecast of pre-

cipitation remains a major challenge for the NWP. Inaccuracies of the precipitation forecast directly

influence the quality of the aerosol forecasts. Improving the surface information can be achieved by

better linking NAAP to advanced land-surface modeling and by updating to the most recent land-use

datasets.690

Observations of wet deposition fluxes are available from acid deposition networks. These obser-

vations could be used to evaluate wet deposition of soluble aerosols such as sulphate, nitrates and

ammonia. For this purpose, the observation need to be made available in a timely manner and at

a temporal resolution suited for NAAP evaluation, which is often higher than the frequency (i.e.

annual means) required for impact monitoring. Finally, the observed wet deposition flux are often695

strongly influenced by local processes, which makes it necessary to filter the observation in such a

way that they are representative of the scale resolved by the NAAP models.

While some observation of wet deposition are made routinely, fewer observation of dry deposi-

tion observations are available. Uncertainties in deposition contribute substantially to the insufficient

constraints in particular of the mineral dust mass budget in atmospheric mineral dust models. Cur-700

rently, there are very few stations measuring dust deposition, both in the vicinity of and far from

source regions (e.g., Bergametti and Fôret (2014)).

Measuring deposition fluxes is still a scientific challenge. Therefore the different sites often use

different instruments and observational protocols (e.g., procedure to minimize contamination by

local sources), which limits the comparability between observations. It is therefore desirable to en-705

hance or develop standards for deposition measurements and to encourage continuous operation.

The Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-

GTAD), recently organized by the Global Atmosphere Watch Scientific Advisory Group for To-

tal Atmospheric Deposition (SAG-TAD), explored the feasibility and methodology of producing,
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on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as710

well as wet, dry and total deposition. In particular they reviewed the current state of global mea-

surements (ground-based and satellite), chemical transport modeling (global and hemispheric), and

measurement-model fusion/mapping techniques (see GAW report 234, at https://www.wmo.int/pages/prog/arep/gaw/documents).

4 Data assimilation for aerosol prediction

4.1 General concepts715

An important aspect of aerosol prediction has been the development of data assimilation systems that

include also gas and particulate phase species. Several global and regional models currently provide

analysis of gases and aerosols. Currently five centers routinely assimilate aerosol data into their

models, ECMWF/CAMS, FNMOC/NRL, GMAO, JMA, and UKMO. As an example among others,

the CAMS system incorporates retrieved observations of ozone, CO, SO2, NO2 and AOD in its720

analysis, in order to provide initial conditions for the prediction of these species. As it is common in

atmospheric composition, the assimilated data are products based on retrieval procedures. Bayesian,

statistical or empirical methods are usually applied, depending on the complexity of the instruments

and the observation characteristics. Direct assimilation of atmospheric clear-sky radiances in the UV,

visible and near-infrared, where the aerosol signal is strongest, is being considered as a future step,725

which would allow a seamless assimilation of data from different satellite instruments. This has been

shown possible in a study by (Weaver et al., 2007) but it has not been pursued in operational contexts

as of now. There is a delicate trade off to achieve between the complexity and rapidity of the radiative

transfer code in the shortwave. Complexity is required for simulating accurately clear-sky aerosol

radiances in cases of low and high aerosol loads while rapidity is required in an operational context.730

Consideration of polarization might be necessary for the shorter wavelengths, thus further increasing

the complexity and hence the computational cost of the radiative transfer calculations. The optimality

of assimilating retrieved aerosol products versus radiances and the choice of a suitable algorithm or

method for fast radiative transfer in the shortwave are thus still being debated. On the one hand

direct radiance assimilation avoids the problem in the diversity between the model and the retrieval735

assumptions (aerosol type, refractive index, meteorological parameters, etc,), on the other hand the

complexity of the observations might complicate or even prevent the implementation of radiance

assimilation, especially for advanced sensors such as multi-angle instruments or polarimeters. In

the end, the most pragmatic approach prevails in an operational context, hence the assimilation

currently depends heavily on the availability of good quality retrieval products with some uncertainty740

estimates.

Emissions are not part of the analyzed fields but are specified either from established emission

inventories (an extensive inter-comparison of various of these inventories is given in Granier et al.

(2011)), from satellite observations as is the case for the emissions of biomass burning aerosols,
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CO and other species from wild fires (GFAS, Kaiser et al. (2012)), or computed in the model for745

some natural aerosol emissions (as sea spray or mineral dust). Estimation of emissions through data

assimilation will be the next step for global models. This has already been successfully tried in

regional models (e.g., Elbern et al. (2007)) and in off-line or online global models (i.e. Huneeus

et al. (2012); Di Tomaso et al. (2017); Escribano et al. (2017)).

The most common approach is the adjustment of initial conditions in a manner similar to mete-750

orological data assimilation used in Numerical Weather Prediction (NWP). Optimal interpolation,

variational approaches (3D and 4D-Var), Ensemble Kalman Filter (EnKF) or hybrid techniques com-

bining the advantages of both variational and EnKF techniques are all applicable and have been used

at various operational centres in various flavors. Research is still ongoing for the optimal definition of

the background error covariance matrices for aerosols, including errors deriving from the misspeci-755

fication of the emissions. Hybrid 4D-Var/EnKF systems could be used to this end. Independently of

the specific assimilation framework, assimilation is a key data-hungry application.

4.2 User requirements for data assimilation

In the past, the aerosol prediction and assimilation community had to use data that were being made

available, and not necessarily aimed at the needs of this community. Aerosol products were often760

provided with climate applications in mind and made available as daily means or monthly averages.

While the needs of the operational community are largely similar to those of the climate research

community, the timeliness requirements are different. In recent years, with the advent of dedicated

aerosol (and clouds) instruments, such as MODIS and CALIPSO, and the development of the model

prediction of atmospheric composition, a new paradigm has been established. For example aerosol-765

related lidar missions such as EarthCARE and Aeolus, are now establishing best-effort near-real-

time (NRT) data delivery, following the example of MODIS and CALIPSOs’ expedited products.

This has also been made possible by the fruitful collaboration between modelling community and

data provider, in an effort to make an optimal use of the resources and provide the best service to the

end-users.770

At the moment, most aerosol assimilation systems rely on products such as AOD, rather than

raw measurements such as satellite radiances. In the case of lidar measurements, aerosol backscat-

ter, attenuated backscatter or extinction are all candidate variables for assimilation. However, the

tendency in the future may be towards the use of satellite radiances, either raw or aggregated and

possibly cloud-cleared, for consistency with the current approach in NWP. This represents a chal-775

lenge for both the model developers and the data providers and might also involve joint development

of observation operators.

Some general recommendations related to data assimilation observational requirements are out-

lined below.
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4.2.1 Timeliness780

Observations of key variables have to be timely. In particular, especially for aerosol prediction and

air-quality applications, the data to be fed into the assimilation system need to be in near-real time

(NRT, i.e. available within 6 hours) and have an associated time-stamp.

4.2.2 Uncertainty

Regarding the user requirements on uncertainties for assimilation applications, two main points785

should be highlighted:

1. Observation errors on the assimilated product have to be provided at the pixel or retrieval level.

Statistical error models can help to understand the general accuracy of the data product, but

are not so useful for data assimilation where the observations are considered pixel-by-pixel.

Wherever possible error covariances should also be provided, which include correlations of790

errors between different aerosols products from a given sensor, correlations of errors in time

(especially for retrievals from geostationary satellites), and correlations of errors in space (e.g.,

due to the similarity in surface properties or viewing geometries). Additionally, other infor-

mation is deemed necessary for the correct assimilation of the observations, such as averaging

kernels for chemical species. Moreover, retrieval errors should be required to stay below a795

certain threshold in order to make the cut for assimilation.

2. Biases should be quantified and, where possible, filtered out before data provision for assimila-

tion. Even sophisticated assimilation systems with online bias correction struggle with aerosol

observations as there is limited redundancy at the moment and no single satellite sensor can

be used as an absolute reference as they all suffer from biases. Ground-based lidars and sun-800

photometers are being currently investigated to provide a bias-free anchoring for satellite data

or as a dataset to be assimilated on their own right (Rubin et al., 2017). This approach shows a

lot of promise, provided that the calibration of the ground-based instruments is monitored and

possible sources of biases in the processing of the data are removed.

Provided that random and systematic errors are provided, the assimilation can “cope” with large805

errors, given the fact that errors (both in the background and in the observations) appear as weighting

factors. If the error in the observation is large compared to the difference between the model and the

observation (departure), then that particular observation will have only a minor influence on the

analysis. This is particularly true for unbiased random errors. For systematic errors this is not true.

Unless biases can be removed, if the differences between the model and the observations are too large810

the assimilation cannot cope and the observation in question is usually rejected on the assumption of

perfect model, which is often made in, for example, variational assimilation. Generally the analysis

is the result of a statistical compromise between error assumptions on the model background and
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on the observations. There is limited tolerance of biases, but the main assumption behind the most

common estimators for data assimilation is that they are linear and unbiased.815

4.2.3 Spatial resolution and sampling

The requirement on spatial resolution of the observations needed for assimilation is quite relaxed

due to the fact that current global assimilation for operational aerosol prediction cannot afford to

run very high-resolution analysis. For this reason, even data with coarse spatial resolution (100 km)

can be beneficial. However, in most cases, current satellite-based sensors have a much better spatial820

resolution down to few kilometres for passive sensors and few hundred meters for active sensors

(depending on the application). Spatial sampling is possibly more important than resolution for as-

similation. It has been shown that assimilation of an instrument with large spatial sampling (wide

swath) such as MODIS is more beneficial than assimilation of high accurate measurements from

a passive sensor with a narrow swath. However, using observations from narrow-swath instrument825

adds value to the analysis. From the point of view of the ground-based networks, the density is an im-

portant factor. Vertically resolved observations are also very important, even if the spatial resolution

is not very high, since they provide information regarding the vertical structure of the aerosol field

which is completely missing in the integrated AOD measurements which are provided currently. Li-

dar backscatter and extinction profiles provide the necessary vertical information and the challenge830

remains to integrate this information with that provided by the passive sensors. This entails both

improving the modelling and the retrieval aspects.

4.2.4 Temporal resolution

The issue of temporal resolution is similar to the spatial resolution. In principle high-temporally

resolved data are beneficial to the analysis, but issues connected to large data volume may arise.835

This is particularly true for datasets coming from geostationary satellites which have to be heavily

thinned. This is obviously only a technical limitation which might not be applicable across the range

of assimilation system. For ground-based instruments, similar considerations can be made, although

data volume might not be as high.

4.2.5 Speciation840

The problem of constraining the aerosol species in the model has become more important with user

demand of products related to single aerosol types. Providing forecast of AOD constrained by obser-

vations is not enough as detailed speciated information on dust, biomass burning and anthropogenic

aerosol particles is needed for several applications. For example, a large portion of CAMS users is

interested in dust forecasts for energy-related applications. From the point of view of the NWP, hav-845

ing robust aerosol climatologies to use in the radiation scheme is a necessity. However, it is not only

total AOD that is of interest but the extinction connected to the single species since their radiative
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impact depends on refractive index which is in turn a function of chemical composition. Recently,

the CAMS climatology was compared to the Tegen et al. (1997) climatology as far as impact on

NWP scores at ECMWF (Bozzo et al., 2017). Although, on one hand both the total AOD and the850

dust AOD in the CAMS climatology appear more realistic if compared with independent measure-

ments, on the other hand the impact in the model is mostly positive in summer. In winter, the impact

is neutral or slightly negative due to the lack of absorbing aerosols in the CAMS climatology in the

winter hemisphere particularly over Europe and North America. This is a model shortcoming which

has to be addressed by improving the description of the emissions and secondary production of or-855

ganic aerosols. The most recent version of the CAMS model includes for example a parameterization

for Secondary Organic Aerosols (Samuel Rémy, private communication). Data assimilation however

can partially help to constrain the problem if appropriate speciated information can be included. At

the moment the main observation is total AOD which is used to constrain either total AOD itself

or total aerosol mixing ratio. In some models the control variables in the assimilation are the indi-860

vidual species but there is no information on speciation contained in the AOD: the same value of

AOD can be obtained by different combinations of the AODs of the individual aerosol species. This

implies that any information on speciation comes from the model itself, regardless of the degree of

sophistication of the assimilation.

Rather than assimilating total AOD, it seems more desirable to assimilate coarse-mode AOD (e.g.,865

dust and sea-salt) and fine-mode AOD (e.g., pollution and wildfires) independently. However, if both

fine and coarse mode AODs are retrieved using the same measurements, the correlation of their errors

would have to be provided. Absorption AOD (AAOD) would also be a good parameter to constrain

the absorbing aerosols in the model, particularly for NWP application as this parameter controls

the amount of heating induced by aerosols in the atmosphere. This effect can sometimes counteract870

the surface cooling that non-absorbing aerosols have (Chylek and Wong, 1995). Wherever direct

speciation measurements are possible, those would be the best suited to be used to correct model

prediction of a given aerosol species. This could be measurements derived from a (relatively dense)

network of ground-based instruments or from satellites.

Recent improvements in lidar retrievals are also indicating the possibility to discriminate speci-875

ation information from these profiling information, at least for certain aerosol species such as dust

and volcanic aerosols. For dust, more specifically, a few simple meteorological parameters could be

also pointed out referring back to section 2.

1. Surface pressure observations from northern Africa to better constrain pressure gradients and

therefore winds, which are not directly assimilated into models.880

2. Surface temperature and dew point help to better constrain soil moisture in the top soil layer

in most data assimilation systems. This can be particularly important for dust from semi-arid

areas like the Sahel as well as East Asian semi-arid areas, where seasonal soil moisture and

vegetation can be a major factor for uncertainties.
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4.2.6 Resilience885

Several data sources are needed to ensure resilience of the system and a wealth of observation-based

information. Currently most centres rely on satellite data for the analysis of aerosols. The next gen-

eration of satellite measurements is designed to provide more information on the horizontal and

vertical distribution of atmospheric particulate but current efforts often focus on trace gases, while

aerosols products are often considered secondary. It is important to consider that some satellites890

currently providing vital information for aerosol assimilation are coming to the the end of their life-

time (for example MODIS). it will be therefore crucial that there are concerted efforts to replace

such instruments and insure continuation of data provision and long-term consistency of the records.

Frequent instrumental changes may cause problems for data uptake and recalibration of biases cor-

rections, impinging as well on the quality of the forecast products. Efforts are also under way to use895

ground-based and aircraft measurements.

4.2.7 Format and accessibility

Finally, observations have to be available in a format that is easily accessible, and should also be

as compatible as possible with model fields. For example, it could be more useful to report fine

and coarse mode AOD at a reference wavelength (as it is more relevant to modal schemes in global900

modeling) rather than or in addition to the Angström exponent (AE) (O’Neill et al., 2003). How-

ever, errors on AODs at multiple wavelengths are correlated, while errors in AE retrievals tend to

be only weakly correlated with those in AOD, making AE a possibly more attractive variable for

assimilation. This is actually still a matter of debate in the retrieval and assimilation communities.

It is also recommended that mechanisms are put in place for easy data transfer, especially for905

heavy-duty users.

5 Evaluation of aerosol forecasting models

5.1 General concepts

Evaluation is an important step in operational prediction. NWP has well-established evaluation pro-

tocols of prediction products, whereas similar procedures for aerosol forecasting are still being de-910

fined (Reid et al., 2011). The poorly developed verification system for NAAP compared to NWP,

together with the lack of standardized evaluation processes and suitable observations limit the ad-

vancement of operational aerosol prediction. One major difference between NWP and NAAP ver-

ification is that NWP often relies heavily on verification of a forecast system against its own (or

another) analysis. This approach seems much less suitable for NAAP where the observational con-915

straint in the analysis is much weaker.
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For operational forecasting purposes, we distinguish between two different evaluations: model

evaluation that is conducted as soon as observations of the forecast period are made available and one

where the model’s performance in simulating a given event or longer time period (e.g., seasonal or

annual cycle) is examined in depth. The latter is related to benchmark testing. Operational evaluation,920

sometimes referred to as verification, is generally part of the operational forecasting process and is

therefore done on a regular basis in near real-time, whereas benchmark evaluation can made any time

after the forecast period, and observations that were not available for the near real-time evaluation

can be included. Furthermore, while the operational evaluation allows to quantify the confidence

and predictive accuracy of the model products and quickly identify problems which may arise in the925

forecast, benchmark testing identifies weaknesses of individual models and provides an assessment

of model performance and uncertainties. This is in turn a useful information for the forecast users.

It is not within the scope of this paper to list and describe the requirements for an extensive model

evaluation associated to model developments. This could involve various different aspects of the

aerosol life cycle such as aerosol-cloud interactions, heterogeneous chemistry, removal processes,930

etc. Each one of these aspects would require a large and specific set of observations. In the present

section, we will focus on the evaluation conducted as part of the implementation of an operational

forecast. For operational purposes, it is important that these observations are delivered timely and

on a regular basis, to ensure the possibility of a routine evaluation. As pointed out in 2, in addition

to aerosol measurements it is also important to include meteorological and chemical observations in935

the model evaluation process to complement and understand the resulting aerosol predicted fields.

Moreover, taking into account that there are operational forecasting systems with data assimilation,

it is important to include independent observational datasets (not used during the data assimilation

process) in the model evaluation.

Satellite remote sensing is the most convenient tool for providing global aerosol spatial and tem-940

poral distributions. However, it is difficult to discriminate the satellite aerosol signal from surface

reflectance, which is the reason why algorithms based only on the visible spectral region often fail

over bright surfaces (Hsu et al., 2004). In the last years a number of new advanced sensors (like

MODIS, OMI, CALIOP, IASI, MISR or SEVIRI) have been launched on board polar or geosta-

tionary satellites. Usually, polar satellites (such as Aqua, Terra or CALIPSO) are at relatively low945

altitudes (between 500 and 800 km), covering a global domain at high spatial resolution. However,

the polar sensors provide few measurements per day over the same point. On the other hand, geo-

stationary satellites are situated at a set point over the Equator, at a 36000-km height, and provide

measurements over a given disk. For instance, Meteosat Second Generation (MSG), which hosts the

SEVIRI radiometer, is an essential tool for NRT monitoring in Europe and Africa.950

Since the atmospheric residence time of aerosol particles is relatively short and the footprint area

of a single station may be limited, there is a need for observation networks with sufficient density of

stations. A description of the current and future needs for the observing system has been provided
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in Laj et al. (2009). Clearly, all analyses are pointing to the need for improving geographical cov-

erage of measuring stations. Point measurements are biased towards populated areas as in Europe955

and United States (see Figure 1). Data collected from commercial aircraft can provide invaluable

observations for model evaluation (e.g., In-service Aircraft for a Global Observing System, IAGOS;

http://www.iagos.org/). At the moment, however, this is not established for operational aerosol ap-

plications.

Figure 1. Map of surface stations currently included in GAWSIS.

Various ground-based observational systems are in operation to monitor aerosol properties in the960

atmosphere (GAW report 2016) that can be either policy, science-driven or both. Their organizational

structure may vary. Among the main contributors to the aerosol observing system are:

– Near-Surface concentration measurements: the European Monitoring and Evaluation Pro-

gramme (EMEP; http://www.emep.int), the Interagency Monitoring of Protected Visual En-

vironments (IMPROVE) program (http://vista.cira.colostate.edu/improve/), the African Mon-965

soon Multidisciplinary Analysis (AMMA) Sahelian Dust Transect (Marticorena et al., 2010);
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– Aerosol variables at near-surface provided by the European Research Infrastructure ACTRIS

(Aerosol, Cloud and Trace Gases Research infrastructure, http://actris.eu) and the NOAA

ESRL’s Global Monitoring Division with its specific program on aerosol monitoring (https://www.esrl.noaa.gov/gmd/aero/);

– Vertical profiles : the European Aerosol Research LIdar NETwork (EARLINET; http://www.earlinet.org),970

which is part of ACTRIS, the Asian Dust and Aerosol Lidar Observation Network (AD-Net;

http://www-lidar.nies.go.jp/AD-Net/), the Latin America Lidar Network (ALINE; www.aline.org),

the NASA Micro-Pulse Lidar Network (MPLNET, https://mplnet.gsfc.nasa.gov/);

– Aerosol optical depth: the global Aerosol RObotic NETwork (AERONET; http://aeronet.gsfc.nasa.gov)

(Holben et al., 1998), the Global Atmospheric Watch Precision Filter Radiometer (GAW-PFR)975

Network (Wehrli, 2008), the sky radiometer network (SKYNET; http://www-lidar.nies.go.jp/skynet/)

(Takamura et al., 2004). Details on homogeneity of AOD from different networks can be found

in Kim et al. (2008).

– Wet deposition: EMEP, the Acid Deposition Monitoring Network in East Asia (EANET,

http://www.eanet.asia/) and the National Atmospheric Deposition Program (NADP, http://nadp.sws.uiuc.edu/)980

and the Canadian Air and Precipitation Monitoring Network (CAPMoN)in North America.

All these networks (except AERONET, AMMA and EMEP) are GAW contributing networks.

They consists of 32 stations which cover different types of regions documenting variability of aerosol

properties: clean and polluted continental, marine, arctic, dust, biomass burning, and free tropo-

sphere. While global stations are expected to measure as many of the key variables as possible, the985

approximately 300 GAW Regional stations generally carry out a smaller set of observations.

The most widely used network is AERONET providing measurements of AOD as well as Aerosol

Size Distribution (ASD) with over 600 sites around the world. Most stations report in NRT and

products are used at several centres for both routine and retrospective validation.

While recognizing the current efforts, there is still the need to secure long-term funding for990

ground-based stations and to further develop infrastructure and data protocols in order to fully sup-

port forecasting aerosol activities. Much effort has also been dedicated to standardize protocols and

formats to ensure quality assurance, traceability and data quality of aerosol observations from both

ground-based and space-based sensors but it is still a challenge.

Most of the routine measurements (e.g., hourly or daily basis) are conducted as part of regional995

networks/infrastructures and their usage for operational evaluation is limited to the configuration of

the model used in the forecast. Depending on the model resolution, global models do not always cap-

ture the spatial variability of the individual stations, particularly for mountain sites and urban sites

where the influence of unresolved topography and/or local emission sources are dominant factors

for the aerosol distribution. Station data are sometimes selected if representative of background con-1000

ditions or they may be aggregated. For that reason, for model evaluation, it is mandatory to provide
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additional information on the observation site with a correct classification based on its spatial repre-

sentation (regional or global) and its localization (environment types and emission types). Otherwise,

detailed information on the model individual aerosol components has become more important in the

last years. Speciated information on dust, biomass burning and anthropogenic aerosol particles is1005

needed for several socio-economic applications (e.g., solar energy and air quality). However, the

presence of different types of aerosols mixed in the measurement points should introduce errors in

the comparison between individual aerosol model outputs and observations.

5.2 User requirements for operational evaluation

Operational evaluation is specific for models used operationally. It involves operational online veri-1010

fication of model output, plausibility checks and quality control. As in the case of data assimilation

(see Section 4.2), high-temporally resolved data are needed. The operational evaluation is an as-

sessment of how the forecast behaves relative to observations that are near-real-time (i.e., available

within 24 to 48 hours since the forecast run), allowing the modeling group and the end users to have

a quick overview of the quality of the forecast. Note that the timeliness requirement is less stringent1015

than for assimilation. At present the most used product to evaluate aerosol model outputs in NRT are

surface and/or satellite based atmospheric column integrated variables such as AOD (at a reference

wavelength of 550 nm). Only recently have products like aerosol size distribution, aerosol scattering

or absorption coefficients become available in NRT from a limited number of stations. However,

the ability of a model to reproduce AOD may not always be a good indicator of its performance to1020

reproduce surface concentration or vertical aerosol distribution (Huneeus et al., 2016), even though

these model variables are clearly inter-connected. Therefore and in the absence of emission and

deposition routine observations, model evaluation should combine atmospheric column integrated

variables with vertical profiles (extinction coefficient at a reference wavelength at 550 nm to pro-

vide information about the height and thickness of the aerosol layer), and surface measurements1025

(such as PM10, PM2.5 and PM1). They also provide an evaluation of the aerosol size distribution

on surface level. For the atmospheric column, the Ångström exponent (which provides aerosol size

information) and the separation of AOD into fine-mode and coarse mode contributions can be used

to evaluate the aerosol size distribution.

Additionally, since data sets of weather surface records have better spatial and temporal coverage,1030

observations of horizontal visibility included in meteorological reports are used as an alternative way

to monitor aerosol events in near-real-time (NRT) and to qualitatively evaluate the aerosol forecasts.

In addition, key meteorological variables as surface winds (linked to emission of natural aerosols)

and precipitation (linked to wet deposition) should be considered.
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5.3 User requirements for benchmark testing1035

Benchmark testing examines individual processes and input drivers that may affect model perfor-

mance and requires detailed atmospheric measurements that are not, typically, routinely available

and can provide better quality control. In addition to those variables considered in the operational

evaluation, benchmark testing is expected to include as many of the key variables as possible. Com-

prehensive measurements of aerosol size distributions, chemical composition, and optical properties1040

are needed. Such observations should ideally be collocated with detailed meteorological information

and vertical distribution (e.g., lidars and radiosondes).

Routine, long-term measurements of aerosol size distributions, chemical composition and optical

properties in operational ground-based networks are urgently needed for model evaluation. These

measurements should include the following: mass concentrations of chemical components (soot,1045

organics, ammonia, sulphate, nitrate, mineral dust and sea salt), number concentrations (of PM1,

PM2.5, PM10), and size distribution (if possible resolved by chemical species; e.g. separately for

< 1 µm and > 1 µm).

Evaluating whether relevant emission and feedback processes are treated accurately by a model

is challenging, although data assimilation can provide valuable information (Pope et al., 2016). In1050

addition to key meteorological parameters associated with aerosol emission (e.g., surface winds and

soil moisture), the effects of aerosols on radiation and clouds, for example, depend on the physical

and chemical properties of the aerosols.

Evaluating direct and semi-direct aerosol effects on aerosol absorption properties requires aerosol

optical properties such as aerosol absorption optical depth (AAOD), particle depolarization (rela-1055

tive to aerosol speciation), altitude distribution (relative to clouds), radiation observations such as

solar irradiance (downward and net shortwave radiation, downward longwave radiation and outgo-

ing longwave radiation) and solar surface albedo. Evaluating indirect aerosol effects on clouds and

precipitation is even more challenging and it would require additional detailed observations of cloud

properties such as cloud optical depth, cloud droplet number concentrations or cloud top height and1060

thickness (used to evaluate aerosol and deep/shallow convective cloud interactions).

For benchmark testing, there is also a need for co-located and simultaneous meteorology and

chemistry measurements at locations carefully selected to ensure spatial representativeness. To fully

understand processes, more sites with co-located observations of visibility, cloud, radiation, ver-

tical profiles of temperature, relative humidity as well as winds and aerosol properties would be1065

highly desirable. Precipitation and deposition observations are also extremely relevant for bench-

marking. Innovative designs for global measurement systems (existing technological platforms such

as commercial aircraft, cell phones, cars, etc.) should be further exploited. Such a task should fit the

mandate of international organizations such as WMO and EUMETNET (see GAW report 226 on

Coupled Chemistry-Meteorology/Climate Modelling, available from WMO).1070
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5.4 Format and accessibility

As in the case of data assimilation (see section 4), observations used in the model evaluation have

to compatible with the model output fields. In this sense, it would be desirable to work on the estab-

lishment of formats and common protocols for data harmonization and exchange. This is the main

objective of the Data Centers. At present, there are six GAW World Data Centers (WDCs) each re-1075

sponsible for archiving one or more GAW measurement parameters or measurement types. They are

operated and maintained by their individual host institutions. They collect, document and archive

atmospheric measurements and the associated metadata from measurement stations world-wide and

make these data freely available to the scientific community. In some cases, GAW WDCs also pro-

vide additional products including data analyses, maps of data distributions, and data summaries.1080

However, each GAW WDCs is treating their databases independently even if different communi-

ties are providing the same aerosol parameter. This fact can introduce some discrepancies in the

definition of one parameter, creating problems for the model to observation comparisons.

6 Conclusions

Numerical atmospheric aerosol prediction is at a crossroads. It has experienced quick progress in the1085

recent years due to the availability of aerosol models, aerosol satellite observations, data assimila-

tion techniques and the knowhow of numerical weather prediction. This paper takes stock on past

achievements and reflects on how further progress can be made with a focus on user requirements

for aerosol measurements in the context of operational prediction. Requirements are discussed in

relation to modeling, assimilation and evaluation, and concern resolution, sampling, accuracy and1090

timeliness of the observations. However it was felt that no hard-line requirements can be set up

in terms of goal, threshold and breakthrough values given the relative youth of NAAP. Rather this

study aims at developing the needs of a new community and establish scientific criteria based on

which those values can be defined at a later stage. At this moment, there is a more pressing need to

recognize that measurements of aerosol particle properties are not only a “nice-to-have” element in1095

operational and research observing ground-based networks and space-borne platforms, but they are

instead an important and necessary part of the Global Observing System.

Further improvements to NAAP will likely follow several directions:

– Better representation of aerosol processes. This will require to pitch the right level of com-

plexity (especially in terms of chemical speciation), get the best possible meteorological in-1100

formation from NWP, and the relevant aerosol measurements to calibrate and evaluate aerosol

parametrisations.

– Improved data assimilation, both in terms of techniques and choice of aerosol variables to be

assimilated. Key questions for the future are whether there is a benefit to move from assim-
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ilating AOD to assimilating clear-sky radiances in the shortwave spectrum and how to make1105

the best possible use of vertical profiles from lidar observations.

– Better aerosol data fueled by a stronger integration of NAAP with aerosol data providers and

clear presentation of user requirements. NAAP ought to better consider the issue of aerosol

speciation and aerosol size distribution in aerosol modelling, data assimilation and verification.

Concerning aerosol requirements, we recommend the following stepwise approach. The commu-1110

nity should start with a better quantification of requirements for total mass, chemical speciation and

the size distribution at the surface with the aim to improve emissions and boundary layer processes.

Second, similar requirements will also be required in the free troposphere, in order to better constrain

long-range transport, sedimentation and interaction with radiation. Third, having this information,

the next step would be to understand better how the various data streams complement each other (or1115

not) in the context of global operational aerosol prediction in order to assess which additional data

is expected to improve most the aerosol forecast.
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