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ABSTRACT

In earlier work we studied the effect of statistical normalisa-

tion for phase-based features and observed it leads to a sig-

nificant robustness improvement. This paper explores the ex-

tension of the generalised Vector Taylor Series (gVTS) noise

compensation approach to the group delay (GD) domain. We

discuss the problems it presents, propose some solutions and

derive the corresponding formulae. Furthermore, the effects

of additive and channel noise in the GD domain were studied.

It was observed that the GD of the noisy observation is a con-

vex combination of the GDs of the clean signal and the addi-

tive noise and also in the expected sense, channel GD tends to

zero. Experiments on Aurora-4 showed that, despite training

only on the clean speech, the proposed features provide aver-

age WER reductions of 0.8% absolute and 4.1% relative com-

pared to an MFCC-based system trained on the multi-style

data. Combining the gVTS with a bottleneck DNN-based sys-

tem led to average absolute (relative) WER improvements of

6.0% (23.5%) when training on clean data and 2.5% (13.8%)

when using multi-style training with additive noise.

Index Terms— Robust ASR, generalised VTS, phase

spectrum, group delay, product spectrum

1. INTRODUCTION

The speech phase spectrum has recently received renewed at-

tention. An expanding body of work propounds that phase

can be employed in a multitude of applications [1], including

in speech reconstruction [2,3], speech enhancement [4,5], ro-

bust speech recognition [6–10] and speaker recognition [11].

We recently developed a source-filter model in the phase

domain [12, 13] which further sheds light on the phase struc-

ture, clarifies how it encodes the speech information and suc-

cessfully separates the vocal tract and the excitation compo-

nents through phase-based signal manipulation. Moreover,

in [14], we scrutinised the statistical characteristics of the

phase spectrum and its representations along the feature ex-

traction pipeline in the clean condition. It was demonstrated

that the unwrapped phase spectrum has a bell-shaped distri-

bution. Also, the efficacy of statistical normalisation of the

phase-based features was evaluated and lead to significant

performance improvement in ASR.

Such gain in robustness motivates us to explore apply-

ing more advanced statistical techniques like VTS [15] and

its generalised version (gVTS) [16, 17] for building robust

phase-based features. In this paper, we investigate the prob-

lems encountered when extending the gVTS framework to the

phase/group delay domain, propose some solutions and derive

the corresponding formulae. Experimental results conducted

on Aurora-4 [18] confirm the success of this approach in deal-

ing with both additive noise and channel distortion.

The rest of this paper is organised as follows. Section

2 is dedicated to deriving the environment model in the GD

domain and examining the effect of the additive noise. In Sec-

tion 3, the problems of extending the (g)VTS formulae to the

GD domain are investigated and some solutions are proposed.

Section 4 derives the gVTS equations and Section 5 contains

the experimental results as well as discussion. Finally, Sec-

tion 6 concludes the paper.

2. ENVIRONMENT MODEL IN THE GROUP DELAY

DOMAIN AND THE ADDITIVE NOISE EFFECT

In the (g)VTS approach to robust ASR, there is a need for

an environment model which shows how the clean signal gets

contaminated with the noise. The general model takes the

form of Y (ω) = X(ω)H(ω)+W (ω) where ω, Y , X , H and

W are the radial frequency, (short-time) Fourier transforms

(FT) of the noisy observation, clean signal, channel and addi-

tive noise, respectively. Assuming speech and noise are un-

correlated and using periodogram power spectrum estimation

|Y |2 = |X|2 |H|2 + |W |2 (1)

where |.|2 denote the periodogram. With some algebraic ma-

nipulation, it can be shown that the group delay of the noisy

observation, τY , takes the following form

τY =
|X|2|H|2

|Y |2
(τX + τH) +

|W |2

|Y |2
τW . (2)

Equation (2) shows the environment model in the group delay

domain and underpins the relation between the group delay of

the noisy observation with other variables.

The additive noise emerges as an additive term in the pe-

riodogram domain whereas in the phase and group delay do-

main it has a different effect. To study its effect and for the



sake of argument, let us assume that there is no channel dis-

tortion (H = 1). In this case,

τY =
ξ

1 + ξ
τX +

1

1 + ξ
τW = c τX + (1− c) τW (3)

where ξ = |X|2

|W |2 is a priori signal-to-noise ratio (SNR) and

c = ξ
1+ξ

. As seen, the noisy observation in the group delay

domain is a convex combination of the clean part and the ad-

ditive noise while in the periodogram domain it is just the sum

of the corresponding power spectra of these two components.

3. DIFFICULTIES WITH (g)VTS IN GD DOMAIN

Having derived the environment model in the group delay do-

main, we now wish to extend the idea of (g)VTS to this do-

main. However, due to some properties of the environment

model and the group delay, there are issues which should be

addressed and resolved in advance.

3.1. Larger Number of Variables

For noise compensation using the (g)VTS framework, as well

as the environment model in the target domain, the statistical

distribution of all the involved variables is needed. While in

the periodogram domain there are only four quantities (1), (2)

shows that in the GD domain the environment model contains

eight variables. Hence, eight probability distribution func-

tions should be estimated. Considering eight variables instead

of four, complicates the compensation process.

To decrease the number of variables, two factors can be

considered: First, the variables that overlap in terms of the

information they carry and are added/multiplied together can

be re-expressed via one variable. Second, a term containing

a variable that tends to zero in the expected sense, e.g. cross-

correlation of speech and noise in (1), may be removed. In

the work presented here we have used both of these points.

In this regard, let us multiply both sides of (2) by |Y |2

|Y |2 τY = |X|2|H|2 (τX + τH) + |W |2 τW . (4)

In general, |Z|2 and τZ are not independent and actually,

for many signals they are closely linked together. There-

fore, it appears reasonable to encapsulate the multiplication

of |Z|2 τZ into a single variable QZ to represent the infor-

mation encoded in each one. This quantity was called group

delay-power product spectrum (PS) in [19]. Accordingly,

QY = QX |H|2 +QH |X|2 + QW (5)

where QZ is the product spectrum of Z for Z ∈ {Y,X,W}.

This decreases the number of variables from eight to six.

3.2. Dynamic Range Compression

The dynamic range of the product spectrum is comparable to

the periodogram. So, it should be compressed using func-

tions like log or power transformation (zα) before statistical

modelling. However, the admissible range for these func-

tions is strictly restricted to the positive values. Although the

power spectrum is always positive, the GD and subsequently

the product spectrum may have negative value in some time-

frequency bins. So, one needs to deal with the negative values

before applying the compression function.

Taking the absolute value is not an appropriate solution

as it makes some of the negative values larger than the small

positive ones. This distorts the relative order/rank of the sam-

ples. The other possible solution which has been used for

compressing the group delay in [7, 12] is to implement com-

pression using sign(x) |x|α, inspired by [20]. Although this

approach preserves the relative order, it poses two problems

for a (g)VTS-based noise compensation process: first, the

clean part can not be factored out

sign(Y )|Y |α = sign(XH +W ) |XH +W |α

6= X̃ Ğ(X̃, H̃, W̃ ) (6)

where Z̃ = sign(Z) |Z|α for Z ∈ {X,H,W}, sign indi-

cates the signum function and Ğ denotes the distortion func-

tion. Second, computing the Jacobians becomes complicated.

Another option which preserves the rank without compli-

cating the factorisation and Jacobian computation is to add a

constant, c, to the product spectrum to ensure it remains posi-

tive in all bins. However, finding the optimal c is problematic:

setting it to the minus of the minimum value of the utterance

causes inter-utterance variability whereas choosing a univer-

sal large enough value causes the compression function to op-

erate in its saturation region, namely (QZ + c)α ≈ cα.

Flooring is another possible solution in which values be-

low a preset threshold are clipped. A potential pitfall of this

technique is that it can lead to information loss. However, this

is tolerable as long as the discarded data plays an insignificant

role. Plotting the product spectrum illustrates that the ma-

jority of the activity occurs on the positive side. Therefore,

flooring can be safely performed with negligible information

loss. The floor function takes the form of floor(z; θz) =
max(z, θz) where θz is a tunable threshold.

After filtering out the negative values, the compression

function can be applied. Using the power transformation

Q̆Y = Q̆X H̆

(

1 + (
Q̆H X̆

Q̆X H̆
)

1

α + (
Q̆W

Q̆XH̆
)

1

α

)α

︸ ︷︷ ︸

Ğ(Q̆X ,Q̆H ,Q̆W ,X̆,H̆)

(7)

where Q̆Z = (floor(QZ ; 0))
α, Z̆ = (|Z|2)α for Z ∈

{X,H,W} and Ğ indicates the distortion function.

The dynamic range compression issue is solved but there

are still six variables whereas the environment model in the

power spectrum domain includes only four. The two extra

variables are related to the term QH |X|2 = τH |H|2 |X|2 in

(5). Without this term, the equation resembles that of the pe-

riodogram domain and this facilitates re-deriving the (g)VTS

formulae in the product spectrum domain. In general, neither

|X| nor |H| are zero. However, the spectral behaviour of the

group delay of the channel, τH , is unclear.
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Fig. 1. Channel behaviour in the frequency domain before

and after applying the filter bank, the red curve shows the

average over all utterances. (a) unwrapped phase spectrum,

(b) group delay, (c) FBE{|H|2}, (d) FBE{τH}.

3.3. Channel Phase Spectrum and Group Delay

To investigate the properties of τH(ω), there is a need for a

database of impulse responses of different channels. Here, we

make use of the test sets A and C of the Aurora-4 database

[18]. Both sets include 330 utterances with an average length

of 7.3 seconds. Signals in the test set A were recorded using

a close-talking microphone whereas in the test set C the same

speech was simultaneously recorded by a different desktop

microphone. Reportedly, 18 desktop microphones have been

used in the recording process [18].

For the sake of argument let us assume that the micro-

phone used in the test set A is ideal. This allows us to treat

sets A and C as stereo data and facilitates channel estimation,

{

Test Set A ⇒ Y A = X

Test Set C ⇒ Y C = X H
⇒ Ht =

Y C
t

Y A
t

(8)

where Y A and Y C denote the short-time FT of the corre-

sponding signals in the test sets A and C, H indicates FT of

the channel and t is the frame index. Having computed H for

each frame, the phase spectra as well as the group delay can

be calculated. Averaging over the utterance frames produces

an estimate of the channel behaviour.

Fig. 1 depicts the phase spectrum, group delay and the

filter bank energies (FBE) after passing |H|2 and τH through

the Mel filter bank, computed for all the 330 utterances along

with the overall mean. As seen, in the expected sense, τH
tends to zero before/after the filter bank, which permits the

removal of QH |X|2 from (5). Consequently,

QY ≈ QX |H|2 + QW . (9)

4. gVTS IN THE PRODUCT SPECTRUM DOMAIN

In the conventional VTS, the log function is used for com-

pression whereas in gVTS, the power transformation (or gen-

eralised logarithmic function [21] also known as Box-Cox

transformation [22]) is employed. Applying the power trans-

formation (zα) with parameter α, provides one more degree

of freedom which is helpful in adjusting the statistical proper-

ties of the features. In ASR, it has been utilised for improving

the robustness in features like PLP [23], Genenralised-MFCC

(gMFCC) [21], PNCC [24] and the modified group delay [7].

For implementing the gVTS, one needs the statistical

model of the involved variables, an estimate of the (addi-

tive/channel) noise and an estimation criterion. For modelling

the clean features a GMM with M Gaussians is employed and

each noise type is modelled through a single Gaussian

Q̆X ∼
M∑

m=1

pQ̆X
m N (µQ̆X

m ,ΣQ̆X
m ) (10)

Q̆W ∼ N (µQ̆W ,ΣQ̆W ) H̆ ∼ N (µH̆ ,ΣH̆)

where pQ̆X
m , µ and Σ denote the weight, mean vector and

(diagonal) covariance matrix, respectively. Using minimum

mean square error (MMSE) as the estimation criterion

Q̂MMSE
X = Q̆Y

M∑

m=1

P (m|Q̆Y )
1

Ğ(µQ̆X
m , µQ̆W , µH̆)

(11)

where Ğ denotes the distortion function, defined in (7). The

only missing part in (11) is the P (m|Q̆Y ), and to compute it,

the statistics of Q̆Y should be estimated.

Similar to Q̆X , it is assumed that Q̆Y follows a GMM

distribution with M components. This recasts the problem

into computing the GMM of Q̆Y , namely {pQ̆Y
m , µQ̆Y

m ,ΣQ̆Y
m }.

The statistics of Q̆Y should be computed given those of Q̆X ,

Q̆W , Q̆H and the environment model in the target domain,

namely (7). However, due to the non-linearity, this can not

be done analytically. The first-order Taylor series is used to

approximately linearise this non-linear relationship

Q̆Y ≈ Q̆Y0
+ J Q̆X (Q̆X − Q̆X0

)

+ J Q̆W (Q̆W − Q̆W0
) + JH̆(H̆ − H̆0) (12)

where JZ is the partial derivative (Jacobian) of Q̆Y with re-

spect to Z for Z ∈ {Q̆X , Q̆W , H̆} and (Q̆X0
, Q̆W0

, H̆0) is

the point about which (7) is linearised.

In practice, the linearisation is performed around the

means of the Gaussians, namely (µQ̆X
m , µQ̆W , µH̆ ) i.e., M

points. With some algebraic manipulation

J Q̆X
m =

∂Q̆Y

∂Q̆X

= diag{
µH̆

(1 + V̆m)1−α
} (13)

J Q̆W
m =

∂Q̆Y

∂Q̆W

= diag{(
V̆m

1 + V̆m

)1−α} (14)

JH̆
m =

∂Q̆Y

∂H̆
= diag{

µQ̆X
m

(1 + V̆m)1−α
} (15)



where V̆m = ( µQ̆W

µ
Q̆X
m µH̆

)
1

α . Now, the GMM of Q̆Y can be

estimated: linear relationship implies pQ̆Y
m ≈ pQ̆X

m and

µQ̆Y
m ≈ µQ̆X

m µH̆(1 + (
µQ̆W

µ
Q̆X
m µH̆

)
1

α )α (16)

ΣQ̆Y
m ≈ J Q̆X

m ΣQ̆X
m J Q̆X

m

T

+ J Q̆W
m ΣQ̆W J Q̆W

m

T

+ JH̆
mΣH̆JH̆

m

T

.

Extension of the modelling to the cepstrum domain can be

easily carried out similarly to [16]. Since the overall per-

formance does not differ noticeably, to save space only the

frequency-domain formulation is provided here.

5. EXPERIMENTAL RESULTS

5.1. Set-up and Parametrisation

ASR experiments were conducted on the Aurora-4 [18]

database. HMMs were trained with 16 components per mix-

ture and all the acoustic models were standard phonetically

state-clustered triphones trained from scratch using a standard

HTK regime [25]. The test set consists of 4 subsets: clean,

(additive) noisy, clean with channel mismatch and noisy with

channel mismatch, referred to as A, B, C and D, respectively.

As well as the clean (CL) training data, Aurora-4 has two

extra sets for multi-style training, namely Multi1 (M1) and

Multi2 (M2). Training data in the former is contaminated with

only the additive noise whereas in the latter both additive and

channel noise are present. For the DNN part, the network

consists of four hidden layers with 1300 nodes, followed by a

bottleneck (BN) [26] layer containing 26 nodes placed before

the output layer. The network was trained using TNET [27].

The feature vector is augmented by c0, delta and accel-

eration coefficients. M was set to 512 and the mean vector

of the additive noise was estimated via the median of the

first/last 50 frames. The channel noise was estimated using

the method we proposed in [17] using three iterations. The

product spectrum (PS) was parametrised in an MFCC-like

framework through replacing the periodogram with the prod-

uct spectrum [19]. A generalised PS (gPS) feature was also

calculated by replacing the log with the power transformation.

5.2. Discussion

Table 1 shows the word error rate (WER) for different test

sets. It provides a remarkable accuracy improvement in the

noisy condition (test sets B-D) along with some WER reduc-

tion in the clean-matched condition (test set A). This means it

enhances both robustness and discriminability of the features.

The optimal value for the parameter α depends on SNR

and distortion type. In general, 0.05 − 0.1 appears to be an

optimal range and the higher the α the better the performance

in the noisy condition and the lower the accuracy in the clean

condition. Note also that, on average, the system trained on

only clean data based on the proposed approach outperforms

the one trained on multi-style training data (both M1 and M2)

using MFCCs.

Table 1. WER for Aurora-4 (HMMs trained on clean data).

Feature α A B C D Ave

MFCC-CL log 7.0 33.7 23.6 49.9 28.6

MFCC-M1 log 9.1 18.4 23.4 35.9 21.7

MFCC-M2 log 10.7 17.0 19.1 31.3 19.5

PS log 7.1 33.7 23.7 49.9 28.6

gPS 0.05 7.0 25.3 23.2 42.9 24.6

gPS 0.1 8.1 22.1 25.6 40.8 24.1

gVTS 0.05 6.5 20.2 13.9 34.3 18.7

gVTS 0.075 7.1 19.8 15.0 34.0 19.0

gVTS 0.1 7.4 19.6 15.4 33.9 19.1

Table 2. WER for BN trained on clean and multi-style data.

Feature α A B C D Ave

BN{gPS}-CL 0.1 5.5 24.2 26.8 45.4 25.5

BN{gVTS}-CL 0.1 4.6 20.6 16.0 36.7 19.5

BN{gPS}-M1 0.1 5.5 11.1 23.5 32.3 18.1

BN{gVTS}-M1 0.1 5.3 12.4 14.3 30.6 15.6

BN{gPS}-M2 0.1 5.7 10.8 13.0 24.7 13.6

BN{gVTS}-M2 0.1 5.6 11.9 12.3 26.5 14.1

Table 2 shows the results of a combined gVTS/DNN

(BN{gVTS}) system in the clean and multi-style conditions.

When only clean data is available for training, DNNs on

their own cannot deal with the variability induced by noise.

However, when combined with gVTS, mismatch condition

performance approaches that of a conventional GMM-HMM

system in mismatch condition while benefiting from using

DNN in the matched condition. In multi-style training, when

only additive noise is available (M1), although DNN (on

its own) leads to a significant performance improvement in

dealing with additive noise, it fails in coping with channel

mismatch. In this case, the gVTS can play a complementary

role. Finally, if the DNN is trained on both additive and

channel noise (M2), although its combination with gVTS

could still be useful in the test sets A and C, on average, the

DNN-only system outperforms the gVTS/DNN system.

6. CONCLUSION

This paper extended the method of additive and channel noise

compensation with generalised Vector Taylor Series (gVTS)

to the group delay-power product spectrum domain. The

problems which this presents were discussed, some solutions

were proposed and the corresponding gVTS formulae were

derived. Experimental results on Aurora-4 showed that a sys-

tem trained only on the clean data using the proposed feature,

on average, outperforms an MFCC-based system trained us-

ing multi-style data. Combination of the gVTS features with

the bottleneck feature in clean training mode resulted in re-

markable WER reductions in the clean-match condition with

minor performance loss in the unmatched condition. This po-

tentially allows robust systems to be built using DNNs even

when only clean training data is available.
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