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Abstract

Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile
species such CH3CN. Recent ALMA detections in protoplanetary disks suggest that these species may be
common during planet and comet formation, but connecting gas-phase measurements to cometary abundances
first requires constraints on formation chemistry and distributions of these species. We present here the detection
of seven spatially resolved transitions of CH3;CN in the protoplanetary disk around the T-Tauri star TW Hya.
Using a rotational diagram analysis, we find a disk-averaged column density of Ny = 1.45%012 x 10'2cm ™% and
a rotational temperature of T, = 32.7737 K. A radially resolved rotational diagram shows the rotational
temperature to be constant across the disk, suggesting that the CH;CN emission originates from a layer at
z/r ~ 0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that
grain-surface reactions likely dominate CH3CN formation and that in situ disk chemistry is sufficient to explain
the observed CH3CN column density profile without invoking inheritance from the protostellar phase. However,
the same model fails to reproduce a solar system cometary abundance of CH;CN relative to H,O in the
midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices
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occurred in the Solar Nebula.
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1. Introduction

Observations of comets and meteorites show that the
planet and comet forming midplane of the young Solar
Nebula had a rich organic volatile composition (e.g., Mumma
& Charnley 2011). ALMA observations and the recent
Rosetta mission have both explicitly shown that comets are
abundant in nitrile species such as HCN and CH;CN (e.g.,
Cordiner et al. 2014; Le Roy et al. 2015). Tracing the
chemistry of this family of organic molecules is of particular
interest, as HCN and related nitriles are the starting point for
the eventual synthesis of important biomolecules such as
glycine (e.g., Bernstein et al. 2002; Powner et al. 2009, 2010;
Patel et al. 2015).

In the protoplanetary disks where other planetary systems are
just starting to form, the smallest nitriles CN and HCN have
long been well known (e.g., Dutrey et al. 1997; van Zadelhoff
et al. 2001). Larger nitriles such as HC3N have only been found
more recently (Chapillon et al. 2012), and ALMA is just now
beginning to reveal more complex species, such as CH;CN
(Oberg et al. 2015; Bergner et al. 2018). The provenance of
these species in disks is unclear, however, and will play a role
in setting their final abundances in the forming cometary
bodies. Organics may be directly inherited from the chemically
rich protostellar stage (e.g., Jgrgensen et al. 2016), formed
in situ in the disk (e.g., Sakai et al. 2014; Walsh et al. 2014), or
both pathways may contribute. If inheritance from the
protostellar stage dominates, then nitrile abundances will likely
be similar across disks within a given stellar association, while
dominant in situ formation may imply that cometary nitrile
abundances will be highly disk dependent.

Testing the origin of nitriles such as CH3CN in disks will
require constraining their abundances and formation routes,
allowing comparison to predictions from the different inheri-
tance scenarios. As CH;CN can efficiently form through both
gas-phase and grain-surface reactions, however, resolved
observations of the disk abundance distribution are necessary
to determine its dominant formation route. Thus far, observa-
tional constraints have been sparse (Oberg et al. 2015; Bergner
et al. 2018). Based on the inferred abundance of CH;CN in
MWC 480, Oberg et al. (2015) concluded that in situ grain-
surface chemistry must play an important role. This same
chemistry should produce CH;CN in the disk midplane,
affecting the composition of forming comets and planetesimals.
Better constraints on the distribution and excitation of CH;CN
in disks are therefore crucial to test this hypothesis and connect
disk chemistry with cometary measurements.

In this paper, we present the detection of seven lines of
CH;CN in the disk around TW Hya. A well-studied, old
(~10 Myr; e.g., Kastner et al. 1997; Weinberger et al. 2013)
T-Tauri star, TW Hya hosts the closest (59.5 £ 1 pc; Lindegren
et al. 2016) protoplanetary disk, and is a good analog for the
Solar Nebula (0.8 M, spectral type K7; e.g., Rucinski &
Krautter 1983; Bergin et al. 2013). We present the observations
and the details of their reduction and imaging in Section 2. In
Section 3, we use a rotational diagram analysis to empirically
constrain the CH3CN column density and rotational temper-
ature, both disk-averaged and radially resolved, and compare
with predictions from detailed chemical models. In Section 4,
we discuss these results and their implications for midplane
CH;CN abundances and incorporation into planetesimals and
forming comets. A summary is given in Section 5.
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Table 1
Observed CH3CN Transitions

Loomis et al.

Transition Symmetry Frequency E, Sip? Int. Flux Dens.” Filter Response

(MHz) X) (D% (mly kms™") (0)
120-11¢ A 220747.3° 68.9 183.7° 82 £+7 17.8
12,11, E 220743.0° 76.0 182.5¢ 78+7 15.9
12,11, E 220730.3" 97.4 178.6° 41+7 72
13p-12¢ A 239137.9° 80.3 199.1¢ 817 13.1
13;-12, E 239133.3" 87.5 197.9° 70+7 9.3
13,-12, E 239119.5° 108.9 194.3¢ 28 +7 5.7
13;-12; A 239096.5" 144.6 188.5¢ 12+7 35
Notes.

2 Velocity-integrated between 2.1 and 3.7 km s~ "

® Center frequency of collapsed hyperfine components (spacing smaller than channel width).

¢ S;;p? of combined hyperfine components.

2. Observations
2.1. Observational Details

TW Hya was observed on 2016 December 29 and 2017
January 09 in Band 6 as part of the ALMA Cycle 4 project
2016.1.01046.S. The first execution block included 43 antennas
with projected baseline lengths between 15 and 460 m
(11-353 k). The second execution block included 47 antennas
with projected baseline lengths between 15 and 384 m
(11295 k). The on-source integration times were 32 and 31
minutes, respectively, for a total on-source integration time of 63
minutes. The correlator setup was identical for both execution
blocks and included a Time Division Mode continuum window
centered at 237 GHz with a bandwidth of 2 GHz as well as
Frequency Division Mode spectral windows centered at
219.560, 220.740, and 239.112 GHz. These spectral windows
had bandwidths of 58.59 MHz and channel spacings of 61 kHz
(~0.08kms "), and they targeted the C'*0 J = 2-1, CH;CN
J=12-11, and CH3CN J = 13-12 molecular transitions,
respectively. As CH;CN is a prolate symmetric top with C;,
symmetry, its rotational spectrum has a k-ladder structure with
two spin symmetry states (A/E), allowing a single set of
observations to probe a wide range of upper state energies. We
cover three transitions in the J = 12-11 k-ladder and four
transitions in the J = 13-12 k-ladder, tabulated in Table 1. The
125—115 transition was not covered in our spectral setup.

For both executions, the quasar J1058 + 1033 was used
for bandpass calibration and the quasar J1037-2934 was used
for phase calibration. Callisto was used as the flux calibrator
for the first execution, and Ganymede was used as the flux
calibrator for the second execution. We additionally used
the disk continuum emission in each execution block to
perform three rounds of phase self-calibration and one
round of amplitude self-calibration in CASA version 4.3.
These solutions were then applied to the spectral line
observations.

2.2. Results

The observations were first analyzed using a matched
filtering technique for identifying weak line emission,
described in Loomis et al. (2018¢c). The C'*0 J=2-1
transition was imaged using CLEAN at the native spectral
resolution (61 kHz, ~0.08kms ') with Briggs weighting
(robust = 0.5), producing a high signal-to-noise ratio (S/N)
image cube (peak S/N = 32). This image cube was then used

as a filter for the CH3CN spectral windows using the VISIBLE
code.® From the resultant filter impulse response spectra, we
detected all three transitions in the J = 12-11 k-ladder covered
by the spectral setup and all four transitions in the J = 13-12
k-ladder with spectral coverage. The peak filter responses for
each transition are given in Table 1.

The seven detected transitions were then individually imaged
using CLEAN with natural weighting and a velocity resolution of
0.2 km s~ centering each image cube on the transition rest
frequency. The J = 13-12 transitions had a small uv-taper
(“outertaper” = 0”35) applied to force the synthesized beam to
match that of the J = 12—11 transitions (1”705 x 0783). The rms
of the image cubes was ~3.2 mJy beam ™' in each channel, and
channel maps are presented in Appendix A. Moment-O0 maps of
the transitions are shown in Figure 1 and were created by
integrating all emission between 2.1 and 3.7 km s~ with no
clipping threshold.

Deprojected and azimuthally averaged radial intensity
profiles (Figure 2) were calculated from the moment-0 maps in
Figure 1 using an inclination of 7° and PA of 155° (Qi
et al. 2004; Andrews et al. 2012, 2016). All transitions are
centrally peaked, but the beam size is relatively large
(~50-60 au) compared to the extent of the emission, leaving
open the possibility of a ringed morphology at small radii. The
transitions all have similar profile shapes, with their relative
strengths decreasing with increasing k,,.

Spectra were extracted for each transition using two methods.
First, an elliptical mask 3”5 in diameter was used (line profiles in
Figure 3), which corresponds to a radial extent of ~105 au and
encapsulates all emission given the radial profiles in Figure 2.
Second, a Keplerian mask convolved with the synthesized beam
was used to extract the shaded profiles in Figure 3, offering a
better estimate of the true flux of each transition. The convolved
Keplerian mask was truncated at a radial distance of 105 au, and
thus covers the same total solid angle as the elliptical mask. Flux
measurements, listed in Table 1, were made by integrating the
Keplerian extracted spectra between 2.1 and 3.7 kms '
Uncertainty on each flux measurement was determined through
bootstrapping, repeating the extraction and integration 10,000
times on an identical number of randomly selected nearby
emission-free channels (sampled with replacement). The standard
deviation of these values is reported as the uncertainty on the flux
measurement.

® VISIBLE is publicly available at hitps://github.com/

AstroChem/VISIBLE.
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Figure 1. Integrated intensity (moment-0) images of the observed CH;CN transitions, velocity-integrated between 2.1 and 3.7 kms~'. All panels share the same
intensity scale. Contours are [3, 5, 7, ...] Xo, where 0 = 2.2 mJy beam ™' km s~'. The synthesized beam is shown in the lower left of each panel.
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Figure 2. Deprojected and azimuthally averaged radial intensity profiles of the
observed CH;CN transitions. Shaded regions denote 1o uncertainty levels, where
the uncertainty in each radial bin was calculated by dividing the respective
moment-0 image rms by the square root of the number of independent
measurements in that bin (i.e., the bin circumference divided by the beam size).

3. CH3CN Column Density and Excitation Temperature

The k-ladder structure of CH3CN’s rotational spectrum
allows multiple transitions to be observed simultaneously,
spanning a wide range of upper state energies. With this lever
arm, the CH3CN column density and excitation temperature
can be well-constrained through a rotational diagram analysis
(e.g., Goldsmith & Langer 1999). We initially assume local
thermodynamic equilibrium (LTE) excitation, as the critical
densities of the J = 13-12 and J = 12—-11 CH;CN transitions
are ~2.6 x 10° and ~2.0 x 10° cm_3, respectively, at a

typical disk molecular layer temperature of 40 K (extrapolated
to higher J and interpolated in temperature from Shirley 2015).
Typical disk gas densities are >1 x 10° cm ™, apart from the
upper regions of the disk atmosphere (z/r > 0.6), which we do
not expect these observations to probe.

3.1. Disk-averaged Analysis

We first calculate a disk-averaged column density and
excitation temperature. Under an assumption of optically thin
emission, the column density of molecules in the upper state of
each transition, Nf,h‘“, is related to the emission surface brightness,
I, through the equation:

1, = A“’NL—:hmhc )
4t Av
where A,; is the Einstein coefficient and Av is the linewidth
(e.g., Bisschop et al. 2008). The disk-averaged emission
intensity is I, = S, /), where S, is the flux density and €2 is
the solid angle subtended by the source. Substituting for 7, and
inverting Equation (1):

Nthin o 47TS,, AV

= =" 2
" AMIQI’ZC ( )

S, Av is the integrated flux density reported for each transition

in Table 1, and we use the total solid angle covered by the

beam-convolved Keplerian mask as an estimate of .
Following Gordy & Cook (1984), the upper state level

population N, can be related to the total column density N7 by

the Boltzmann equation:

N, Nr

= e Eu/Klo 3)
gu Q (Y;Ot)

where g, is the degeneracy of the upper state level, Q is the
molecular partition function, T}, is the rotational temperature,
and E, is the upper state energy. CH3;CN is a symmetric top
with C3, symmetry, and the upper state degeneracy g, can be
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Figure 3. Spectra of the observed CH;CN transitions. Line profiles were extracted with an elliptical aperture mask 3”5 in diameter, and shaded profiles were extracted

using a Keplerian mask convolved with the synthesized beam.
written as

8. = 8&8k8&r» 4)

where g; = 2J + 1, gx = 1 for K = 0,and 2 for K = 0, and g,
is the reduced nuclear spin degeneracy. For CH3CN, g; can be
defined as

1 2 _
5[1 + m], for K = O, 3, 6,

g=1 ' )
g[1 - W] for K not divisible by 3.

The partition function Q can be approximated for a molecule
with G5, symmetry as

534 x 108)( 73, \/*
Q(Trm>=(+)[33‘;) : ©)

where o is a unitless symmetry parameter, equal to 3 for a
molecule with C3, symmetry, and A and B are the molecular
rotational constants. Values for these rotational constants and
all other spectral line data were taken from the Spectral Line
Atlas of Interstellar Molecules’ (F. J. Lovas 2018, private
communication, Remijan et al. 2007).

In a conventional rotational diagram analysis (e.g., Goldsmith
& Langer 1999), taking the logarithm of Equation (3) allows for
a linear least squares regression:

E,

M N, - QT —

8u rot

)

If the level populations, N,/g,, are semi-log plotted against the
upper state energies, E,, then the rotational temperature, 7, and
total column density, N7, can be derived from the best-fit slope
and intercept, respectively. Under the assumption of optically thin
emission, Nuthin = N,, Equation (2) can be used to calculate
N,/g.. The optical depth of the observed CH3CN transitions is
unknown a priori, however. In the case in which the optical depth

7 Available at http://www.splatalogue.net.

7K 1, an optical depth correction factor C; must be applied:

C=——70 (®)

and thus the true level populations become

N, = N*"C,, ©
such that Equation (7) is rewritten as
ln& +InC, =InNy — InQ(T) — 2 ) (10)
gu rot

The optical depths of individual transitions are often directly
determined through hyperfine ratios or observations of isotopomers,
but can also be related back to the upper state level populations:

_ Aulc3
8m3AY

C. can therefore be written as a function of &, and substituted
into Equation (10) to construct a likelihood function L (N, To)
which can then be used for y? minimization.

Given this likelihood function, we use the affine-invariant
Markov chain Monte Carlo (MCMC) code emcee (Foreman-
Mackey et al. 2013) to fit the data and generate posterior
probability distributions of both N, and T, (see Figure 12 in
Appendix B). These probability density functions describe the
range of possible column densities and rotational temperatures
that are consistent with our observed data. Random draws from
these posteriors are plotted in blue in Figure 4, with 7 corrected
values of N,/g, plotted against E,. We find a disk-averaged
column density of Ny = 1.457012 x 10'>cm > and a rotational
temperature of T, = 32.7733 K, where parameters and uncer-
tainties are listed as the 50th, 16th, and 84th percentiles from the
marginalized posterior distributions, respectively. Corresponding
values of 7 range between 0.002 and 0.012, confirming that these
transitions of CH3CN are optically thin. These values show a
good fit to both the complete data set as well as the individual
J =12-11 and J = 13-12 k-ladders (shown in orange and red,
respectively), consistent with the assumption of LTE excitation.

N, (/Ko — 1), (11)

Tul
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Figure 4. CH3;CN rotational diagram, constructed using disk-averaged
intensities. J = 12—11 and J = 13-12 transitions are shown in orange and
red, respectively. Random draws from the fit posteriors are plotted in blue and a
fit to simulated observations from the chemical model described in Section 3.3
is plotted by the dashed black line.
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Figure 5. Radial profiles of the fit CH;CN column density (upper panel) and
rotational temperature (lower panel). Best-fit values and 1o uncertainties are
plotted in blue for the radially resolved analysis and in red for the disk-
averaged analysis. Fits to the simulated observations described in Section 3.3
are plotted by the dashed black line.

3.2. Radially Resolved Analysis

As the observed CH;CN transitions are strongly detected and
moderately resolved (with a beam size of ~50 au), N7 and T, can
be further constrained as a function of radius. We repeat the
rotational diagram analysis previously described, but now use
intensities from the radial profiles of each transition from Figure 2
rather than disk-averaged intensities. Posterior distributions for Ny
and T, are calculated at intervals of 1 au and are plotted in
Figure 5. The rotational diagrams (not shown) remain log-linear
and well-behaved out to ~70 au but become nonlinear exterior to
this distance, leading to the large uncertainties in 7.
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Figure 6. Assumed physical structure of TW Hya used for chemical modeling,
taken from Cleeves et al. (2015). Panels (a, b): disk temperature and density
structures, respectively. Panels (c, d): X-ray and FUV radiation fields,
respectively, with optical depths overplotted as contours.

Table 2

Chemical Model Initial Abundances
Species Abundance® Species Abundance®
H, 5.00 x 107! He 1.40 x 107!
N, 375 x 107° Cco 7.00 x 107°
H,O(gr) 250 x 107 Hy 1.00 x 1078
HCO* 9.00 x 107° C,H 8.00 x 107°
cs 5.00 x 107° o) 400 x 107°
ct 1.00 x 107° Sit 1.00 x 107!
Mg" 1.00 x 107" Fet 1.00 x 107"
Note.

4 Abundances are relative to the proton density n, = 2ny,.

The observed Ny profile decreases with radius from 5 to
0.9 x 10'2cm 2 This is consistent with the disk-averaged
column density of Ny = 1.457012 x 10'> cm ™2, which is over-
plotted in red in Figure 5. The disk-averaged column density is
biased toward the low end of the radially resolved column density
range. The majority of the emission (and therefore molecular
column) is concentrated in the inner regions of the disk
(R < 50au) and the disk-averaged intensities (integrated out to
R = 105 au) are therefore diluted. T}, shows a flat radial profile,
ranging between 30 and 34 K, consistent with the disk-averaged
rotation temperature, T;o, = 32.71373 K.

3.3. Comparison to Chemical Models

We compare the empirical contraints derived in Sections 3.1
and 3.2 to the predictions of a time-dependent chemical model
(Fogel et al. 2011; Cleeves et al. 2014) evolved for 1 Myr. The
assumed density and temperature structures, constrained by the
TW Hya SED and previous HD observations (Bergin et al. 2013)
in Cleeves et al. (2015), are shown in Figure 6 panels (a) and (b),
respectively. The initial chemical abundances of the model, listed
in Table 2, are based on values from Cleeves et al. (2015) but with
updated CO and H,O depletion factors. CO is depleted by a factor
of 20 to approximately compensate for the known carbon
depletion in TW Hya (e.g., Favre et al. 2013; Kama et al. 2016;
Schwarz et al. 2016). H,O is depleted in the model by a factor of
100 (e.g., Du et al. 2015). No CH3CN is included in the initial
abundances, and thus all CH3CN in the model is produced in situ.
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The FUV and X-ray radiation fields within the disk (Figure 6,
panels ¢ and d) were calculated using the Monte Carlo code
and cross sections from Bethell & Bergin (2011), the observed
TW Hya FUV spectrum Herczeg et al. (2002, 2004), and a
best-fit X-ray model for TW Hya from Cleeves et al. (2015). A
reduced cosmic-ray ionization rate was assumed, as TW
Hya has been found to have a reduced cosmic-ray ionization
rate due to exclusion either by winds or magnetic fields
Cer ~ 2 x 1071 5715 SSX model; Cleeves et al. 2015).

The chemical reaction network contains a total of 5970
reactions and 600 species. Within this network, three reactions
are primarily responsible for the formation of CH3;CN (Walsh
et al. 2014; Wakelam et al. 2015). In the gas phase, formation
occurs through the radiative association reaction (Herbst 1985)

CHf + HCN — CH;CNH* + hv, 12)
followed by dissociative recombination
CH;CNH' + e~ — CH;CN + H. 13)

It should be noted, however, that the implicit isomerization of
CH;NCH' to CH;CNH"' in Equation (12), as written, would
likely require a three-body interaction to be efficient (e.g., Anicich
et al. 1994) and is not firmly established in the literature as a
viable process at the low densities present in protoplanetary disks.
An analogous reaction for HNC is also possible

CHY + HNC — CH3CNH' + hv, (14)

with a disk-integrated HNC/HCN ratio of ~0.1-0.2 having
been previously measured for TW Hya (Graninger et al. 2015).
Destruction pathways for gas-phase CH3CN include UV
photodissociation into CH3 + CN and reactions with C*.

On grain surfaces, there are two viable formation pathways
through a Langmuir-Hinshelwood mechanism: (1) sequential
hydrogenation of C,N or (2) a neutral-neutral grain-surface
reaction between CH; and CN (Wakelam et al. 2006; Walsh et al.
2014). A reactive desorption efficiency of 1% and a photodesorp-
tion yield of 10> were assumed, with an additional assumption
that the CH3CN molecule always desorbs intact. The validity of
these assumptions and their impact are discussed in more detail in
Section 4.1.3. Thermal desorption and freeze-out in the model are
treated using the Polyani-Wigner relation, with an assumed
binding energy of 4680 K for CH;CN (Collings et al. 2004).

To isolate the respective contributions of gas phase and grain-
surface formation mechanisms, we ran the chemical model twice,
once with grain-surface reactions turned on and once with them
turned off. Figure 7 shows the resultant gas-phase CH3;CN
abundance profiles (panels a and b). Both gas-phase and grain-
surface reactions contribute to the total CH;CN reservoir, but
form distinct vertical layers. Gas-phase reactions produce CH;CN
in a layer at z/r ~ 0.5, where the gas temperature is ~50 K. The
upper boundary of this layer sits along the FUV 7 = 1 surface and
is primarily set by the UV photodissociation of CH;CN. The
lower boundary is set where the reactant CH3 is no longer formed
in appreciable quantities due to the FUV and X-ray optical depths.
Grain-surface reactions meanwhile produce a layer of CH3;CN
in the gas phase at z/r~0.3 (T'gas ~ 35 K), with formation
dominated by sequential C,N hydrogenation. C,N is primarily
formed in the gas phase through the reaction

CH + N — H + CoN, (15)

and then freezes out onto grain surfaces. The upper boundary of
the grain-surface CH3CN layer is set by this freeze-out of C,N
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Figure 7. Panels (a, b): CH3;CN gas-phase abundances with grain-surface
reactions turned on and off in the model, respectively. Temperature contours of 30
and 50 K are overlaid in black. Panels (c, d): CH;CN gas-phase column densities
for the abundance profiles shown in panels (a) and (b), respectively. Column
density profiles smoothed with the synthesized beam are overplotted in red, and
the observed column density profile from Figure 5 is overplotted in blue.

and the lower boundary is set by high optical depths limiting
photodesorption of CH3CN off the grain surfaces.

The model abundance profiles were vertically integrated to
calculate column density profiles (Figure 7 panels (c) and (d)).
The model column density profiles, shown in black, were then
convolved with the synthesize beam of the observations to
produce the smoothed profiles shown in red. From these
profiles, it is clear that grain-surface contributions in the full-
network model increase the integrated column density by a
factor of 4—-10 across the disk. Comparing the beam smoothed
model profiles with the observed column density profile in
Figure 5, we find that gas-phase reactions alone are insufficient
to reproduce the observed column densities, while inclusion of
grain-surface reactions reproduces the observed column
densities within a factor of 2 across the disk.

Although the beam smoothed profiles allow for a rough
comparison to our best-fit observed column density profile, a more
detailed comparison requires an identical analysis procedure for
both the observations and chemical model results. We therefore
used the chemical model output to calculate simulated emission
profiles for the observed CH;CN transitions using the radiative
transfer code RADMC-3D (Dullemond et al. 2012). A distance of
59.5 pc, PA of 155°, and stellar mass of 0.8 M, (to determine line
broadening) were assumed for the radiative transfer (Kastner
et al. 1997; Qi et al. 2004; Andrews et al. 2012, 2016). An
inclination of 8° was assumed, which approximately accounts for
the slight warp in the TW Hya disk (Rosenfeld et al. 2012) and
was found to fit our observations relatively well (see Appendix A).
Simulated ALMA observations were then calculated for each
transition using the vis_sample package (Loomis et al. 2018c)
and the antenna configuration of the original observations.

From these simulated observations, we repeated the analysis
described in Section 3.1 and calculated a disk-averaged
rotational temperature and column density, overplotted by a
dashed black line in Figure 4. The disk-averaged calculated
column density of Ny = 1.49 x 10'> cm 2 and rotational
temperature of T, = 36.6 K both agree with the observed
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column density of Ny = 1.457012x10'> cm™? and the rota-

tional temperature of T, = 32.7737 K within the errors.

Similarly, we extracted deprojected and azimuthally averaged
radial intensity profiles and repeated the analysis described in
Section 3.2 to calculate resolved column density and rotational
temperature profiles, overplotted by a dashed black line in
Figure 5. Both profiles match the observations relatively well. The
model rotational temperature profile is up to ~15 K warmer than
the observations, however, especially at radii <50 au. This might
be expected given the distribution of CH3CN seen in Figure 7,
panel (a), peaking at small radii and in a temperature layer >50 K.
This point is discussed further in Section 4.1.

4. Discussion

4.1. CH;CN Abundance Structure and Formation Chemistry
4.1.1. Insights from Observations

A rotational diagram analysis of our observations shows that
CH;CN in TW Hya emits at a near constant temperature of
~30-35 K across the disk. From our assumed physical model of
TW Hya, this temperature suggests emission from a vertical layer
at z/r ~ 0.3. These first observational constraints on the vertical
distribution of CH3CN are in good qualitative agreement with the
layered CH3CN distribution predicted by the chemical models in
Oberg et al. (2015). Similarly, we find that our observed radial
column density profile is in good qualitative agreement with the
predictions of Walsh et al. (2014) and the observational results of
Oberg et al. (2015), which both found column density profiles
between ~10'2-10"* cm™? that monotonically decreased with
radius.

4.1.2. Comparison of Chemical Models and Observations

We attempted to gain an intuition for the dominant CH;CN
formation pathway by comparing these observational results with
two chemical models, with and without grain-surface chemistry.
The full chemical network predicts emission that is in remarkably
good agreement with our observations, especially given that the
model has not been adjusted in any manner to match the data. The
model with no grain-surface reactions underpredicts our measured
fluxes by over an order of magnitude, suggesting that grain-
surface formation of CH3;CN may be the main in situ formation
pathway. We additionally find that at all times in the full-network
model, the total grain-surface formation rate dominates over the
gas-phase formation rate by factors of ~2-10. Dominant grain-
surface formation is further supported by our observed temper-
ature layer (~30-35K, z/r ~ 0.3) being better matched to the
grain-surface formation layer than the gas-phase formation layer
in Figure 7. The limited spatial resolution of our observations and
the caveats of our chemical model presented in Section 4.1.3,
however, prevent a more robust quantitative analysis of the
relative gas-phase and grain-surface contributions.

Although the full-network model predicts adequate integrated
fluxes, some differences remain between the model and
observations. First, the radial profile of the model column density
is slightly more centrally peaked (even after beam convolution)
than the observed column density profile (Figures 5 and 7).
Second, although the best-fit disk-averaged column density and
rotational temperature are well-matched between the model and
observations, the radially resolved model temperature profile is up
to 15 K warmer than the observed temperature profile.
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These differences are inherently linked; a more centrally
peaked column density results in more emission at small radii,
where the gas temperature is higher for a given z/r. A number
of phenomena therefore could possibly explain these discre-
pancies. First, a central depletion in the CH;CN emission
cannot be ruled out by our observations, given their relatively
low spatial resolution. By stacking the observations and
examining the resultant channel maps, we are able to constrain
the possible radial extent of such a feature to be less than 16 au
(see Appendix A). Second, the chemical model may over-
estimate gas-phase CH3CN production, resulting in an
enhanced contribution of warm (~50K) CH;CN at small
radii. Third, the temperature of the CH3CN emission is likely
sensitive to our assumptions about the physical structure of TW
Hya and its FUV and X-ray radiation fields, in particular, as the
boundaries of the CH3CN layer are directly linked to the optical
depths of the radiation fields (see Section 3.3). High-resolution
observations of smaller molecules, such as HCN, may allow
future model refinement by anchoring the assumed initial
conditions and disk physical characteristics.

4.1.3. Chemical Model Assumptions and Caveats

A number of assumptions made in our chemical modeling
complicate our interpretation of both the observations and models.
First, molecules larger than CH;3CN are not included in the model
and CH;CN likely acts as a chemical “sink,” enhancing model
abundances. Second, given the uncertainties associated with the
dominant gas-phase reaction (see Section 3.3), it is unclear to
what extent this pathway contributes to the observed CH3CN
abundance. If the assumed efficiency of this reaction in the model
is too high, this may partially explain the higher rotational
temperature found for the model compared to the data. Third, we
assumed that CH3CN is always able to photodesorb intact from
grain surfaces. Recent investigation on CH3;0H photodesorption
suggests that larger molecules such as CH;CN fragment and thus
may have difficulty efficiently photodesorbing intact from grain
surfaces (Bertin et al. 2016; Cruz-Diaz et al. 2016; Walsh et al.
2017). If this is the case, reactive desorption may play a larger role
as a mechanism for nonthermal CH;CN desorption. Finally, our
model initial conditions assume flat depletion of CO and H,O
across the disk. In reality, spatial variations in depletion and
sequestration will result in a modified C/O ratio, which in turn
will affect CH3;CN abundances. In particular, the formation of
cyanides such as CH;CN has been shown to be sensitive to
carbon and oxygen abundances, with an enhanced C/O ratio
resulting in more efficient cyanide formation (Du et al. 2015). The
expected nitrile enhancements for older disks with grain growth
and radial drift have been tentatively observed by Guzman et al.
(2017), and a similar effect was invoked by Bergin et al. (2016) to
explain hydrocarbon rings around TW Hya.

4.2. Implications for Cometary CH3CN Abundances

Our observations probe gas-phase abundances at a vertical
layer in the disk of z/r ~ 0.3. In contrast, comets form in the disk
midplane and their bulk compositions are primarily set by grain-
surface chemical abundances, rather than gas-phase abundances.
Interpreting the implications of our observations for the chemical
composition of comets, therefore, requires extrapolation to the
disk midplane through our chemical model. Figure 8 panels (a)
and (b) show the grain-surface abundances of CH3CN in our
chemical models with grain-surface chemistry turned on and off,
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Figure 8. Panels (a, b): CH3;CN abundances in the solid-phase on grain-
surfaces, calculated in chemical models with grain-surface reactions turned on
and off, respectively. Panels (c, d): CH3CN(gr)/H,O(gr) abundance ratios,
calculated from the abundance profiles shown in panels (a) and (b). Note that
all CH;CN in the models is formed in situ, while initial abundances of H,O(gr)
are inherited from the protostellar phase.

respectively. Although no CH3CN is formed on grain-surfaces in
the latter model, freeze-out still results in a non-negligible CH;CN
grain-surface abundance.

To compare these grain-surface abundances to measured
cometary CH;CN abundances in the solar system (~10~* relative
to H,O, e.g., Mumma & Charnley 2011), panels (c) and (d) of
Figure 8 show CH;CN(gr)/H,O(gr) abundance ratios across the
disk model. Initial H,O(gr) abundances in the midplane are
inherited from the protostellar phase. We correct for the depletion
factor assumed for gas-phase H,O in the disk surface (e.g., Du
et al. 2015; see Section 3.3), as ices in the disk midplane are not
expected to be depleted. Gas-phase reactions alone (Figure 8,
panel d) are clearly insufficient to reproduce cometary CH;CN
abundances 7 x 107°-3 x 107 (e.g., Mumma & Charnley 2011)
near the midplane (i.e., z/r < 0.1). Incorporation of grain-surface
reactions (Figure 8, panel c), however, produces abundances
closer to cometary values (up to 5 x 10~%) in the comet forming
regions of the disk (R < 10-30 au), consistent with the results of
Walsh et al. (2014).

Figure 9 plots CH3CN(gr)/H,O(gr) ratios as a function of z/r at
a variety of radii in the disk, comparing these values to the range
of known cometary CH3;CN(gr)/H,O(gr) ratios. In situ formation
in the comet forming zone (R < 10-30au) is insufficient to
produce cometary abundances of CH3CN at the midplane, but can
easily yield these abundances at slightly higher disk layers
(z/r > 0.04), especially at smaller radii. A detailed understanding
of the coupling between chemistry and vertical motion of material
within the disk will be necessary to determine if CH;CN produced
higher in the disk can be efficiently transported to the midplane for
incorporation into comets (e.g., Semenov & Wiebe 2011; Furuya
& Aikawa 2014). In particular, such an analysis would require
chemical modeling that incorporates both dust settling and
turbulent diffusion, as these phenomena have pronounced effects
on CH;CN abundance distributions and the coupling between
gas-phase and grain-surface abundances (e.g., Semenov &
Wiebe 2011; Oberg et al. 2015).
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Figure 9. CH3CN(gr)/H,O(gr) abundance ratios from Figure 8, panel (c) (full
chemical network) as a function of z/r, taken at different radial slices. The
range of values for solar system cometary abundances is shaded in red.

We note that the CH3CN(gr)/H,O(gr) ratios shown in Figure 9
are lower limits, as no inheritance from the protostellar stage is
included in our models. Chemical modeling in Eistrup et al.
(2016) suggests that such inheritance is possible, with interstellar
ice abundances preserved in environments that are shielded from
cosmic rays (e.g., TW Hya, Cleeves et al. 2015). Observational
evidence for protostellar inheritance of CH3CN is mixed, however.
Oberg et al. (2015) find CH;CN/HC3N/HCN ratios in MWC 480
that are inconsistent with those found in protostellar regions such
as IRAS 16293-2422 (e.g., van Dishoeck et al. 1995), while
Bergner et al. (2018) find CH3CN/HC;N ratios in a number of
disks that are consistent with protostellar values.

The detection of CH3CN around TW Hya offers an additional
opportunity to evaluate the possibility of protostellar inheritance,
as this is the only disk where CH;OH has been detected thus far
(Walsh et al. 2016). We find an approximate CH;CN/CH;0H
column density ratio of unity, which is substantially higher than
the few percent found in comets and around protostars (Mumma
& Charnley 2011; Bergner et al. 2017). As discussed in Bergner
et al. (2018), two scenarios could explain this finding: a higher
photodesorption efficiency for CH;CN than CH;OH (where both
species could either be inherited from the protostellar stage or
form through in situ grain-surface chemistry), or gas-phase
production of nitriles such as CH3;CN could be enhanced by a
high C/O ratio as discussed in Section 4.1.3. Thus although our
observations are inconsistent with preserved interstellar abun-
dance ratios, it is possible that inheritance contributes to the total
CH;CN abundance in TW Hya.

5. Summary

In summary, we have detected emission from seven transitions
of CH;CN toward TW Hya. A disk-averaged rotational analysis
finds a column density of Ny = 1.8270%3 x 10'2cm ™2 and a
rotational temperature of T, = 29.3732 K, and a radially resolved
analysis shows this temperature to be flat across the disk. We
interpret these results to suggest that CH3;CN emission originates
from a layer at z/r ~ 0.3 throughout the disk. Comparing these
observations with the results of a disk chemistry model, we
suggest that grain-surface reactions likely dominate CH3;CN
formation. In situ formation in the model is sufficient to explain
observed CH3CN fluxes; though, further model refinement is
necessary to accurately reproduce CH3;CN radial and vertical
abundance profiles. Finally, we examine the CH;CN(gr)/H,O(gr)
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ratio predicted by our model and find that cometary abundances of
CH;CN are not present in the disk midplane, but can be found in
slightly higher disk layers (z/r > 0.04), suggesting that inheri-
tance, dust settling, turbulent mixing, or a combination of these
effects is necessary to replicate cometary CH;CN abundances in
the disk midplane.
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Appendix A
Channel Maps

Channel maps of the observed CH;CN transitions are shown
in Figures 10 and 11, generated from the image cubes described
in Section 2 at 0.2kms~'. Residuals after subtracting the
synthesized observations from the full-network chemical
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Figure 10. Channel maps of the observed CH3CN J = 12-11 transitions and residuals after subtracting synthesized observations from the full-network chemical

model. The observations were imaged with 0.2 km s~

o = 3.2 mly km s~ '. The synthesized beam is shown in the left panel of each row.

9

channel spacing and all panels share the same intensity scale. Contours are [3, 5, 7, ...]xo, where
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Figure 11. Same as Figure 10, but for the J = 13-12 k-ladder of CH3CN.

model described in Section 3.3 are shown in the figures as well,
alternating rows with the observations. Although these
residuals are small, a trend is seen where the model over-
produces emission in the central channels and under-produces
emission at 4 0.4kms™'. This can likely be attributed to the
small deviation from Keplerian rotation at small radii in TW
Hya (Rosenfeld et al. 2012), which we are only partially able to
account for by slightly increasing the overall inclination of our
model (from 6° to 8°).

To investigate the distribution of CH;CN at small radii, we
additionally stacked the transitions within each k-ladder to
improve the S/N. The filter responses of each transition were
used as an estimate of their inherent S/N, and applied as
stacking weights when the measurement sets were combined in

10

the uv-plane. The stacked measurement sets were identically
imaged to the individual transitions, and show evidence for
emission up to 0.8kms~' from the systemic velocity. This
velocity corresponds to a radius of ~16 au, assuming a stellar
mass of 0.8 M, and inclination of 7°. The data are therefore
compatible with the presence of a depression in CH;CN surface
density at small radii, but constrain the outer radius of such a
potential feature to be less than 16 au.

Appendix B
MCMC Fit Covariance

A corner plot showing the posterior probability distributions
and covariances for the rotational diagram fit shown in Figure 4
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Figure 12. Corner plot showing the posterior probability distributions and
covariances for the rotational diagram fit shown in Figure 4. The 16th and 84th
percentiles for each parameter are shown by dotted gray lines, with the 50th
percentile shown by dashed blue lines.

is shown in Figure 12. Similar covariances are observed for the
fit to each radial bin in Figure 5.
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