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Abstract—Thin layer models are widely used in the finite-
difference time-domain (FDTD) technique to efficiently model
boundaries in multi-scale simulations as they significantly reduce
simulation run-times and memory requirements. These models
often utilise surface impedance boundary conditions (SIBCs) to
represent the material of the boundary. Conformal meshes are a
popular method of representing curved and non-aligned surfaces
in FDTD. These meshes deform cells in the FDTD grid around the
boundary between bulk materials so as to more accurately repre-
sent the shape of the material. Here we present an algorithm that
combines the efficiency of a thin layer model with the accuracy
of a conformal mesh. The algorithm is applied to three resonant
cavity models and the accuracy verified using comparisons to
non-conformal meshes and analytic solutions. Improvements are
shown in the accuracy of the resonant frequencies and magnitude
of the shielding effectiveness (SE) of the cavities. It is also shown
to reduce the prevalence of extraneous features in the frequency
response of the SE that are apparent when using a stair-cased
mesh.

Index Terms—Finite-Difference Time-Domain, Conformal
Techniques, Surface-Impedance Boundary Condition, Thin Layer

I. INTRODUCTION

FDTD is a popular numerical method for solving Maxwell’s

equations [1]. The strength of the method lies in its efficiency

and simplicity. Being a time domain algorithm it is possible

to solve problems over a large range of frequencies in a single

simulation.

Surface Impedance Boundary Conditions (SIBCs) are useful

tools that can be used to model very thin materials [2], [3].

They allows a material that is much thinner than the size of

the mesh to be simulated without having to simulate the field

inside the material. Instead, they use a behavioural model that

controls how the material interacts with the mesh. Doing this

can reduce simulation run-times significantly [4].

However it is commonly known that FDTD can suffer from

inaccuracies due to its reliance on a cuboid grid. Surfaces

that are curved, or do not align with the grid, cannot be

accurately represented and are commonly approximated using

a stair-cased mesh. This can introduce a number of errors

into the results of the algorithm [5]. A popular solution to

this problem is the introduction of conformal algorithms.

These algorithms deform individual cells in the cuboid grid to
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(ACCREDIT) and EPSRC Studentship 1642594.

better conform to non-aligned and non-orthogonal geometries.

Early conformal algorithms could be used to represent perfect

electrical conductors [6], [7] and later methods allowed for

conformal meshes of penetrable materials [8]. Current confor-

mal algorithms rely on meshing bulk materials, where the field

inside the material is simulated on the FDTD grid. This means

that having a bulk conformal material boundary also means

having a larger simulation to account for the cells inside the

material.
In this paper we propose a conformal algorithm that utilises

a SIBC for representing curved and non-aligned planar sur-

faces in FDTD. This combines the efficiency of using a thin

boundary model and the accuracy of using a conformal mesh.

The algorithm is proposed in Section II and validated using

different cavity models in Sections III, IV and V. Conclusions

about the approach are presented in Section VI

II. PROPOSED CONFORMAL ALGORITHM

Here the adaptation of an existing SIBC [3] to a conformal

mesh is described. Consider the cell in Fig. 1, the shaded

boundary has been moved from the xy-plane face at i towards

the centre to conform with a surface passing through the

cell, by directly modifying a stair-cased surface mesh.. Where

l1,l2,l3 and l4 are the distance that each corner of the boundary

has moved.

Fig. 1. Conformal algorithm applied to a single cell. The shaded surface is
not parallel to any cell face.

The original SIBC uses spatial interpolation to approximate

the magnetic field at the centre of the SIBC parallel to the978-1-5386-5204-6/18/$31.00 ©2018 IEEE

jfd1
Typewriter
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.  2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO) (NEMO2018) , 8-10 August, 2018



face, on the mesh cell surface. This is achieved by averaging

the magnetic fields on the surface of the cell:
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To apply a conformal SIBC the magnetic fields must be

weighted according to their distance to the boundary, so (1)

becomes:
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Where δ1,δ2,δ3 and δ4 are the fractional edge lengths:

δn =
ln

∆z
(3)

Similar update equations can be derived for determining the

y-polarised magnetic field.

The usual FDTD equations are used to update the surround-

ing magnetic field components using the electric fields on the

SIBC surface modified by the average fractional edge length:
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Where Chxe
i,j+ 1

2
,k− 1

2

is the standard magnetic field update

coefficient [9]. Again, similar update equations can be derived

for the y-polarised magnetic fields. Any yz-plane and zx-plane

faces on the staircase mesh in the cell are dealt with in the

same way and the sum of the coincident boundaries add to

give the correct overall behaviour.

III. 1D RESONATOR TEST CASE

The first validation test for the proposed algorithm is a

simple 1D resonator. This test consists of two thin planar

boundaries separated by 3.95m of free space. The bound-

aries are isotropic and symmetrical with constant transmission

and reflection coefficients of 0.004 and -0.99 respectively. A

Gaussian pulse is used to illuminate the resonator at normal

incidence from the left as shown in Fig. 2.

The electric field at a given point in the cavity can be

determined analytically as:

E(x) =
EIτ(e

−γx + ρe−γ(2d−x))

1− ρ2e−2γd
(5)

where EI is the magnitude of the incident electric field, x

is the distance from the left side of the cavity, d is the length

of the cavity, γ is the propagation constant and τ and ρ are

Fig. 2. 1D Resonator Diagram. EI is the incident electric field and s is the
direction of propogation.

the transmissions and reflection coefficients of the boundaries

respectively.

The initial simulation for this problem uses a cavity length

of 3.95m and a mesh size of 0.2m. This means that, when

using a non-conformal mesh, the cavity length must be a mul-

tiple of 0.2m and therefore the cavity modelled is effectively

4m long. When using the conformal mesh one cell can be

deformed allowing a 3.95m long model while using a 0.2m

global mesh size. The electric field along the cavity at 37MHz

is shown in Fig 3.
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Fig. 3. E-Field along 1D Cavity at 37MHz. Comparison of analytic solution
with conformal and non-conformal meshes.

It can be seen that for the non-conformal case the field is

shifted slightly in space, however when using the conformal

mesh this has been corrected and the field values lie on the

analytic curve.

The simulation is repeated using the same mesh size and

number of cells as before, the size of the cavity is varied

from 3.81m to 4m. The error in the first resonant frequency

is measured for each cavity size, the results are shown in Fig.

4. The conformal mesh is adjusted to match the cavity width.

It can be seen that the error in resonant frequency is better

in all cases when using the conformal mesh except when the

cavity has a width of 4m and the conformal mesh is identical to

the non-conformal mesh. A width of 3.8m cannot be simulated

using the conformal mesh as the boundary would lie exactly

on the next surface of the cell, meaning the distance between

the electric field nodes and the boundary would be zero.
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Fig. 4. Error in resonant frequency for 1D cavities of different widths. The
number of cells across the cavity and the mesh size remain constant.

IV. CUBIC SHELL TEST CASE

To test the conformal algorithm on a three dimensional

problem, a cubic cavity is investigated. It is possible to mesh

a cubic shell so that it aligns perfectly with the grid, obviating

the need for a conformal mesh. However, if the cube is not

aligned with the mesh it may become necessary to use a

conformal, or stair-cased, mesh to represent the faces of the

cube as shown in Fig. 5.
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Fig. 5. Mesh of cubic shell.

In this case the cube has been rotated around a single axis

causing four of the faces to become misaligned and require

a stair-cased mesh. The cube is illuminated using a vertical,

linearly polarised plane wave, at normal incidence to the face

of the cube. The electric field at the centre of the cube is

monitored. From this the shielding effectiveness (SE) at the

centre of the cube is determined and shown in Fig. 6. Here

the SE is the ratio of the external and internal electric field

strength. As there is no analytic solution for a cubic shell, a

simulation of the cube that is aligned to the FDTD grid is used

for comparison. For the aligned case no stair-casing is needed

and the conformal mesh reduces to the standard algorithm.
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Fig. 6. Shielding effectiveness at the centre of a cubic shell rotated 45°with
respect the the FDTD grid. Comparisons are made with an aligned case.

There is a significant improvement in the accuracy mag-

nitude of the SE using the conformal mesh when compared

to the stair-cased mesh, reducing the error from 7dB to

approximately 1.5dB. A close up of the first resonance in

Fig. 7 shows an error in the resonant frequency for the stair-

cased mesh of around 1%, when using the conformal mesh

this is reduced to approximately 0.1%. Although the resonant

frequency is more accurate with the conformal mesh the

amplitude error suggests there is still some inaccuracy in the

transmission and reflection coefficients achieved. This will be

further investigated in the future.
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Fig. 7. Shielding effectiveness at the first resonant frequency of a cubic shell.

V. CYLINDRICAL SHELL TEST CASE

A third test case is shown to demonstrate the use of the

conformal algorithm when modelling curved surfaces. An



infinite cylindrical cavity is meshed with a radius of 1m using

the same boundary conditions as the previous test cases. Again

the cavity is illuminated using a linearly polarised plane wave,

with the incident electric field being polarised along the x-axis.

Perfect Magnetic Conductor (PMC) boundaries are utilised at

each end of the cylinder to simulate an infinitely long structure.

The mesh size for this problem is 0.1m.
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Fig. 8. Stair-cased mesh of an infinite cylinder for FDTD. Only one layer
of cells in required in the Z-direction, PMC boundaries emulate an infinite
length.

Again the E-field and subsequently SE is measured at the

centre of the cavity, in this case there is an analytic solution

[10] that can be used for comparison. The results are shown

in Fig. 9
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Fig. 9. Shielding effectiveness at the centre of a cylindical cavity.

For the non-conformal mesh there is a clear resonance

around 180MHz, this is not a spurious peak, rather it corre-

sponds to a resonant mode that has a node at the centre of the

cavity. For points within the cavity that are not exactly at the

centre this resonance would be visible in the SE, the imprecise

stair-cased approximation makes the centre of the mesh a

slightly ambiguous position causing this resonance to become

apparent at the centre as well. Using the conformal mesh has

reduced this resonance significantly, making it almost non-

existent at the centre of the cylinder. However, it should be

noted that there is still a slight variation in the SE around this

frequency as the conformal mesh is still an approximation,

albeit a more accurate one than the stair-cased mesh.
The error in the first resonant frequency is around 1.9%

when using the stair-cased mesh, using the conformal mesh

gives an error of approximately 0.4%. The error in magnitude

at 50MHz is approximately 0.9dB using the stair-cased mesh,

this error is improved to approximately 0.3dB using the

conformal mesh.
It is worth mentioning that for the stair-cased mesh the

extra resonance could be reduced, and the overall accuracy in

frequency increased, using a higher resolution mesh. However,

to achieve a similar result to the conformal mesh the runtime

would be increased by a factor of 125. There would also be

no improvement in the magnitude of the SE as errors in the

boundary transmission and refection due to stair-casing are

independent of mesh size [5].

VI. CONCLUSION

A new algorithm for FDTD has been presented combining a

surface impedance boundary with a conformal mesh. Multiple

test cases have been introduced that demonstrate the new

algorithm leads to improvements in accuracy, both in the

frequency of resonant modes and the magnitude of shielding

effectiveness of the cavities. We have demonstrated that the

conformal thin layer algorithm can also be used to reduce and

potentially eliminate the presence of extraneous resonances

that occur using stair-cased meshing. The method is also

easy to mesh as an existing staircase mesh is modified using

information on the face position in each cell.

REFERENCES

[1] K. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,” IEEE Transactions

on Antennas and Propagation, vol. 14, pp. 302–307, May 1966.
[2] V. Nayyeri, M. Soleimani, and O. Ramahi, “A method to model

thin conductive layers in the finite-difference time-domain method,”
Electromagnetic Compatibility, IEEE Transactions on, vol. 56, pp. 385–
392, April 2014.

[3] I. D. Flintoft, S. A. Bourke, J. F. Dawson, J. Alvarez, M. R. Cabello,
M. P. Robinson, and S. G. Garcia, “Face-centered anisotropic surface
impedance boundary conditions in FDTD,” IEEE Transactions on Mi-

crowave Theory and Techniques, vol. PP, no. 99, pp. 1–8, 2017.
[4] J. Maloney and G. Smith, “The use of surface impedance concepts in

the finite-difference time-domain method,” Antennas and Propagation,

IEEE Transactions on, vol. 40, pp. 38–48, Jan 1992.
[5] S. A. Bourke, J. F. Dawson, I. D. Flintoft, and M. P. Robinson,

“Errors in the shielding effectiveness of cavities due to stair-cased
meshing in FDTD: Application of empirical correction factors,” in
2017 International Symposium on Electromagnetic Compatibility - EMC

EUROPE, pp. 1–6, Sept 2017.
[6] S. Dey and R. Mittra, “A modified locally conformal finite-difference

time-domain algorithm for modeling three-dimensional perfectly con-
ducting objects,” Microwave and Optical Technology Letters, vol. 17,
no. 6, pp. 349–352, 1998.

[7] S. Benkler, N. Chavannes, and N. Kuster, “A new 3-D conformal
PECFDTD scheme with user-defined geometric precision and derived
stability criterion,” IEEE Transactions on Antennas and Propagation,
vol. 54, pp. 1843–1849, June 2006.

[8] W. Yu and R. Mittra, “A conformal finite difference time domain
technique for modeling curved dielectric surfaces,” IEEE Microwave

and Wireless Components Letters, vol. 11, pp. 25–27, Jan 2001.
[9] S. D. Gedney, Introduction to the finite-difference time-domain (FDTD)

method for electromagnetics. Morgan & Claypool, 2011.
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