UNIVERSITY OF LEEDS

This is a repository copy of *Temporal Variability of Atomic Hydrogen From the Mesopause* to the Upper Thermosphere.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/131569/

Version: Accepted Version

Article:

Qian, L, Burns, AG, Solomon, SS et al. (7 more authors) (2018) Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere. Journal of Geophysical Research: Space Physics, 123 (1). pp. 1006-1017. ISSN 2169-9380

https://doi.org/10.1002/2017JA024998

(c) 2018. American Geophysical Union. An edited version of this paper was published by AGU. Further reproduction or electronic distribution is not permitted. To view the published open abstract, go to https://doi.org/10.1002/2017JA024998

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Temporal Variability of Atomic Hydrogen From the Mesopause to the
2	Upper Thermosphere
3 4	Liying Qian ¹ , Alan G. Burns ¹ , Stan S. Solomon ¹ , Anne K. Smith ² , Joseph McInerney ¹ , Linda
5	Hunt ³ , Daniel Marsh ^{1,2} , Hanli Liu ¹ , Martin Mlynczak ³ , Francis Vitt ^{1,2}
6	¹ High Altitude Observatory, National Center for Atmospheric Research, USA
7	² Atmospheric Chemistry Observations & Modeling Laboratory, National Center for
8	Atmospheric Research, USA
9	³ NASA Langley Research Center, Hampton, Virginia, USA
10	Submitted to Journal of Geophysical Research, 2017
11	
12	Abstract. We investigate atomic hydrogen (H) variability from the mesopause to the upper
13	thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by
14	the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on
15	the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, and
16	simulations by the National Center for Atmospheric Research Whole Atmosphere Community
17	Climate Model - eXtended (WACCM-X). In the mesopause region (85 to 95 km), the seasonal
18	and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER
19	observations: H density is higher in summer than in winter, and slightly higher at solar minimum
20	than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-
21	Incoherent-Scatter (NRLMSISE-00) empirical model has reversed seasonal variation compared
22	to WACCMX and SABER. From the mesopause to the upper thermosphere, H density simulated
23	by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these
24	changes of solar cycle and seasonal variability occur in the lower thermosphere (~ 95 to 130

km); whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of ~10, ~2, and ~ 2, respectively. This is consistent with NRLMSISE-00.

32 **1. Introduction**

33 Atomic hydrogen (H) is one of the members of the odd hydrogen (HO_x) family (HO_x) 34 $=H+OH+HO_2$). The HO_x family members are produced in the atmosphere by dissociation of 35 H₂O, H₂, and CH₄. At altitudes from the Earth's surface to about 80 km, the lifetime of the HO_x 36 family is significantly shorter than the time scales of transport [Brasseur and Solomon, 2005]. In 37 the mesopause region (~ 85 - 100 km), the lifetime of HO_x (> 1 day) becomes comparable to or larger than transport time scales and, therefore, transport effects are important. In the 38 39 mesosphere, H participates in a highly exothermic reaction with ozone (O_3) that generates highly 40 vibrationally excited hydroxyl (OH), which emits at the Meinel band ($\sim 2 \mu m$). Measurement of 41 this OH radiation enables the H density to be inferred by remote sensing [e.g., Thomas, 1990; 42 Kaufmann et al., 2013; Mlynczak et al., 2014].

In the thermosphere (~ 100 - 600 km), atomic hydrogen becomes the dominant species of the HO_x family. H is a minor species in the thermosphere, but becomes increasingly important towards the upper thermosphere. Its concentration can be estimated by solving the hydrogen continuity equation, with contributions from horizontal and vertical advection, photochemical production and loss, eddy diffusion, and molecular diffusion. In the thermosphere, chemical production and loss are primarily the result of the following charge exchange reactions:

49
$$H^+ + O \xrightarrow{k_1} O^+ + H, \ O^+ + H \xrightarrow{k_2} H^+ + O$$

where k_1 and k_2 are temperature dependent chemical reaction rates. Another charge exchange reaction is between H and H⁺, which can influence hydrogen kinetics and escape processes [Chamberlain and Hunten, 1987]. However, these changes due to charge exchange reactions have a relatively small effect on the total hydrogen budget in the thermosphere, compared with changes from dynamics. 55 Beyond the thermosphere, H becomes the dominant atmospheric constituent in the 56 exosphere, where it scatters the sunlight at Lyman- α (1216 Å) and produces the luminous diffuse 57 cloud known as the geocorona, extending out to several Earth radii. Ground-based observations 58 of optical emissions, typically the faint H Balmer- α emission at 6563 Å, and space-based 59 measurements of bright H Lyman- α emission at 1216 Å have been used to infer geocoronal H 60 abundance [e.g., Anderson et al., 1987; Bush and Chakrabarti, 1995; Bishop et al., 2001; Qin and 61 Waldrop, 2016; Qin et al., 2017]. In addition, charge exchange reactions of H with hydrogen and oxygen ions in the geocorona influence both the ionosphere and plasmasphere and enable 62 63 energetic neutral atom imaging of the ring current.

64 Measurements of H are scarce. There is a long-standing lack of direct, mass spectrometer measurements of H abundance. Knowledge about the H distribution is based primarily on 65 66 ground-, rocket-, and satellite-based remote sensing techniques [e.g., Sharp and Kita, 1987; Thomas, 1990; Bishop, 2001; Mierkiewicz et al., 2006, 2012; Kaufmann et al., 2013; Waldrop 67 68 and Paxton, 2013; Qin and Waldrop, 2016; Qin et al., 2017]. In the mesopause region, 69 observation of H is difficult from orbiting satellites or by in situ remote sensing techniques 70 because there are no directly observable thermal infrared or visible transitions associated with H 71 to facilitate its measurement. Consequently, H specification in the NRL Mass-Spectrometer-72 Incoherent-Scatter (NRLMSISE-00, hereafter simply "MSIS") empirical model [Picone et al., 73 2002, and references therein] is still largely based on the Atmosphere Explorer (AE) satellite 74 measurements of H^+ and O^+ densities, and neutral atomic oxygen density near and above 250 75 km. The H distribution is inferred under the assumption of charge exchange equilibrium at these 76 heights. Extension of the hydrogen vertical profile to altitudes below 250 km is based on a 77 diffusive equilibrium assumption with ad hoc adjustments for flow and chemistry effects, which

78 can lead to errors in H of a factor of 2 or larger [e.g., Bishop, 2001]. For example, the MSIS H 79 profile differs in shape and is lower in magnitude over most altitudes than the H profiles 80 retrieved from ground-based nighttime hydrogen emission observations [Bishop et al., 2001; 81 Bishop et al., 2004]; forward modeling using the MSIS model extended to exospheric altitudes 82 using the Bishop analytic model indicate discrepancies in the underlying H distribution for both 83 solar minimum and maximum conditions [Nossal et al., 2012]; and MSIS appears to 84 overestimate upper thermospheric H density compared to the H density retrieved from the Global 85 Ultra-Violet Imager (GUVI) onboard the TIMED satellite during daytime conditions, by 42-74% 86 at solar maximum and 36-67% at solar minimum [Waldrop and Paxton, 2013].

87 As discussed above, H is produced by physical and chemical processes lower in the 88 atmosphere that involve greenhouse gases (H_2O and CH_4); H produces H^+ through charge 89 exchange reactions, and this H^+ is an important source of H^+ in the magnetosphere and 90 plasmasphere; in addition, the escape of H above the exobase is the process by which the Earth's 91 water is eventually lost. Therefore, understanding H and its variability will better advance our 92 understanding of the Earth's climate, the magnetosphere and plasmasphere, and the Earth's water 93 budget. Thus, it is important to advance our current understanding of hydrogen variability and 94 improve the empirical specification of hydrogen variability in MSIS.

95 Here, we investigate this atomic hydrogen variability from the mesopause region to the upper 96 thermosphere, on solar cycle, seasonal, and diurnal time scales, using data and model 97 simulations. We use atomic hydrogen data derived from the measurements made by the 98 Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the 99 Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite [Mlynczak et al., 2014]. The H data derived from ongoing SABER measurements, starting in 2002, span more

101 than a solar cycle, providing an unprecedented long-term hydrogen dataset in the mesopause 102 region. Atomic hydrogen and the other HO_x species are included in the National Center for 103 Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model - eXtended 104 (WACCM-X) [Liu et al., 2010; Liu et al., 2017; J. Liu et al., 2017], providing a global model 105 simulation of HO_x chemistry and transport. We also compare these observational and modeling 106 results with atomic hydrogen specified by MSIS. Section 2 gives brief descriptions of the data 107 and the model; section 3 presents hydrogen variability; section 4 provides some further 108 discussion of the hydrogen variability; and section 5 concludes the study.

109

110 **2. Data and Model**

111 2.1 TIMED/SABER Atomic Hydrogen

112 Atomic hydrogen abundance is derived from the SABER measurement of the OH volume 113 emission rate near 2.0 μ m, for both day and night, in the mesopause region (~ 80 - 100 km). SABER observes vertical profiles of spectrally integrated limb radiance (W/m²/sr). The SABER 114 115 instrument is extremely sensitive and measures the limb radiance profile at high precision in the 116 mesopause region, with peak signal-to-noise ratios of 100 to 1000 at night [Mlynczak et al., 117 2013], and peak signal-to-noise ratios of 20 to 250 during daytime [Mast et al., 2013]. 118 Approximately 1500 limb radiance profiles are recorded in a 24 h period. The SABER OH 2.0 119 µm volume emission rate V is directly related to the reaction of hydrogen and ozone. Hydrogen 120 concentration is derived based on the excited OH chemical system model [Mlynczak et al., 2014] 121 that is also used to retrieve nighttime atomic oxygen [e.g., Smith et al., 2010; Mlynczak et al., 122 2013]. At night, atomic H number density is derived assuming that photochemical balance exists 123 between the production of O₃ by atomic and molecular oxygen three-body recombination and the

124 loss of O_3 by reaction with H; the retrieval uses the density of atomic oxygen, the O_3 (from 125 SABER measurements of 9.6 µm emission), and the temperature (retrieved independently from 126 SABER 15 μ m measurements). During the day, O₃ production by the atomic and molecular 127 oxygen three-body recombination is balanced by photolysis of O₃ in the Hartley band. From this 128 balance, daytime O is derived using SABER daytime ozone, temperature, and pressure [e.g., 129 Smith et al., 2010]. Daytime H is then directly derived from the OH volume emission rate using 130 the SABER daytime O, O_3 , and temperature, and pressure. The latter two parameters are used to 131 derive total number density, N₂, and O₂ densities. For both day and night, a profile of H is 132 derived for each measured limb radiance profile. For the SABER H retrieval, day is defined as 133 the case when solar zenith angles are less than 85°, night is defined as having solar zenith angles 134 greater than 95°. Please refer to Mlynczak et al., 2014 for a detailed description of SABER day 135 and night hydrogen retrieval. These individual profiles of H are available from the SABER data 136 archive as routine products. In this paper, we will focus on the region between ~ 85 km and 95 137 km. Below ~ 85 km, the SABER day ozone possessing has a daytime high bias near 80-85 km 138 [Smith et al., 2013], which results in a smaller than actual H concentration; above ~ 95 km, there 139 are also uncertainties in the daytime ozone abundance [Mlynczak et al., 2014].

140

141 **2.2 WACCM-X**

The Whole Atmosphere Community Climate Model (WACCM) is one of the atmospheric models that make up the NCAR Community Earth System Model (CESM). CESM is a coupled model consisting of atmosphere, ocean, land surface, sea and land ice, and carbon cycle components for simulating past, present, and future climates. These components are linked through a coupler that exchanges fluxes and state information among them. More detailed

147 information on CESM can be found at http://www.cesm.ucar.edu/. WACCM is a whole 148 atmosphere climate-chemistry general circulation model developed at NCAR. It is based upon 149 the infrastructure of the Community Atmosphere Model (CAM), which is the atmospheric component of CESM, with vertical domain extending to 5.9 x10⁻⁶ hPa (~ 140 km geometric 150 height). The chemistry module of WACCM is interactive with dynamical transport and 151 152 exothermic heating [Kinnison et al., 2007]. WACCM chemistry is based on the MOZART model 153 [Kinnison et al., 2007], which includes all of the reactions that are known to be important for the 154 middle and upper atmosphere, including all the odd hydrogen chemistry in this region. 155 Tropospheric source gases for the members of the hydrogen, chlorine, bromine, nitrogen, and 156 hydrocarbon families vary with season and year based on changing emissions and other factors 157 [Emmons et al., 2010]. The model simulates 74 chemical species, representing the gas-phase, 158 heterogeneous, and photolytic reactions that link them. Photochemistry associated with ion species $(O^+, NO^+, O_2^+, N_2^+, N^+)$, and metastable O^+ states) is part of the chemistry package. 159 160 Details of WACCM can be found in Garcia et al. [2007], Smith et al. [2011], and Marsh et al. 161 [2013]. WACCM extended into the ionosphere/thermosphere (called WACCM-X) has a top boundary at the upper thermosphere $(4.5 \times 10^{-10} \text{ hPa}, \text{ or } \sim 700 \text{ km})$. Details of an earlier version of 162 163 WACCM-X can be found in Liu et al. [2010]. Recently we have developed a more self-164 consistent ionosphere module for WACCM-X that includes the computation of electron and ion temperatures, an interactive electric wind dynamo, and O⁺ transport in the ionospheric F-region. 165 166 WACCM-X now produces ionospheric structures that are in good agreement with observations 167 [Liu et al., 2017; J. Liu et al., 2017]. The dynamical core of the model has been recently 168 improved to represent the species dependency of specific heats and mean atmosphere mass in the 169 thermosphere. WACCM-X can be configured either for free-running climate simulations (lower

170 atmosphere unconstrained), or with the lower-middle atmosphere constrained by meteorology. In 171 this study, we employ WACCM-X in the free-running climate simulation configuration.

- 172
- 173

2.3. The MSIS Empirical Atmosphere Model

174 We use the latest version of the MSIS series of models, NRLMSISE-00 [Picone et al., 175 2002]. NRLMSISE-00 extends from the ground to the exobase. The model consists of analytic 176 formulations for the vertical structure of the atmosphere as a function of geophysical location, 177 time, solar activity, and geomagnetic activity, based on our physical understanding of the 178 atmosphere [Hedin, 1987]. The datasets that are used to fit those analytical formulations include 179 total mass density from satellite accelerometers and orbit determination, temperature from 180 incoherent scatter radars, and O_2 number density from solar ultraviolet occultations measured by 181 the Solar Maximum Mission. The model provides altitude profiles of temperature T(z), number 182 densities of species (He, O, N₂, O₂, Ar, H, N) in equilibrium at the temperature T(z), total mass density, and the number density of a high altitude "anomalous oxygen" component of total mass 183 184 density that is not in thermal equilibrium at T(z). H specification in the model is based on AE 185 measurements of H^+ and O^+ densities, and neutral atomic oxygen density near and above 250 km 186 under the assumption of charge exchange equilibrium at thermospheric heights [Brinton et al., 187 1975; Waldrop et al., 2006]. Extension of the hydrogen vertical profile to altitudes below is 188 based on diffusive equilibrium with adjustments for flow and chemistry effects. Please refer to 189 Picone et al. [2002] and references therein for the detailed description of the model.

190

3. Results 191

192 WACCM-X uses a parameterization scheme to specify EUV (Extreme Ultra-Violet) and X-193 ray irradiance from 0.05 nm - 121 nm, which takes as input the F_{10.7} (10.7 cm solar radio flux) 194 and F_{10.7a} (81-day average F_{10.7}) [Solomon and Qian, 2005]. The specification of solar spectral 195 irradiance from Lyman- α (121.6 nm) to the near infrared uses the empirical model of Lean et al. 196 [2005]. We ran WACCM-X for solar minimum ($F_{10,7}=70$) and solar maximum ($F_{10,7}=200$) 197 conditions. Geomagnetic activity was set to be quiet for solar minimum conditions ($K_p=1$) and 198 moderate for solar maximum conditions ($K_p=3$). These runs were free-running climate 199 simulations with the lower atmosphere unconstrained. In each case, the model was run for two 200 years, the first year to allow the model to fully equilibrate, and the second year to obtain results 201 for analysis.

The model-simulated atomic hydrogen abundance was compared to the atomic hydrogen abundance retrieved from SABER observations in the mesopause region ($\sim 85 - 95$ km), as well as to the atomic hydrogen calculated by MSIS in this region and in the thermosphere. The comparisons were made for both atomic hydrogen volume mixing ratio (vmr) and number density. Using either volume mixing ratio or number density does not qualitatively change the results.

Figure 1 shows the global and annual average hydrogen from SABER in vmr (figure 1a) and in number density (figure 1c), for 2003 and 2008, and the corresponding H abundance simulated by WACCM-X under solar minimum and maximum conditions (figures 1b, 1d). It is evident that above ~ 85 km, which is the mesopause region that we focus on in this paper, there is more H at solar minimum than at solar maximum, in both vmr and number density. The solar cycle variability of SABER H density in this region is on the order of ~ 10%, on a global average basis. Similarly, the H vmr and number density simulated by WACCM-X show the same relation 215 with solar activity in the 85-95 km altitude range, although with a smaller magnitude, at ~ 5% on 216 a global average basis for H density. This is interesting since the primary source of hydrogen in 217 this region is the photolysis of H_2O at Lyman- α , and Lyman- α irradiance increases 218 proportionally to solar activity. The observed and modeled solar cycle changes are small, 219 especially compared to the uncertainties involved in estimating H from SABER data. The 220 absolute uncertainties in SABER H density estimation stem from uncertainties in the O and O_3 221 determination, and HO_x chemistry rate coefficients. The uncertainties for the day and night 222 retrieval of hydrogen are comparable, at ~ 35% [Mlynczak et al., 2014]. However, it is important 223 to note that when looking at temporal variability of atomic hydrogen, the uncertainties of H 224 retrieval are always in the same direction. If the retrieved H is too large at solar maximum, then 225 it is also too large at solar minimum, and these uncertainties cancel to first order [Mlynczak et 226 al., 2014]. Since the solar cycle variation is subtle, and requires a stable measurement over ~ 11 227 years, the strongest conclusion we can draw from the data-model comparison is that they are 228 qualitatively consistent.

229 Figure 2 shows the global annual average H number density profiles from the mesopause to 230 the upper thermosphere, specified by MSIS and simulated by WACCM-X, under solar minimum 231 $(F_{10.7}=70)$ and solar maximum conditions $(F_{10.7}=200)$. The H density specified by MSIS (figure 232 2a, 2c) has an inverse relation with solar activity from the mesopause region to the upper 233 thermosphere, whereas the solar activity dependence of H density simulated by WACCM-X 234 (figures 2b, 2c, 2d) changes sign twice: in the mesopause region ~ 85 - 95 km, there is more 235 hydrogen at solar minimum than at solar maximum (consistent with SABER), on the order of \sim 236 5%; in the lower thermosphere ~ 95 - 130 km, there is more hydrogen at solar maximum than at 237 solar minimum (figures 2c and 2d), on the order of ~ 10%, and then above ~ 130 km, there is

238 significantly more hydrogen at solar minimum than solar maximum (consistent with MSIS), and 239 the solar cycle amplitude is a factor of ~ 10 from both WACCM-X and MSIS. The inverse 240 relation between hydrogen density and solar activity in the upper thermosphere is supported by 241 the H density derived from the Lyman alpha radiance measurements by GUVI [Waldrop and 242 Paxton, 2013; Qin and Waldrop, 2016; Qin et al., 2017]. We also conducted simulations using 243 the NCAR global mean (GLBM) version of the TIME-GCM (Thermosphere Ionosphere 244 Mesosphere Electrodynamics General Circulation Model) [Roble et al., 1987; Roble and Ridley, 245 1994]. The results are shown in figure 2b as the dashed line. It is evident that the solar cycle 246 variability of H density simulated by GLBM is qualitatively consistent with the results from 247 WACCM-X: in the lower thermosphere $\sim 95 - 130$ km, H density is larger at solar maximum 248 than at solar minimum (figures 2b and 2d); above ~ 130 km, H density at solar minimum is 249 larger than the H density at solar maximum. By 300 km, it is 10 times larger (figure 2b). 250 Although there is no observational evidence yet that the solar cycle variability of H density in the 251 95–130 km altitude range is different from the solar cycle variability in the upper thermosphere, 252 the qualitative agreement between GLBM and WACCM-X is significant and is worth exploring

253 further in the future.

The TIMED satellite executes a 180-degree rotation about its yaw axis every 60 days to keep the Sun from illuminating the thermal radiators of the instruments onboard the satellite; observational local times shift through a yaw period due to the earth's orbital precession but almost all local times (day and night) are sampled within each yaw period. We calculate yawcycle averaged atomic hydrogen vmr in order to examine the seasonal variability of atomic hydrogen. Figure 3 shows yaw-cycle averaged H vmr derived from SABER measurements, representing the December (the yaw cycle 2002325 – 2003015) and June solstices (the yaw cycle 261 2003142 – 2003198) under solar maximum conditions, and the December (the yaw cycle 262 2007323 – 2008013) and June solstices (the yaw cycle 2008140 – 2008195) under solar 263 minimum conditions. It is evident that, in both the December and June solstices, and under both 264 solar minimum and maximum conditions, hydrogen vmr in the mesopause region (~ 85 - 95 km) 265 is larger in the summer hemisphere than in the winter hemisphere.

Figure 4 shows 2-month averaged zonal-mean hydrogen vmr simulated by WACCM-X, representing the December and June solstices under solar maximum ($F_{10.7}$ =200) and minimum ($F_{10.7}$ =70) conditions. Above ~ 85 km, the seasonal distribution of the simulated hydrogen is consistent with the observed seasonal variability: H vmr is larger in the summer hemisphere than it is in the winter hemisphere. The magnitudes of the observed and simulated H vmr are also in good agreement.

MSIS gives H vmr in the upper thermosphere (~ 300 km) that is larger in winter than in summer (figure 5a). This is consistent with our knowledge of the seasonal distribution of lighter species; for example, the often-observed winter helium bulge phenomenon [e.g., Reber et al., 1968; Keating and Prior, 1968; Kockarts, 1972]. So, the question is: at which altitude does H change its seasonal variation, from being larger in summer than in winter in the mesopause region, to being larger in winter than in summer in the upper thermosphere?

Figure 5 shows the zonal-mean hydrogen vertical profiles at 50°S and 50°N, representing the December and June solstices, under solar maximum ($F_{10.7} = 200$) and geomagnetically quiet conditions, that are specified by MSIS and simulated by WACCM-X. The corresponding SABER zonal-mean hydrogen vmr vertical profiles are also shown. For both the December and June solstice conditions, the seasonal distribution of MSIS H indicates concentrations that are larger in winter than in summer, from the mesopause to the upper thermosphere. Therefore, in 284 the mesopause region, the summer-winter distribution of H in MSIS contradicts the results from 285 SABER observations (figures 5a, 5c). On the other hand, in the mesopause region, the WACCM-286 X-simulated H vmr shows a seasonal distribution that is consistent with the results from SABER 287 observations (figures 5b, 5d): H vmr is larger in summer than in winter, although the WACCM-288 X-simulated H vmr is smaller than the H vmr estimated by SABER in the winter hemisphere. 289 The WACCM-X-simulated seasonal distribution of H vmr switches sign from a summer 290 maximum to a winter maximum at ~ 130 km. Above ~ 130 km, the seasonal dependence of H 291 vmr simulated by WACCM-X and calculated by MSIS are in good agreement. H vmr is larger in 292 the winter hemisphere than it is in the summer hemisphere. In the upper thermosphere, the 293 seasonal amplitude of both H vmr and H number density (not shown) is on the order of a factor 294 of ~ 2.

Figure 6 shows the diurnal variation of hydrogen density at 45° S and 0° longitude, on December 1st, under solar minimum and geomagnetically quiet conditions, simulated by WACCM-X (figure 6a), and calculated by MSIS (figure 6b). The diurnal variations in WACCM-X and MSIS are in general agreement: H density is larger at night than it is during daytime; H density maximizes at ~ 3am, and minimizes in the afternoon, ~ 3pm for MSIS but later for WACCM-X, ~ 5pm. In the upper thermosphere, the diurnal amplitude is on the order of a factor of ~ 2.

302

303 **4. Discussion**

304 In the mesosphere, hydrogen is primarily produced as a result of the photolysis of water 305 vapor (H₂O) by Lyman- α . Water enters the middle atmosphere through transport from the 306 troposphere and oxidization of CH₄ in the stratosphere [Brasseur and Solomon, 2005]. The

maximum mixing ratio of H₂O in the middle atmosphere occurs in the lower mesosphere. In the 307 308 mesopause region, there is more H₂O in summer than in winter due to the upwelling of the 309 mesospheric meridional circulation [e.g., Rong et al., 2010]; this combined with the longer 310 periods of daylight leads to more production of atomic hydrogen. Another example of the close 311 relation between atomic hydrogen and H₂O concentration is the depletion of H in the summer 312 polar region. Siskind et al. [2008] analyzed H retrieved from SABER observations and found 313 that there is a surprising decrease of H in the polar region in the summer hemisphere, and model 314 simulations showed that it is caused by the sequestering of H₂O by the formation of polar 315 mesospheric clouds.

316 In the thermosphere, the charge exchange reactions that affect atomic hydrogen have a 317 relatively small contribution to the total hydrogen budget compared to dynamics. Vertical winds 318 are critically important for thermospheric major species, since their strongest gradients are in the 319 vertical. However, H has a scale height of 200 km - 800 km in the isothermal upper 320 thermosphere, and thus is less directly influenced by vertical winds than the major species since 321 the H mixing ratio is fairly uniform with altitude. Therefore, it might be reasonable to assume 322 that H would undergo relatively few changes in the upper thermosphere. However, we have seen 323 from figures 1-6 that in the upper thermosphere, atomic hydrogen density varies on time scales 324 of solar cycle, seasonal, and diurnal by factors of ~ 10, ~ 2, and ~ 2, respectively. Therefore, the 325 question is what processes drive such large variability? What determines the transition of H 326 abundance from the seasonal and solar cycle structure in the mesopause region that is more 327 characteristic of the middle atmosphere to the opposite seasonal and solar cycle variability in the 328 thermosphere?

Atomic hydrogen concentration is determined by the hydrogen continuity equation, with terms including horizontal and vertical advections, photochemical production and loss, eddy diffusion, and molecular diffusion. Since H is the lightest species, its molecular weight is significantly different from the mean molecular mass. Therefore, the molecular diffusion process is worth mentioning here. According to Banks and Kockarts [1973], the diffusing of a minor species, such as H, through a background atmosphere composed of the dominant species (N_2 , O_2 , O) can be expressed as:

336
$$X_D = \frac{1}{\rho_0} \frac{\partial}{\partial z} \left(\rho_0 D_\mu \frac{\partial \mu}{\partial z} \right) - \frac{1}{\rho_0} \frac{\partial}{\partial z} \left(\rho_0 \mu w_D \right)$$
(1)

337 and

338
$$w_D = \frac{D_{\mu}}{h} \left(1 - \frac{h}{h_{\mu}} \right)$$
(2)

339 Where μ is the hydrogen mixing ratio. z is the vertical coordinate, ρ_0 is the atmosphere mass density. D_{μ} is the molecular diffusion coefficient, which is dependent on the mean molecular 340 341 mass of the major species, the molecular mass of the minor species, total number density, and 342 temperature [Banks and Kockarts, 1973]. It is important to note that, in an atmospheric 343 numerical model, the continuity, momentum, and energy equations are often expressed using the 344 mixing ratio of a species instead of number density since the simple compression of air modifies 345 the number density but not the mixing ratio. Consequently, using the mixing ratio simplifies the equations so that the equations can more easily be solved numerically. $h = \frac{kT}{Mg}$ is the scale 346 height of the background atmosphere, and $h_{\mu} = \frac{kT}{M_{\mu}g}$ is the scale height of atomic hydrogen. k is 347 the Boltzmann's constant, g is the acceleration of gravity, and M and M_{μ} are the mean molecular 348 349 mass of the background atmosphere and the molecular mass of hydrogen, respectively. It is 350 evident from equations (1) and (2) that molecular diffusion includes a diffusive term that depends on the mixing ratio gradient, and a second term that measures the diffusive separation between hydrogen and the background gas. w_D is essentially the diffusive separation velocity. It is determined by the relative mass of a species and the background atmosphere, so that molecules that are heavier than the background atmosphere drift downward while those that are lighter drift upward. Since H is the lightest species, its molecular weight is significantly different from the mean molecular mass; its diffusive separation velocity w_D is the largest among all species.

357 It is evident that when a minor species diffuses through a background atmosphere, both the 358 eddy diffusive mixing term and the diffusive separation term (equation (1)) depend on the 359 densities of the major species. Atomic hydrogen density itself also depends on the densities of 360 the major species since it is the multiplication of its volume mixing ratio and the total number 361 density of the major species. Therefore, various complex dynamical processes, including both 362 the minor species diffusion process, which is specific to the minor species, as well as major 363 species dynamics, should play role in determining atomic hydrogen abundance and its 364 variability. We hypothesize that the diffusive separation velocity term and how it reacts to major 365 species dynamics might be the mechanism that drives the large and unique variability of 366 hydrogen in the thermosphere. Our future work is to conduct diagnostic analysis to understand 367 the physical processes that drives these large, unique variabilities of hydrogen on various time 368 scales.

369

5. Summary

371 It is important to advance our understanding of hydrogen variability in the upper atmosphere 372 in order to advance our understanding of the Earth's climate, the magnetosphere and 373 plasmasphere, and the Earth's water budget. Recent comparisons of H specified by MSIS and the H density retrieved from GUVI indicate that during daytime conditions, MSIS appears to
overestimate H density in the upper thermosphere by ~ 50% for both solar minimum and solar
maximum conditions [Waldrop and Paxton, 2013].

377 The availability of the atomic hydrogen dataset retrieved from SABER from 2002 to 2017, 378 and the whole atmosphere model WACCM-X [Liu et al., 2017] provide us the opportunity to 379 investigate hydrogen variability from the mesopause region to the upper thermosphere, to assess 380 the hydrogen specification in MSIS, and provide knowledge and guidance to improve the 381 specification of the hydrogen vertical profile and its variability in MSIS. We conducted 382 WACCM-X simulations to examine atomic hydrogen and its variability from the mesopause to 383 the upper thermosphere, on solar cycle, seasonal, and diurnal time scales. We compared model 384 simulation results to the H abundance retrieved from SABER observations in the mesopause 385 region, and to the H specified by MSIS from the mesopause region to the upper thermosphere. 386 We found that:

(1) In the mesopause region (~ 85 – 95 km), SABER observations and WACCM-X
simulations show that there is slightly more hydrogen at solar minimum than at solar maximum.
On a global average basis, the solar cycle amplitudes of H density are on the order of ~ 10% and
~ 5%, from SABER observations and WACCM-X simulations, respectively.

391 (2) WACCM-X simulations show that H switches the sign of its solar cycle dependence 392 twice: in the altitude range $\sim 95 - 130$ km, there is more hydrogen at solar maximum than at 393 solar minimum, inverse to the regions above and below. This result is supported by simulation 394 results from the global mean version of the NCAR/TIME-GCM. On a global average basis, the 395 solar cycle amplitude of H density in this region simulated by WACCM-X is on the order of \sim 396 10%. This switch in the sign of solar cycle dependence is not seen in MSIS, where there is more 397 hydrogen at solar minimum than at solar maximum, from the mesopause through the upper 398 thermosphere. Although there is no observational evidence yet that the solar cycle variability of 399 H in the lower thermosphere (95–130 km) is different from the solar cycle variability in the 400 upper thermosphere, the qualitative agreement between GLBM and WACCM-X is significant 401 and is worth further exploration.

402 (3) In the upper thermosphere, both MSIS and WACCM-X indicate that there is about an
403 order of magnitude higher hydrogen density at solar minimum than at solar maximum. The solar
404 cycle amplitude of H density simulated by WACCM-X is in good agreement with that calculated
405 by MSIS. It is on the order of ~ 10 from both MSIS and WACCM-X.

406 (4) In the mesopause region (~ 85 - 95 km), the seasonal variation of atomic hydrogen 407 simulated by WACCM-X is in good agreement with what is derived from SABER observations. 408 Atomic hydrogen vmr is larger in the summer hemisphere than it is in the winter hemisphere. 409 However, atomic hydrogen vmr specified by MSIS is larger in the winter hemisphere than in the 410 summer hemisphere, which contradicts the simulations by WACCM-X and the observations by 411 SABER. MSIS developers are aware of the issues regarding H (and other species), due the 412 limitations of previous data sets. These will be addressed in future versions of the MSIS model 413 [Douglas P. Drob, personal communication, 2017].

414 (5) The seasonal dependence of H mixing ratio simulated by WACCM-X changes sign at \sim 415 130 km. Above \sim 130 km, the seasonal dependence of H vmr simulated by WACCM-X and 416 calculated by MSIS are in good agreement. H vmr is larger in the winter hemisphere than it is in 417 the summer hemisphere. The seasonal amplitude of both H vmr and H density is on the order of 418 a factor of \sim 2. 419 (6) The diurnal variation of atomic hydrogen density simulated by WACCM-X is consistent 420 with what is calculated by MSIS. Hydrogen density is larger during nighttime than it is during 421 daytime; hydrogen density maximizes at ~ 3 am in both WACCM-X and MSIS, and it minimizes 422 at ~ 3 pm for MSIS but later for WACCM-X, ~ 5pm. In the upper thermosphere, the diurnal 423 amplitude of H density is on the order of ~ 2.

424 In addition to the large variabilities on various time scales, the behavior of atomic hydrogen is unique compared to the major species. For example, the current WACCM-X simulations 425 426 indicate that no major species in the thermosphere switches solar cycle dependence as hydrogen 427 does. On the other hand, both the hydrogen diffusion processes and atomic hydrogen density 428 itself depend on the densities of the major species. Therefore, various complex dynamical 429 processes, including both the minor species diffusion process, as well as major species dynamics, 430 likely play a role in determining atomic hydrogen abundance and its variability. Future work will 431 investigate how dynamical forcing acts differently for the major species and atomic hydrogen to 432 drive this behavior, and thus to deepen our understanding of the thermosphere dynamics.

433

434 Acknowledgements. This research was supported by NASA grants NNH15ZDA001N-HSR, 435 NNX13AE20G, NNX14AE06G, NNX15AB83G, NNX15AJ24G, NNX14AD83G, 436 NNX15AJ24G, and NNX14AC13G, to the National Center for Atmospheric Research. NCAR is 437 sponsored by the National Science Foundation. We would like to thank the SABER team for the 438 atomic hydrogen dataset. SABER is supported by NASA grant NNX12AG45G. SABER atomic 439 hydrogen data are available from the SABER data archive as routine products at saber.gats-440 inc.com. WACCM-X is an open-source community model, and all model simulation results used 441 in this paper are archived on the NCAR High Performance Storage System, and are available 442 upon request. 443

444 **References**

- 445 Anderson, D. E. Jr., L. J. Paxton, R. P. McCoy, R. R. Meier, and S. Chakrabarti (1987), Atomic
- 446 hydrogen and solar Lyman alpha flux deduced from STP 78-1 UV observations, J. Geophys.
- 447 Res., 92, 8759–8766.
- 448 Banks, P. M., and G. Kockarts (1973), Aeronomy: Part B, Academic, San Diego, Calif.
- Bishop, J. (2001), Thermospheric atomic hydrogen densities and fluxes from dayside Lyman
 alpha measurements, J. Atmos. Sol. Terr. Phys., 63, 331–340.
- Bishop, J., J. Harlander, S. Nossal, and F. L. Roesler (2001), Analysis of Balmer alpha intensity
 measurements near solar minimum, J. Atmos. Sol. Terr. Phys., 63, 341–353.
- 453 Bishop, J., E. J. Mierkiewicz, F. L. Roesler, J. F. Gómez, and C. Morales (2004), Data-model 454 comparison search analysis of coincident PBO Balmer alpha EURD Lyman beta geocoronal 455 measurements from March 2000, J. Geophys. Res., 109, A05307, 456 doi:10.1029/2003JA010165.
- 457 Brasseur, G., and S. Solomon (2005), Aeronomy of the Middle Atmosphere, 3rd ed., Springer,
 458 Dordrecht, Netherlands.
- Brinton, H. C., H. G. Mayr, and W. E. Potter (1975), Winter bulge and diurnal variations in
 hydrogen inferred from AE-C composition measurements, Geophys. Res. Lett., 2, 389–392.
- 461 Chamberlain, J. W., and D. M. Hunten (1987), Theory of Planetary Atmospheres: An
 462 Introduction to their Physics and Chemistry, 2nd ed., Academic, San Diego, Calif.
- 463 Emmons, L. K., et al. (2010), Description and evaluation of the Model for Ozone and Related
- 464 chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, doi:10.5194/gmd465 3 43 2010

- Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of
 secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301,
 doi:10.1029/2006JD007485.
- 469 Hedin, A. E. (1987), MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662.
- 470 Kaufmann, M., M. Ern, C. Lehmann, and M. Riese (2013), The response of atomic hydrogen to
- 471 solar radiation changes, in Climate and Weather of the Sun-Earth System, pp. 171–188,
 472 Springer, Dordrecht, doi:10.1007/978-94-007-4348-9.
- 473 Keating, G., and E. Prior (1968), The winter helium bulge, Space Res., 8, 982.
- 474 Kinnison, D. E., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the
- 475 MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302,
 476 doi:10.1029/2006JD007879.
- Kockarts, G. (1972), Distribution of hydrogen and helium in the upper atmosphere, J. Atmos.
 Terr. Phys., 34, 1729-1743.
- 479 Lean, J., G. Rottman, J. Harder, and G. Kopp (2005), Sorce contributions to new understanding
 480 of global change and solar variability, Solar Physics, 230, 27–53, doi: 10.1007/s11207-005481 1527-2.
- Liu, H. L., et al. (2010), Thermosphere extension of the Whole Atmosphere Community
 Climate Model, J. Geophys. Res., 115, A12302, doi:10.1029/2010JA015586.
- 484 Liu, H. -L., C. G. Bardeen, B. T. Foster, P. Lauritzen, J. Liu, G. Lu, D. R. Marsh, A. Maute, J.
- 485 M. McInerney, N. M. Pedatella, L. Qian, A. D. Richmond, R. G. Roble, S. C. Solomon, F.
- 486 M. Vitt, W. Wang (2018), Development and Validation of the Whole Atmosphere
- 487 Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X),
- 488 Journal of Advances in Modeling Earth Systems, doi:10.1002/2017MS001232, in press.

- 489 Liu, J., H.-L. Liu, W. Wang, A. G. Burns, Q. Wu, Q. Gan, S. C. Solomon, D. R. Marsh, L. Qian,
- 490 G. Lu, N. M. Pedatella, J. M. McInerney, J. M. R. III, and W. S. Schreiner (2018), First
- 491 results from ionospheric extension of waccm-x during the deep solar mini- mum year 2008,
- 492 J. Geophys. Res., doi: 10.1002/2017JA025010, submitted.
- 493 Marsh, D. R., M. E. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani (2013),
- 494 Climate change from 1850 to 2005 simulated in CESM1 (WACCM), J. Clim., 26, 7372–
 495 7391, doi:10.1175/JCLI-D-12-0558.1.
- 496 Mast, J., M. G. Mlynczak, L. A. Hunt, B. T. Marshall, C. J. Mertens, J. M. Russell III, R. E.
- 497 Thompson, and L. L. Gordley (2013), Absolute concentrations of highly vibrationally excited
- 498 OH ($\tilde{0} = 9 + 8$) in the mesopause region derived from the TIMED/SABER instrument, 499 Geophys. Res. Lett., 40, 646–650, doi:10.1002/grl.50167.
- Mierkiewicz, E. J., F. L. Roesler, S. M. Nossal, J. Bishop, R. J. Reynolds, and L. M. Haffner
 (2006), Geocoronal hydrogen studies using Fabry-Perot Interferometers. Part 1:
 Instrumentation, observations, and analysis, JASTP, 68, 1520–1552, doi:10.1016/j.jastp.
 2005.08.024.
- Mierkiewicz, E. J., F. L. Roesler, and S. M. Nossal (2012), Observed seasonal variations in
 exospheric effective temperatures, J. Geophys. Res., 117, A06313,
 doi:10.1029/2011JA017123.
- Mlynczak, M. G., et al. (2013), Atomic oxygen in the mesosphere and lower thermosphere
 derived from SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys.
 Res. Atmos., 118, 5724–5735, doi:10.1002/jgrd.50401.
- 510 Mlynczak, M. G., L. A. Hunt, B. T. Marshall, C. J. Mertens, D. R. Marsh, A. K. Smith, J. M.
- 511 Russell, D. E. Siskind, and L. L. Gordley (2014), Atomic hydrogen in the mesopause region

- derived from SABER: Algorithmtheoretical basis, measurement uncertainty, and results, J.
 Geophys. Res. Atmos., 119, 3516–3526, doi:10.1002/2013JD021263.
- 514 Nossal, S. M., E. J. Mierkiewicz, and F. L. Roesler (2012), Observed and modeled solar cycle 515 variation in geocoronal hydrogen using NRLMSISE-00 thermosphere conditions and the 516 **Bishop** analytic exosphere model. J. Geophys. 117, Res.. A03311. 517 doi:10.1029/2011JA017074.
- 518 Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model
- 519 of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12),
- 520 1468, doi:10.1029/2002JA009430.
- 521 Qin and Waldrop (2016), Non-thermal hydrogen atoms in the terrestrial upper thermosphere,
 522 Nat. Commun., 7, 13655.
- Qin, J., L. Waldrop, and J. J. Makela (2017), Redistribution of H atoms in the upper atmosphere
 during geomagnetic storms, J. Geophys. Res. Space Physics, 122, 10,686–10,693,
 doi:10.1002/2017JA024489.
- Smith, A. K., D. R. Marsh, M. G. Mlynczak, and J. C. Mast (2010), Temporal variations of
 atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 115, D18309,
 doi:10.1029/2009JD013434.
- 529 Smith, A. K., R. R. Garcia, D. R. Marsh, and J. H. Richter (2011), WACCM simulations of the
- 530 mean circulation and trace species transport in the winter mesosphere, J. Geophys. Res., 116,
- 531 D20115, doi:10.1029/2011JD016083.
- 532 Thomas, R. J. (1990), Atomic hydrogen and atomic oxygen density in the mesosphere region:
- 533 Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared
- 534 emissions, J. Geophys. Res., 95, 16,457–16,476.

- Reber, C., J. Cooley, and D. Harpold (1968), Upper atmosphere hydrogen and helium
 measurements from the Explorer 32 satellite, Space Res, 8, 993.
- Roble, R. G., and E. C. Ridley, and R. E. Dickinson (1987), On the global mean structure of the
 thermosphere, *J. Geophys. Res.*, *92*, 8745-8758.
- 539 Roble, R. G., and E. C. Ridley (1994), A thermosphere-ionosphere-mesosphere-electrodynamics
- 540 general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30-500
- 541 km), Geophys. Res. Lett., 21, 417-420.
- 542 Rong, P. P., J. M. Russell III, L. L. Gordley, M. E. Hervig, L. Deaver, P. F. Bernath, and K. A.
- 543 Walker (2010), Validation of v1.022 mesospheric water vapor observed by the Solar
- 544 Occultation for Ice Experiment instrument on the Aeronomy of Ice in the Mesosphere 545 satellite, J. Geophys. Res., 115, D24314, doi:10.1029/2010JD014269.
- 546 Sharp, W. E., and D. Kita (1987), In situ measurement of atomic hydrogen in the upper 547 mesosphere, J. Geophys. Res., 92, 4319–4324.
- 548 Siskind, D. E., D. R. Marsh, M. G. Mlynczak, F. J. Martin-Torres, and J. M. Russell III (2008),
- 549 Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar 550 mesospheric clouds? Geophys. Res. Lett., 35, L13809, doi:10.1029/2008GL033742.
- Solomon, S. C., and L. Qian (2005), Solar extreme-ultraviolet irradiance for general circulation
 models, J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160.
- 553 Waldrop, L. S., E. Kudeki, S. A. González, M. P. Sulzer, R. Garcia, M. Butala, and F.
- 554 Kamalabadi (2006), Derivation of neutral oxygen density under charge exchange in the
- midlatitude topside ionosphere, J. Geophys. Res., 111, A11308, doi:10.1029/2005JA011496.

556	Waldrop, L., and L. J. Paxton (2013), Lyman alpha airglow emission: Implications for atomic
557	hydrogen geocorona variability with solar cycle, J. Geophys. Res. Space Physics, 118, 5874-
558	5890, doi:10.1002/jgra.50496.

- 559 Woods, T., and G. Rottman (2002), Solar ultraviolet variability over time periods of aeronomic
- 560 interest, in Atmospheres in the Solar System: Comparative Aeronomy, Geophys. Monogr.
- 561 Ser., vol. 130, edited by M. Mendillo, A. Nagy, and J. H. Waite Jr., pp. 221–234, AGU,
- 562 Washington, D. C.

Figure 1: Solar-cycle variation of global annual average hydrogen in the mesopause region.
(a) SABER H vmr for 2003 and 2008; (b) H vmr simulated by WACCM-X under solar
maximum (F10.7=200) and solar minimum (F10.7=70) conditions; (c) same as (a), but for H
number density; (d) same as (b), but for H number density.

570

571 Figure 2: Solar cycle variations ($F_{10.7}$ =70 versus $F_{10.7}$ =200) of hydrogen density. (a) 572 Calculated by MSIS; (b) simulated by WACCM-X and GLBM; (c) difference between solar 573 minimum and maximum conditions (max-min)/min; (d) simulated by WACCM-X in the altitude 574 region ~ 100 – 130 km;

Figure 3: Yaw-cycle averaged zonal-mean hydrogen vmr (ppmv) derived from SABER measurements. (a) The yaw cycle that includes the December solstice in 2003; (b) the yaw cycle that includes the June solstice in 2003; (c) the yaw cycle that includes the December solstice in 2007; (d) the yaw cycle that includes the June solstice in 2008.

581

Figure 4: 2-month averaged zonal-mean hydrogen vmr (ppmv) simulated by WACCM-X under solar minimum and maximum, and geomagnetically quiet conditions. (a) December and January averages representing the December solstice at solar maximum; (b) June and July averages representing the June solstice at solar maximum; (c) December and January averages representing the December solstice at solar minimum; (b) June and July averages representing the June solstice at solar minimum; (b) June and July averages representing the June solstice at solar minimum; (b) June and July averages representing the June solstice at solar minimum.

Figure 5: Zonal-mean vertical profiles of hydrogen vmr at 50°S and 50°N, under solar maximum ($F_{10.7}$ =200) and geomagnetically quiet conditions. (a): December and January averages, specified by the MSIS; (b): December and January averages, simulated by the WACCM-X; (c): June and July averages, specified by the MSIS; (b): June and July averages, simulated by the WACCM-X.

597 Figure 6: Diurnal variation of hydrogen density on December 1st, under solar minimum and 598 geomagnetically quiet conditions, at (lat=45°S, lon=0°). (a) Simulated by WACCM-X; (b) 599 calculated by MSIS.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

