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Abstract Nitric oxide (NO) observations from the Solar Occultation for Ice Experiment and Student
Nitric Oxide Explorer satellite instruments are investigated to determine the relative importance of drivers
of short-term NO variability. We study the variations of deseasonalized NO anomalies by removing a
climatology, which explains between approximately 70% and 90% of the total NO budget, and relate them
to variability in geomagnetic activity and solar radiation. Throughout the lower thermosphere geomagnetic
activity is the dominant process at high latitudes, while in the equatorial region solar radiation is the primary
source of short-term NO changes. Consistent results are obtained on estimated geomagnetic and radiation
contributions of NO variations in the two data sets, which are nearly a decade apart in time. The analysis
presented here can be applied to model simulations of NO to investigate the accuracy of the parametrized
physical drivers.

1. Introduction

NO has since long been recognized to be one of the important species of the lower thermosphere to efficiently
radiate energy to space (Kockarts, 1980) and to change the composition of the ionosphere due to its low ion-
ization threshold (Barth, 1995). The detailed NO chemistry has been described in several publications (Bailey
et al., 2002; Barth, 1992; Roble, 1995) and is driven by solar irradiance and geomagnetic activity. Production of
NO occurs primarily through the reaction of molecular oxygen with ground state and excited nitrogen atoms,
which are created by ionization and dissociation of N2 via solar soft X-rays and subsequent photoelectrons,
extreme ultraviolet (EUV), and via precipitating auroral electrons (Barth et al., 1999; Gérard et al., 1995; Siskind
et al., 1990; Siskind, Barth, Evans et al., 1989; Siskind, Barth, & Roble, 1989). NO loss occurs via interaction with
ground state nitrogen or ionized molecular oxygen and via photodissociation by solar far ultraviolet (FUV)
radiation below 190.8 nm (Barth, 1995), resulting in a long lifetime of NO in the dark, polar winter.

In this work we perform a series of multiple linear regressions (MLR) to investigate the drivers of NO variability
in two satellite data sets taken approximately a decade apart. The MLR approach has been used before by
Mlynczak et al. (2015) to study the long-term effects and relative importance of geomagnetic activity and solar
radiation to global radiative NO cooling. Mlynczak et al. (2015) found that on average a 70% contribution of
solar UV radiation and a 30% contribution due to geomagnetic processes determines the NO radiative cooling
in the global lower thermosphere (100–250 km), with a strong solar cycle variability. We will demonstrate
different results when assessing the short-term NO number density variability in specific latitudinal regions.
A similar MLR approach to create an NO transfer function for comparing data sets of several satellites was
used by Bender et al. (2015). They performed this regression with latitude as an additional component.
Bender et al. (2015) note that differences in instrument sampling patterns remain and can introduce a bias
in the analysis. Different satellites have different sampling patterns, hence different biases. In section 2 we
describe our regression method that takes these biases into account as much as possible.

2. Data and Methodology

Observations from the Solar Occultation for Ice Experiment (SOFIE) instrument on board the Aeronomy of
Ice in the Mesosphere (AIM) satellite (Gordley et al., 2009) are available from May 2007 (sofie.gats-inc.com)
and have been previously described by Gómez-Ramírez et al. (2013) and Hendrickx et al. (2015). In this work
the NO density version 1.3 is used from the start of observations until January 2015: a period that covers the
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Figure 1. Multiyear mean climatology of (a–c) SNOE and (d, f ) SOFIE NO observations in the lower thermosphere in function of day of year. SNOE data are
averaged by latitude between 55∘ and 82.5∘ north and south and between ±15∘ around the equator. (e) The average percentage contribution of the
climatological value to the total NO budget.

deep solar minimum between solar cycles (SC) 23 and 24, and the ascending and maximum phase of SC 24.
The observations are focused on high latitudes ranging between 55∘ and 82.5∘ latitude with local sunset/
sunrise measurements in the Northern/Southern Hemisphere (NH/SH), respectively, and are sampled on one
latitude at a given time of year. A zonally and meridionally averaged climatology of NO in the lower thermo-
sphere is shown in Figures 1d and 1f for each hemisphere. The thermospheric NO maximizes between 95 and
105 km altitude and peaks in density during winter, representing a lower limit of NO in the dark polar regions
due to the solar occultation technique.

We also use Student Nitric Oxide Explorer (SNOE) observations (Solomon et al., 1996) to complement and
confirm our results. The SNOE satellite determined NO densities with an ultraviolet spectrometer and pro-
vided data from 11 March 1998 to 30 September 2000 (ascending phase of SC 23) so observations are almost
a decade apart from the SOFIE era. Obtaining consistent results between both data sets is therefore a
strong indication of real physical processes. SNOE observations have been intensively studied (e.g., Barth &
Bailey, 2004; Marsh et al., 2004; Solomon et al., 1999), and in this work SNOE level 4 data (lasp.colorado.edu/
home/snoe/) are averaged by latitude from 55∘ poleward for high latitudes and between ±15∘ around the
equator. SNOE climatologies are shown in Figures 1a–1c and show a different seasonal cycle from SOFIE
observations.

NO variation in the lower thermosphere is represented by short-term geomagnetic activity, solar radiation,
and seasonality. We choose the auroral electrojet (AE) index as proxy for geomagnetic activity as it focuses on
the polar regions and correlates better with NO concentrations in SOFIE observations than the planetary Ap
index (Hendrickx et al., 2015). The response in the NO peak density altitude layer, around 105 km, to geomag-
netic activity is typically lagged by 1 day (Solomon et al., 1999; Hendrickx et al., 2015) but is dependent on
altitude (Fytterer et al., 2016). Since we are interested in the NO response throughout the lower thermosphere,
we use an AE value averaged over the past 2 days. As proxy for solar irradiance the Lyman-𝛼 (Ly𝛼) index, a spec-
tral line of solar hydrogen, is used. Lyman-𝛼 radiation does not play a direct role in NO production processes
but is a proxy for soft X-rays, EUV, and FUV (Lean, 1987), which, as explained in the introduction, are the wave-
lengths of importance to the NO reactions. Alternative choices as proxies for solar irradiance include direct
observations of solar soft X-rays or the F10.7 solar radio flux, which is a common used proxy for soft X-rays.
However, all these indices are highly correlated and the results were not significantly effected whether F10.7

or solar soft X-rays were used instead. Seasonality could be represented by, for example, sinusoidal functions
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(Bender et al., 2015) or solar declination (Marsh et al., 2004). However, the observed seasonality differs
between the NO data sets and is limited to the subset of local times and latitudes at which each satellite
samples, hence a representation for seasons would be different for different satellites. In order to be able to
compare different satellites, we instead remove the climatology of each data set, in which seasons and biases
are imbedded, and regress on variations. The climatology is calculated as a moving 90 day window of the
multiyear mean of each date.

The executed regression follows

ΔNO(z,AE, Ly𝛼, t) = 𝛾AE(z)ΔAE(t) + 𝛾Ly𝛼(z)ΔLy𝛼 (t) + 𝜖(z, t), (1)

where 𝛾AE and 𝛾Ly𝛼 are the estimated coefficients of the corresponding AE and Ly𝛼 regressors and 𝜖 the residual
error term. Here ΔNO (ΔAE, ΔLy𝛼) denotes the anomaly of NO (AE, Ly𝛼) from its climatological value. All vari-
ables in the MLR are scaled to have zero mean and unit variance. The regression is performed for different
altitudes z with a vertical sampling of 2 km on SOFIE data and 3.3 km for SNOE data. Autocorrelation in the
residual 𝜖 terms was tested with the Durbin-Watson test (Durbin & Watson, 1950) and found to be present. If
not corrected for, autocorrelation can result into an overestimated R2 value of the regression model and biased
estimated regressor coefficients. The Cochrane-Orcutt procedure (Cochrane & Orcutt, 1949) was applied on
the NO data ensuring unbiased results and minimized residual autocorrelation.

The total coefficient of determination R2
tot of the MLR model can be defined as

R2
tot = R2

model + R2
auto

= 1 − R2
res,

(2)

with R2
model, R2

auto, and R2
res being the variation explained by the model, autocorrelation, and residuals,

respectively. Each R2 value is given by the sums of squares ratio
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with yi and ŷi the observational and modeled values and ȳ the observational mean. The R2
model can be further

subdivided into R2
model≈R2

AE + R2
Ly𝛼 to reveal the contribution of geomagnetic activity and solar radiation to

the NO variability and where intercorrelation effects between ΔAE and ΔLy𝛼 are small (r<0.10 during SNOE
observations and r<0.28 during SOFIE observations).

The interpretation of the analysis is such that NO densities are largely predictable by the climatological value,
which exhibits a seasonal component, and that physical drivers cause a deflection (positive or negative) of
this climatology. The percentage contribution of the climatology to the total NO budget is given in Figure 1e
and shows that it ranges from approximately 70% at the polar latitudes where auroral electrons precipitate, to
90% at the equator. The magnitude of 𝛾AE and 𝛾Ly𝛼 indicate which driver is dominant and the corresponding
R2

AE and R2
Ly𝛼 give the percentage contribution. The R2

tot of the model gives an indication on how much of the
short-term NO variation can be explained by the two drivers and by autocorrelation, and on how large the
unexplained residual variation is.

3. Results

The AE and Ly𝛼 indices are shown in Figure 2 for both the SNOE and SOFIE observational time periods, spaced
a decade apart in time. To indicate how solar cycles 23 and 24 progressed, the evolution of the indices around
and between the satellite periods is given. The activity in terms of solar radiation is stronger in the ascending
phase of SC 23 with a continuous increase from 1998 to 2001, followed by fairly flat Lyman-𝛼 activity in
the deep solar minimum of 2008–2010 and a slow, gradual increase toward solar maximum in 2013–2014.
With respect to the geomagnetic driver, periods of high and low activity can be found in both solar cycles
and a strong 27 day periodicity is present. Differences in proxy activity between SC 23 and SC 24 are thus
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Figure 2. Time evolution of the (top) Lyman-𝛼 and (bottom) AE indices during SC 23 and 24. The observational period
of SNOE and SOFIE are highlighted between black lines. Green and blue lines represent the absolute index value of
Lyman-𝛼 and AE in units 1011 photons cm−2 s−1 and nT, respectively. Gray lines are the scaled, unitless regressors that
serve as input to the MLR (see section 2 for details).

present and can have an influence on the estimated 𝛾 coefficients. However, by scaling the regressors to unit
variance and zero mean, the MLR-fitted coefficients are directly comparable in terms of strength and the rel-
ative importance of each regressor can be determined. The regressors ΔAE and ΔLy𝛼 are shown in gray lines
in Figure 2 and serve as input to the MLR.

Figure 3 shows the result of the MLR for both SOFIE and SNOE data in four panels; the explained variation for
each regression model is given in Figures 3a and 3b for SOFIE and SNOE, respectively, while the estimated
coefficients 𝛾AE and 𝛾Ly𝛼 are given in Figures 3c and 3d, respectively. To test the influence of latitude, we per-
formed regressions at high latitudes (averaged between 55∘ and 82.5∘) on both data sets and at equatorial
latitudes (±15∘) on SNOE data. The total explained variance for the SNOE high latitudes indicates that up
to 80% of the observed NO anomalies is given by the two regressors, the rest is due to residual variation.
R2

tot decreases with increasing altitude as NO densities decrease and the signal-to-noise ratio of the observa-
tion increases. A similar result is obtained for SOFIE data with the total explained variation dropping below
50% at 126 (132) km for NH (SH) data, which implies that above these altitudes more than 50% is due to
residual variation. This residual variation can be a result of random processes such as instrumental noise and
may also contain processes that are known to affect NO densities, such as Joule heating and compressional
heating (Barth, 1995), which are not represented by the two proxies used. When the R2

tot value becomes this
low, the regression is not sufficient to draw physical meaning from the output; we therefore neglect any
output if R2

tot <0.5.

Below 110 km autocorrelation becomes more important, a feature seen in both data sets. This implies that
NO anomalies at these altitudes are less determined by the AE and Ly𝛼 variations and are increasingly more
dependent on previous day values, which is to be expected as downward transport becomes a major source
of NO at these altitudes.

The estimated coefficient 𝛾AE for geomagnetic activity is given in Figure 3c. At high latitudes both data sets
show that the effect of precipitating particles on NO is largest above 110 km altitude. SOFIE observes an overall
higher impact of EPP in the SH while for SNOE the impact is similar in both hemispheres. At altitudes below
110 km the impact of EPP on NO variations decreases as fewer energetic particles reach these altitudes.
Below 100 km, downward transport also becomes prominent and the NO anomalies are therefore increasingly
governed by previous day NO values. Dependent on altitude, geomagnetic activity contributes between 5%
and 70% to the NO variability at high latitudes, with the maximum contribution between 110 and 120 km.

The estimated coefficient 𝛾Ly𝛼 for solar radiation is shown Figure 3d and can be directly compared to 𝛾AE since
both regressors are scaled. Throughout the lower thermosphere the impact of radiation on NO variations
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Figure 3. Results of the MLR performed on SOFIE (black) and SNOE (gray) data, in the NH (diamonds), SH (stars), and equatorial region (circles) throughout
the lower thermosphere. (a) SOFIE data. Total explained variation as represented by R2

tot (see equation (1), which is the sum of R2
AE (blue), R2

Ly𝛼 (green), and R2
auto

(shaded area). The unexplained residual variation equals 1 − R2
tot. (b) Similar as Figure 3a for SNOE data. (c) Estimates for the coefficients of geomagnetic activity.

(d) Estimates for the coefficients of solar radiation. The estimated coefficients can directly be compared to each other.

is significantly smaller (< 4%) than the geomagnetic impact at high latitudes, similar to Barth et al. (2003).
For SNOE data, the coefficient is slightly negative implying that the net effect of radiation is a destruction of NO
and that the destructive processes connected to solar radiation are stronger than the production processes
at these high latitudes. A similar result was obtained when using the co-observed solar soft X-rays from the
SNOE satellite instead of the Lyman-𝛼 index as regressor. However, we cannot exclude that this small negative
impact is an artifact of the MLR algorithm, for instance, connected to the long-term relation between the
regressors. As will be discussed in the last paragraph of this section, the impact is generally consistent with
zero for any independent year.

To contrast the NO drivers at high latitudes, we also performed regressions at the equatorial regions on SNOE
data. The impact of solar radiation is clearly higher than the geomagnetic activity impact and as can be seen
from the positive 𝛾Ly𝛼 coefficient, solar radiation is a source of NO in the equatorial lower thermosphere.
Similar to Barth et al. (2003), the irradiance impact in equatorial regions maximizes around 113 km, implying
vertical mixing from that altitude toward 106 km, the altitude of maximum NO concentrations as observed by
SNOE. A small impact of geomagnetic activity (<15%) contributes to the NO variations and peaks at higher
altitudes than the impact at high latitudes. This can be due to precipitating electrons from the equatorial ring
currents, Joule, and subsequent compressional heating in the high to middle latitudes or horizontal transport,
or a combination of these processes (Barth, 1995; Barth et al., 2009; Richards, 2004).

Solar activity varies with an approximately 11 year periodicity, but corresponding phases of different cycles
can differ substantially in intensity or be shifted in time. For instance, the solar minimum between SC 23 and
24 in 2008 and 2009 was of particularly long duration and the ascending phase of SC 24 saw a more gradual
increase in Lyman-𝛼 activity compared to the previous cycle (see Figure 2). In order to investigate whether
long-term solar activity impacts the regression coefficients, we perform regressions for each year and show
the results at an altitude of 100 and 120 km in Figure 4. A higher AE coefficient in 1 year would indicate that NO
anomalies were more sensitive to geomagnetic activity, but the retrieved 𝛾AE for each year is rather stable, and
the small variation is within the statistical noise level. Moreover, the estimated geomagnetic impact during
SC 23 shows similar sensitivity and is consistent with the impact during SC 24, again indicating that these coef-
ficients are rather constant throughout the solar cycle. The yearly impact of solar radiation becomes consistent
with zero as variations in Ly𝛼 during 1 year are limited and only short-term variations are considered.
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Figure 4. Results of the MLR performed at 100 km (blue) and 120 km (red) altitude on yearly SNOE (1998–2000) and
SOFIE (2007–2014) data, in the NH (diamonds) and SH (stars) high latitudes. Estimated coefficients with a 2𝜎 error bar
are shown for (top row) geomagnetic activity 𝛾AE and (bottom row) solar radiation 𝛾Ly𝛼 .

4. Discussion and Conclusions

The relative importance of the main drivers of NO variability in the lower thermosphere, geomagnetic activity,
and solar radiation is investigated in this study. New observations from the SOFIE instrument are analyzed
and complemented with data from the SNOE satellite, covering more latitude regions and a different time
span. NO climatologies of both data sets show that long-term averages contribute between 70% and 90%
to the total observed NO number density, depending on altitude and latitude. To determine the short-term
impact of the drivers and compare different satellite data sets, we applied a series of multiple linear regres-
sions on data of which the climatology is removed and that has been scaled to unit variance and mean zero.
By removing the climatology, we remove as much intrinsic differences as possible in each NO data set such
as observation techniques or latitudinal sampling and remain with the short-term variation which we want
to describe in terms of physical processes. This allows us to compare observations from different satellites.
Scaling the regressors allows us to study the relative importance of the drivers percentage.

The two data sets, spaced a decade apart in time, gave consistent results when comparing similar latitude
bands: at high latitudes geomagnetic activity accounts up to 70% of the NO variability, while the contribution
of solar radiation is small to negligible. NO anomalies become increasingly more autocorrelated at decreasing
altitudes below 110 km, which implies a smaller impact from the physical drivers. At equatorial regions it is
solar radiation that dominates variability in NO and its impact can be up to 8 times larger than geomagnetic
effects. The estimated regression coefficients 𝛾AE and 𝛾Ly𝛼 do not describe how much total NO is produced
by AE and Ly𝛼 but rather show how much the variability of AE and Ly𝛼 impacts the NO production, and their
magnitude is a measure of their relative importance. SOFIE observations reveal a larger geomagnetic impact
in the SH than in the NH, while SNOE observations show no difference. Since the local time of observation
of SOFIE coincides with sunrise/sunset in the SH/NH, this could be a possible explanation for the different
geomagnetic impact: the signature of geomagnetic activity remains in NO densities throughout the SH night
(even when removing the SH climatology), while sunlight in the NH could have already partly destroyed
that signature.

Finally, we show that there is no significant year to year variation of the regression coefficients at high
latitudes, implying that they are not sensitive to the phase of the 11 year solar cycle. The fact that the coeffi-
cients remain stable with respect to the solar cycle means that even though geomagnetic activity and solar
radiation change, the impact on NO due to a certain increase/decrease in these quantities remains the same.
It implies that once we know how much NO changes due to a certain AE change in one part of the solar cycle,
we can directly apply this knowledge to calculate the expected change in another part of the solar cycle.
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Further, the consistency of the results indicates that the method is robust in identifying key processes in NO
density variations and that it can be used as a diagnostic tool in model simulations to evaluate the accuracy
of the parametrizations of NO production.
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