
This is a repository copy of Multi-core Cyclic Executives for Safety-Critical Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131500/

Conference or Workshop Item:
Burns, Alan orcid.org/0000-0001-5621-8816, Deutschbein, C, Fleming, Thomas David et 
al. (1 more author) (2017) Multi-core Cyclic Executives for Safety-Critical Systems. In: 
Dependable Software Engineering Theories, Tools and Application, 23-25 Oct 2017. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Multi-core Cyclic Executives

for Safety-Critical Systems

Calvin Deutschbein1, Tom Fleming2, Alan Burns2, and Sanjoy Baruah3(B)

1 The University of North Carolina at Chapel Hill, Chapel Hill, USA
2 The University of York, York, UK

3 Washington University in St. Louis, St. Louis, USA
baruah@wustl.edu

Abstract. In a cyclic executive, a series of pre-determined frames are
executed in sequence; once the series is complete the sequence is repeated.
Within each frame individual units of computation are executed, again in
a pre-specified sequence. The implementation of cyclic executives upon
multi-core platforms is considered. A Linear Programming (LP) based
formulation is presented of the problem of constructing cyclic execu-
tives upon multiprocessors for a particular kind of recurrent real-time
workload – collections of implicit-deadline periodic tasks. Techniques are
described for solving the LP formulation under different kinds of restric-
tions in order to obtain preemptive and non-preemptive cyclic executives.

1 Introduction and Motivation

Real-time scheduling theory has made great advances over the past several
decades. Despite these advances, interactions with industrial collaborators in
highly safety-critical application domains, particularly those that are subject to
stringent certification requirements, reveal that the use of the very simple cyclic
executive approach [1] remains surprisingly wide-spread for scheduling safety-
critical systems. A cyclic executive (CE) is a simple deterministic scheme that
consists, for a single processor, of the repeated execution of a series of frames,
each comprising a sequence of jobs that execute in their defining sequence and
must complete by the end of the frame. Although there are a number of draw-
backs to using cyclic executives (some are discussed in Sect. 2), this approach
offers two significant advantages, predictability and low run-time overhead , that
are responsible for their continued widespread use in scheduling highly safety-
critical systems.

Highly safety-critical real-time systems have traditionally been implemented
upon custom-built single-core processors that are designed to guarantee pre-
dictable timing behavior during run-time. As safety-critical software has become
more computation-intensive, however, it has proved too expensive to custom-
build hardware powerful enough to accommodate the computational require-
ments of such software; hence, there is an increasing trend towards implementing
safety-critical systems upon commercial off-the-shelf (COTS) platforms. Most
COTS processors today tend to be multi-core ones; this motivates our research
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described here into the construction of CEs that are suitable for execution upon
multi-core processors.

This research. We derive several approaches to constructing cyclic executives
for implicit-deadline periodic task systems upon identical multiprocessors. These
approaches share the commonality that they are all based upon formulating the
schedule construction problem as a linear program (LP). Cyclic executives in
which jobs may be preempted can be derived from solutions to such LPs; since
efficient polynomial-time algorithms are known for solving LPs, this approach
enables us to design algorithms for constructing preemptive CEs that have run-
ning time polynomial in the size of the CE.

In order to construct non-preemptive CEs from a solution to the LP, the
LP must be further constrained to require that some variables may only take
on integer values: this is an integer linear program, or ILP. Solving an ILP is
known to be NP-hard [8], and hence unlikely to be solvable exactly in poly-
nomial time. However, the optimization community has recently been devoting
immense effort to devise extremely efficient implementations of ILP solvers, and
highly optimized libraries with such efficient implementations are widely avail-
able today. Since CEs are constructed prior to run-time, we believe that it is
reasonable to attempt to solve ILPs exactly rather than only approximately, and
seek to obtain ILP formulations that we will seek to solve exactly to construct
non-preemptive multiprocessor CEs for implicit-deadline periodic task systems.
However if this is not practical for particular problem instances, we devise an
approximation algorithm with polynomial running time for constructing non-
preemptive CEs, and evaluate the performance of this approximation algorithm
vis-a-vis the exact one both via the theoretical metric of speedup factor, and via
simulation experiments on synthetically generated workloads. We additionally
show that for a particular kind of workload that is quite common in practice –
systems of harmonic tasks – even better results are obtainable.

2 Cyclic Executives

In this section we provide a brief introduction to the cyclic executive approach
to hard-real-time scheduling. This is by no means comprehensive or complete;
for a textbook description, please consult [11, Chap. 5.2–5.4].

In the cyclic executive approach, a schedule called a major schedule is deter-
mined prior to run-time, which describes the sequence of actions (i.e., computa-
tions) to be performed during some fixed period of time called the major cycle.
The actions of a major schedule are executed cyclically, going back to the begin-
ning at the start of each major cycle.1 The major schedule is further divided into

1 Multiple major schedules may be defined for a single system, specifying the desired
system behavior for different modes of system operation; switching between modes
is accomplished by swapping the major schedule used. If a major cycle is of not too
large a duration, then switches between modes may be restricted to only occur at
the end of major cycles.
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one or more frames (also known as minor schedules or minor cycles). Each frame
is allocated a fixed length of time during which the computations assigned to
that frame must be executed. Timing correctness is monitored at frame bound-
aries via hardware interrupts generated by a timer circuit: if the computations
assigned to a frame are discovered to have not completed by the end of the frame
then a frame overrun error is flagged and control transferred to an error-handling
routine.

The chief benefits of the cyclic executive approach to scheduling are its imple-
mentation simplicity and efficiency, and the timing predictability it offers: if we
have a reliable upper bound on the execution duration of each computation
then an application’s schedulability is determined by construction (i.e., if we are
successful in building the CE then we can be assured that all deadlines are met).

The chief challenge lies in constructing the schedules. This problem is ren-
dered particularly challenging by the requirement that for implementation effi-
ciency considerations, timing monitoring is performed only at frame boundaries
— as stated above, a timer is set at the start of a frame to go off at the end of
the frame, at which point in time it is verified that all actions assigned to that
frame have indeed completed execution (if not, corrective action must be taken
via a call to error-handling routines). CE’s are typically used for periodic work-
loads. Hence the schedule-generation approach proposed in [1] requires that at
least one frame lie within the interval formed by the instants that each action —
“job” — become available for execution, and the instant that it has a deadline.
For efficiency considerations, it is usually required that all tasks have a period
that is a multiple of the minor cycle, and a deadline that is no smaller than
the minor cycle duration. Schedule construction is in general highly intractable
for many interesting models of periodic processes [1]; however, heuristics have
been developed that permit system developers to construct such schedules for
reasonably complex systems (as Baker & Shaw have observed [1], “if we do not
insist on optimality, practical cases can be scheduled using heuristics”).

In this paper, we model our periodic workload as a task system of implicit-
deadline periodic tasks. Some of our results additionally require that the tasks
have harmonic periods: for any pair of tasks τi and τj , it is the case that Ti divides
Tj exactly or Tj divides Ti exactly. Although this does constitute a significant
restriction on the periodic task model, many safety-critical systems appear to
respect this restriction.

3 Workload Model

Throughout this paper we assume that we are given a task system τ = {τi =
(Ci, Ti)}

N
i=1 of N implicit-deadline periodic2 tasks that are to be scheduled upon

an m-processor identical multiprocessor platform. The worst-case execution time
(WCET) of τi is Ci, and its period is Ti. Let P denote the least common multiple
(lcm) of the periods of all the tasks in τ (P is often called the hyper-period of τ),

2 We highlight that these are periodic, not sporadic, tasks: τi generates jobs at time-
instants k × Ti, for all k ∈ N.
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N and m Number of tasks and processors

τi = (Ci, Ti) The i’th task has worst-case execution time Ci and period Ti

P lcmN
i=1{Ti} – the hyperperiod . Selected as major cycle duration

F gcdN
i=1

{Ti}. Selected as minor cycle (frame) duration
f The amount of execution that a single processor can accommodate in

one frame. Upon unit-speed processors, f = F
Φk The k’th frame, for k ∈ {1, 2, . . . , P/F}

n The total number of jobs in one hyperperiod. n =
∑N

i=1
(P/Ti)

ji = (ai, ci, di) The i’th job, 1 ≤ i ≤ n. Its arrival time, WCET, and absolute deadline
J The collection of these n jobs
xijk LP variable: the fraction of the i’th job assigned to the j’th processor

during the k’th frame

Fig. 1. Some of the notation used in this paper

and let F denote the greatest common divisor (gcd) of the periods of all the tasks
in τ . P is selected as the duration of the major cycle, and F the duration of the
minor cycle, of the CE’s we will construct.

Some further notation and terminology: Let J = {j1, j2, . . . , jn) denote all
the jobs generated by τ that have their arrival times and deadlines within
the interval [0, P ), and let ai, ci and di denote the arrival time, WCET, and
(absolute) deadline respectively of job ji. (We will often represent a job ji by an

ordered 3-tuple of its parameters: ji
def

= (ai, ci, di). We refer to the interval [ai, di)
as the scheduling window of this job ji.) Note that the number of jobs n may
in general take on a value that is exponential in the number of tasks N . Since
we are seeking to explicitly construct a schedule for the n jobs, we believe that
it is reasonable to evaluate the efficiency of algorithms for constructing these
schedules in terms of the number of jobs n to be scheduled rather than in terms
of the number of periodic tasks N .

Without loss of generality, we assume that the tasks are indexed according
to non-decreasing periods: Ti ≤ Ti+1 for all i, 1 ≤ i < N . For harmonic task
systems τ , the tasks have harmonic periods: Ti divides Ti+1 exactly for all i,
1 ≤ i < N .

Example 1. Consider a system τ comprising three tasks τ1, τ2, and τ3, with peri-
ods T1 = 4, T2 = 6, and T3 = 12. P = lcm(4, 6, 12) = 12; F = gcd(4, 6, 12) = 2.
(Therefore, minor cycle duration is 2, and major cycle duration is 12.) For
this τ , J comprises the six jobs j1–j6 depicted in Fig. 2. There are (12/2) =
six frames or minor cycles within the major cycle – these are labeled in the
figure as Φ1, Φ2, . . . , Φ6 with Φk spanning the interval [2(k − 1), 2k].

4 Representing Cyclic Executives as Linear Programs

In this section we represent the problem of constructing a cyclic executive as
a linear program. We start out with a brief review of some well-known facts
concerning linear programs that we will use in later sections of the paper.
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Fig. 2. The jobs generated by the task system of Example 1.

4.1 Some Linear Programming Background

In an integer linear program (ILP), one is given a set of v variables, some or all of
which are restricted to take on integer values only, a collection of “constraints”
that are expressed as linear inequalities over these v variables, and an “objective
function,” also expressed as a linear inequality of these variables. The set of all
points in v-dimensional space over which all the constraints hold is called the
feasible region for the integer linear program. The goal is to find the extremal
(maximum or minimum, as specified) value of the objective function over the
feasible region.

A linear program (LP) is like an ILP, without the constraint that some of
the variables are restricted to take on integer values only. That is, in an LP
over a given set of v variables, one is given a collection of constraints that
are expressed as linear inequalities over these v variables, and an objective
function, also expressed as a linear inequality of these variables. The region in
v-dimensional space over which all the constraints hold is again called the fea-
sible region for the linear program, and the goal is to find the extremal value
of the objective function over the feasible region. A region is said to be convex
if, for any two points p1 and p2 in the region and any scalar λ, 0 ≤ λ ≤ 1, the
point (λ · p1 + (1 − λ) · p2) is also in the region. A vertex of a convex region is
a point p in the region such that there are no distinct points p1 and p2 in the
region, and a scalar λ, 0 < λ < 1, such that [p ≡ λ · p1 + (1 − λ) · p2].

It is known that an LP can be solved in polynomial time by the ellipsoid
algorithm [9] or the interior point algorithm [7].

We now state without proof some basic facts concerning linear programming
optimization problems.

Fact 1. The feasible region for a LP problem is convex, and the objective func-
tion reaches its optimal value at a vertex point of the feasible region.

An optimal solution to an LP problem that is a vertex point of the feasible
region is called a basic solution to the LP problem.
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Fact 2. A basic solution to an LP can be found in polynomial time.

Fact 3. Consider a linear program on v variables with each variable subject to
the constraint that it be ≥ 0 (such constraints are called non-negativity con-
straints). Suppose that in addition to these non-negativity constraints there are
c other linear constraints. If c < v, then at most v of the variables have non-zero
values at each vertex of the feasible region (including at all basic solutions).

4.2 An LP Representation of CEs

Given a periodic task system comprising N tasks for which an m-processor cyclic
executive is to be obtained, we now describe the construction of a linear program
with

(

N × m × (P/F )
)

variables, each of which is subject to a non-negativity

constraint (i.e., each may only take on a value ≥ 0), and
(

n+(m+N)× (P/F )
)

additional linear constraints.

4.2.1 Variables

We will have a variable xijk denote the fraction of job ji that is scheduled upon
the j’th processor during the k’th frame. The index i takes on each integer value
in the range [1, n] (recall that n denotes the total number of jobs generated by
all the periodic tasks over the hyper-period). For each i,

– The index j takes on each integer value in the range [1,m].
– Note that job ji may only execute within those frames that are contained

in the scheduling window – the interval [ai, di) – of job ji. The index k,
therefore, only takes on values over the range of frame-numbers of those
frames contained within [ai, di).

The total number of xijk variables is equal to
(

N × m × (P/F )
)

, where N
denotes the number of periodic tasks, m denotes the number of processors, and
P/F represents the number of minor cycles.

4.2.2 An Objective Function

Let f denote the amount of computing that can be accomplished by a processor
executing for the duration F of an entire frame; for unit-speed processors, f = F .
We will define the following objective function for our LP:

minimize f (1)

The value of f obtained by solving the LP represents the minimum amount
of computation needed to be completed by an individual processor within a
duration F ; if the available processors can indeed accommodate this amount of
computation, then the solution is a feasible one.
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4.2.3 Constraints

Since the xijk variables represent fractions of jobs, they must all be assigned
values that are ≥ 0; hence, they are all subject to non-negativity constraints. In
addition, these variables are used to construct a linear program representation
of a CE, via the following constraints:

1. We represent the requirement that each job must receive the required amount
of execution by having the constraints

∑

all j,k

xijk = 1 for each i, 1 ≤ i ≤ n (2)

There are n such constraints, one per job.
2. We represent the requirement that each processor may be assigned no more

than f units of execution during each minor cycle by having the constraints
∑

all i

xijk · ci ≤ f for each j, 1 ≤ j ≤ m and k, 1 ≤ k ≤ P/F (3)

There are m × (P/F ) such constraints.
3. We represent the requirement that each job may be assigned no more than f

units of execution during each minor cycle by having the constraints
∑

all j

xijk · ci ≤ f for each i, 1 ≤ i ≤ n and k, 1 ≤ k ≤ P/F (4)

There are N × (P/F ) such constraints.

The total number of constraints is thus equal to [n + (m + N) × (P/F )].

4.2.4 Solving the LP

With regards to the LP constructed above, observe that

1. Given an assignment of integer values (i.e., either 0 or 1) to each of the xijk

variables that satisfy the constraints of the LP, we may construct a non-
preemptive cyclic executive in the following manner: for each xijk that is
assigned the value 1, schedule the execution of job ji on the j’th processor
during the k’th frame.

2. Given an assignment of non-negative values to the xijk variables that sat-
isfy the constraints of the LP, we may construct a global preemptive cyclic
executive in the following manner. For each xijk that is assigned a non-zero
value, schedule job ji for a duration xijk × ci on the j’th processor during the
k’th frame. (Of course, care must be taken to ensure that during each frame
no job executes concurrently upon two different processors – we will see in
Sect. 5 below how this is ensured.)

That is, an integer solution to the ILP yields a non-preemptive cyclic executive
while a fractional solution yields a global preemptive cyclic executive. We discuss
the problem of obtaining such solutions, and thereby obtaining preemptive and
non-preemptive cyclic executives respectively, in Sects. 5 and 6 respectively.
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5 Preemptive Cyclic Executives

In this section we discuss the problem of constructing preemptive cyclic exec-
utives for implicit-deadline periodic task systems by obtaining solutions to the
linear program described above.

Let us suppose that we have solved the linear program, and have thus
obtained an assignment of non-negative values to the xijk variables that satisfy
the constraints of the LP. We now describe the manner in which we construct a
preemptive cyclic executive for the ko’th frame Φko

; the entire cyclic executive
is obtained by repeating this procedure for each ko, 1 ≤ ko ≤ (P/F ).

For each job jio
observe that

χio

def

=
m

∑

j=1

xiojko

represents the total amount of execution assigned to job jio
during frame Φko

in the solution to the LP. By Constraint 4 of the LP, it follows that χio
≤ f

for each job jio
; i.e. no job is assigned more than f units of execution over the

frame. Additionally, it follows from summing Constraint 3 of the LP over all m
processors (i.e., for all values of the variable j in Constraint 3) that

(

n
∑

io=1

χio

)

≤ m × f.

We have thus shown that (i) no individual job is scheduled during the frame for
more than the computing capacity of a single processor during one frame, and
(ii) the total amount of execution scheduled over the interval does not exceed
the cumulative computing capacity of the frame (across all m processors). We
may therefore construct a schedule within the frame using McNaughton’s wrap-
around rule [12] in the following manner:

1. We order the jobs that receive any execution within frame Φko
arbitrarily.

2. Then we begin placing jobs on the processors in order, filling the j’th processor
entirely before starting the (j + 1)’th processor. Thus, a job jio

may be split
across processors, assigned to the last t time units of the frame on the j’th
processor and the first (χio

− t) time units of the frame on the (j + 1)’th
processor; since χio

≤ f , these assignments will not overlap in time.

It is evident that this can all be accomplished efficiently within run-time
polynomial in the representation of the task system.

Implementation. In Sect. 6.2 below, we describe experiments that we have
conducted comparing ILP-based exact and LP-based approximate algorithms
for constructing non-preemptive CEs. These experiments required us to solve
LPs, similar to the kind described here, using the Gurobi Optimization tool [6];
performance of the Gurobi Optimization tool scaled very well with the size of
the task system in these experiments.
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6 Non-preemptive Cyclic Executives

We now discuss the process of obtaining 0/1 integer solutions to the linear pro-
gram defined in Sect. 4.2; as discussed there, such a solution can be used to
construct non-preemptive cyclic executives for the periodic task system repre-
sented using the linear program.

Let us start out observing that in order for a non-preemptive cyclic executive
to exist, it is necessary that any job fits into an individual frame; i.e., that

N
max
i=1

{Ci} ≤ f (5)

Any task system for which this condition does not hold cannot be scheduled
non-preemptively.

Let us now take a closer look at the LP that was constructed in Sect. 4.2.
Consider any 0/1 integer solution to this LP. Each xijk variable will take on
value either zero or one in such a 0/1 integer solution; hence in the LP, the
Constraints 2 render the Constraints 4 redundant . To see why this should be so,
consider any job (say, jio

), and any frame (say, Φko
). From Constraints 2 and

the fact that each xijk variable is assigned a value of zero or one, it follows that
in any 0/1 integer solution to the linear program we will have

(

∑

j

xiojko
= 0

)

or
(

∑

j

xiojko
= 1

)

,

depending upon whether job jio
is scheduled (on any processor) within the Frame

Φko
or not. We thus see that at most one of the xiojko

’s can equal 1, from which it
follows that Constraint 4 necessarily holds for job jio

within Frame Φko
. We may

therefore omit the Constraints 4 in the linear program. Hence for non-preemptive
schedules, we have a somewhat simpler ILP that needs to be solved, comprising

(

N × m ×
P

F

)

variables but only
(

n + m ×
P

F

)

constraints.

6.1 An Approximation Algorithm

The problem of finding a 0/1 solution to a Linear Program is NP-hard in the
strong sense; all algorithms known for obtaining such solutions have running
time that is exponential in the number of variables and constraints. As we had
mentioned earlier, this intractability of Integer Linear Programming does not
necessarily rule out the ILP-based approach to constructing cyclic executives
that we have described above, since excellent solvers have been implemented
that are able to solve very large ILPs in reasonable amounts of time.

However, the fact of the matter is that not all ILPs can be solved efficiently.
We now describe an approximation algorithm for constructing Cyclic Executives,
that does not require us to solve ILPs exactly. The algorithm is approximate in
the sense that it may fail to construct Cyclic Executives for some input instances
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for which CE’s do exist (and could have been constructed using the exponential-
time ILP-based method discussed above). In Theorem 1 we quantify the non-
optimality of our approximation algorithm.

Our algorithm starts out constructing the linear program as described in
Sect. 4.2, but without the Constraints 4 (as discussed above, the Constraints 2
render these redundant). However, rather than seeking to solve the NP-hard
problem of obtaining a 0/1 integer solution to this problem, we instead replace
the 0/1 integer constraints with the requirement that each xijk variable be a
non-negative real number no larger than one (i.e., that 0 ≤ xijk ≤ 1 for all
variables xijk), and then obtain a basic solution3 to the resulting linear program
(without the constraint that variables take on integer values). As stated in Fact 2
of Sect. 4.1, such a basic solution can be found efficiently in polynomial time.

Recall that our LP has
(

N × m × P
F

)

variables but only
(

n + m × P
F

)

constraints. By Fact 3 of Sect. 4.1, at most
(

n + m × P
F

)

of the variables will

take on non-zero values at the basic solution. Some of these non-zero values will
be equal to one – each such value determines the frame and processor upon
which a job is to be scheduled in the cyclic executive. I.e., for each xijk that is
assigned a value equal to one in the basic solution, we assign job ji to the j’th
processor during frame Φk.

It remains to schedule the jobs which were not assigned as above — these
are the jobs for which Constraint 2 was satisfied in the LP solution by having
multiple non-zero terms on the LHS. This is done according to the following
procedure; the correctness of this procedure is proved in [10].

1. Consider all the variables X
def

= xijk that have been assigned non-zero values
strictly less than one in the basic solution. That is,

X
def

=
{

xijk such that 0 < xijk < 1 in the basic solution
}

2. Construct a bipartite graph with
(a) A vertex for each job jio

such that there is some (one or more) xiojk ∈ X.
Let V1 denote the set of all such vertices that are added.

(b) A vertex for each ordered pair [jo, ko] such that there is some (one or
more) xijoko

∈ X. Let V2 denote the set of all such vertices that are
added.

(c) For each xiojoko
∈ X add an edge in this bipartite graph from the vertex in

V1 corresponding to job jio
, to the vertex in V2 corresponding to ordered

pair [jo, ko].
3. It has been shown in [10] that there is a matching in this bipartite graph

that includes all the vertices in V1. Such bipartite matchings can be found in
polynomial time using standard network-flow algorithms.

3 Recall from Sect. 4.1 above that a basic solution to an LP is an optimal solution that
is a vertex point of the feasible region defined by the constraints of the LP.
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4. Once such a bipartite matching is obtained, each job corresponding to a vertex
in V1 is assigned to the processor and frame corresponding to the vertex in V2

to which it has been matched. In this manner, each processor in each frame
is guaranteed to be assigned at most one job during this process of assigning
the jobs that were not already assigned in the basic solution.

6.2 Evaluating the Approximation Algorithm

We now compare the effectiveness of the polynomial-time approximation algo-
rithm of Sect. 6.1 with that of the ILP-based exact algorithm (solving which
takes exponential time in the worst case). We start out with theoretical evalu-
ation: Corollary 1 quantifies the worst-case performance of the approximation
algorithm via te speedup factor metric. We have also conducted some simulation
experiments on randomly-generated workloads, to get a feel for typical (rather
than worst-case) effectiveness – these are discussed in Sect. 6.2 below.

Theorem 1. Let fopt denote the minimum amount of computation that must
be accommodated on an individual processor within each frame in any feasi-
ble m-processor CE for a given implicit-deadline periodic task system τ . Let

Cmax denote the largest WCET of any task in τ : Cmax
def

= maxτi∈τ{Ci}. The
polynomial-time approximation algorithm of Sect. 6.1 above will successfully con-
struct a CE for τ upon m processors, with each processor needing to accommodate
no more than (fopt + Cmax) amount of execution during any frame.

Proof: Since (as we had argued in Sect. 4) an integer solution to the ILP rep-
resents an optimal CE, observe that the minimum value of f computed in an
integer solution to an ILP would be equal to fopt. And since the ILP is more
constrained than the Linear Program, the minimum value for f computed in the
(not necessary integral) solution to the LP obtained by the polynomial-time algo-
rithm of Sect. 6.1 is ≤ fopt. Let fLP denote this minimum value of f computed
as a solution to the LP; we thus have that fLP ≤ fopt.

In constructing the CE above, the polynomial-time algorithm of Sect. 6.1
schedules each job according to one of two rules:

1. If variable xiojoko
is assigned a value one in the solution to the LP, then job

jio
is scheduled upon the jo’th processor during frame Φko

.
2. Any job jio

not scheduled as above is scheduled upon the processor-frame
pair to which it gets matched in the bipartite matching.

Clearly, the jobs assigned according to the first rule would fit upon the processors
if each had a computing capacity of fLP within each frame. Now, observe that the
matching in the bipartite graph assigns at most one job to each processor during
any given frame; therefore, the additional execution assigned to any processor
during any frame is < Cmax. Hence each processor could accommodate all the
execution assigned it within each frame provided it had a computing capacity of
at least fLP + Cmax, which is < (fopt + Cmax). ⊓⊔
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The speedup factor of an algorithm A is defined to be smallest positive real
number x such that any task system that is successfully scheduled upon a par-
ticular platform by an optimal algorithm is successfully scheduled by algorithm
A upon a platform in which the speed or computing capacity of all processors
are scaled up by a factor (1 + x).

Corollary 1: The polynomial-time approximation algorithm of Sect. 6.1 has a
speedup bound no larger than 2.

Proof: By Theorem 1 above, If a CE can be constructed for task system τ by
an optimal algorithm upon m speed-fopt processors, it can be scheduled by the

polynomial-time algorithm of Sect. 6.1 upon m speed-
(

fopt + Cmax

)

processors.

The corollary follows from the observation that Cmax is necessarily ≤ fopt; hence
(

fopt + Cmax

)

/fopt is ≤ 2fopt/fopt ≤ 2. ⊓⊔

Experimental Evaluation. We saw above (Corollary 1) that the polynomial-
time approximation algorithm of Sect. 6.1 has a speedup factor no worse than
2. We have conducted some experiments on randomly-generated synthetic work-
loads to further compare the performance of the approximation algorithm with
the exact approach of solving the ILP.

Workload generation. The task system parameters for each experiment were
randomly generated using a variant of the methods used in prior research such
as [3,5], in the following manner:

– Task utilizations (Ui) were generated using the UUniFast algorithm [2].
– Task periods were set to be at one of F ×{1, 2, 3, 4} (the frame size F was set

equal to 25ms in these experiments, in accordance with prior recent work on
cyclic executives such as [3,5]). Periods were assigned randomly and uniformly
over these four values. (Since we are restricting attention in this paper to
implicit-deadline systems, job deadlines were set equal to their periods.)

– Task WCETs were determined as the product of utilization and period.
– All task systems in which one or more tasks had a WCET greater than minor

cycle duration F , were discarded (since such systems are guaranteed to have
no feasible non-preemptive schedules).
(For some of our experiments, we needed task systems in which the largest
WCET of any task (the parameter Cmax of Theorem 1 was bounded at one-
half of three-quarters the frame size. In generating task systems for these
experiments, we discarded all task systems in which some task had WCET
greater than the bound.)

– All the experiments assumed a four-processor platform (m ← 4).

Experiments conducted, and observations made. We conducted two sets
of experiments; in each experiment within each set,
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1. A task system was generated using the procedure detailed above, with a spec-
ified number of tasks, a specified total utilization, and for some experiments,
a specified bound on Cmax.
Each task system so generated was scheduled in two different ways.

2. First, it was scheduled non-preemptively by generating a linear program as
described in Sect. 4.2, and then solved as an ILP using the Gurobi [6] opti-
mization tool (instrumented to time out after two seconds of execution, earlier
experiments indicating that for systems of 20 tasks on 4 processors, longer
runs never improved upon the value obtained within the first two seconds).

3. Second, it was scheduled preemptively by solving the linear program obtained
above as an LP (i.e., without any integrality constraints) using Gurobi, and
then applying the technique described in Sect. 6.1 to obtain a non-preemptive
cyclic executive. The maximum amount of computation assigned to any
processor within an individual frame in this schedule was determined, and
designated as fmax.

4. The speedup factor needed by the polynomial-time approximation algorithm
for this particular task system was then computed as

max
(

1,
fmax

F

)

(Recall that F denotes the frame size, chosen to equal 25 ms in our experi-
ments.)

We now describe the two sets of experiments separately.

6.2.1 Variation of Speedup Factor with System Utilization

As explained above, the speedup bound of 2 identified in Corollary 1 above is
a worst-case one. In this set of experiments, we set out to determine how the
speedup factor of a randomly-generated system tends to depend upon the cumu-
lative utilization of the task system. We therefore generated 400 task systems,
each comprising 20 tasks, to have cumulative system utilization equal to U , for
each value of U between 0 and 4 in steps of 0.05. The observed speedup factor
needed by the approximation algorithm to schedule each task system was deter-
mined as described above, and the average and standard deviations computed.
These values, plotted in Fig. 3, show a clear increasing trend: as overall utiliza-
tion increases, so does the speedup factor needed to construct a non-preemptive
schedule using the approximation algorithm.

6.2.2 Variation of Speedup Factor with Cmax

Theorem 1 reveals that the speedup factor depends upon the value of Cmax,
the largest WCET of any individual task. To investigate this relationship, we
generated 100 task systems with overall utilization U for each value of U between
2 and 4 in steps of 0.05, in which the value of Cmax was bounded from above at
half the frame size, three quarters the frame size, and the full frame size. The
observed speedup factor needed by the approximation algorithm to schedule each
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Fig. 3. Investigating how speedup factor changes with overall system utilization. The
mean observed speedup factor over 400 task systems at each utilization is depicted, as
is the range within one standard deviation from the mean.

task system was determined as described above, and the average over the 100
individual task systems at each data point computed. These values, plotted in
Fig. 4, show a clear increasing trend within each system utilization: the larger
the bound on Cmax, the greater the observed speedup factor.

Fig. 4. Investigating how observed speedup factor depends upon Cmax, the largest
WCET of any task. The mean observed speedup factor over 100 task systems is plotted,
for Cmax bounded at 1

2
, 3

4
, and 1 times the frame size.
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6.3 Special Case: Harmonic Task Systems

Let us now consider systems in which the tasks have harmonic periods: for any
pair of tasks τi and τj , it is the case that Ti divides Tj exactly or Tj divides Ti

exactly. Many highly safety-critical systems are explicitly designed to respect
this restriction; additionally, many systems that are not harmonic are often
representable as the union of a few – two or three – harmonic sub-systems.

For any job ji, let us define Fi to be the set of frames that lie within ji’s
scheduling window. For the task system of Example 1 (as depicted in Fig. 2),
e.g., we have

F1 = {Φ1, Φ2}, F2 = {Φ3, Φ4}, F3 = {Φ5, Φ6}, F4 = {Φ1, Φ2, Φ3}, F5 = {Φ4, Φ5, Φ6},

and F6 = {Φ1, Φ2, Φ3, Φ4, Φ5, Φ6}.

Lemma 1: For any two jobs ji and jℓ in harmonic task systems, it is the case
that

(

Fi ⊆ Fj

)

or
(

Fj ⊆ Fi

)

or
(

Fi

⋂

Fj is empty
)

⊓⊔

A polynomial-time approximation scheme (PTAS) was derived in [4] for the
problem of scheduling on restricted identical machines with nested processing set
restrictions; this PTAS can be directly applied to our problem of constructing
non-preemptive cyclic executives for implicit-deadline periodic task systems with
harmonic periods. This allows us to conclude that for the special case of harmonic
task systems, polynomial-time approximation algorithms may be devised for
constructing cyclic schedules that are accurate to any desired degree of accuracy.

7 Conclusions

Cyclic executives (CEs) are widely used in safety-critical systems industries, par-
ticularly in those application domains that are subject to statutory certification
requirements. In our experience, current approaches to the construction of CEs
are either ad hoc and based on the expertise and experience of individual system
integrators, or make use of tools that are based on model checking or heuristic
search.

Recent significant advances in the state of the art in the development of linear
programming tools, as epitomized in the Gurobi optimizer [6], have motivated us
to consider the use of linear programming for constructing CEs. We have shown
that CEs for workloads that may be modeled as collections of implicit-deadline
periodic tasks are easily and conveniently represented as linear programs (LPs).
These LPs are solved very efficiently in polynomial time by LP tools like Gurobi;
such solutions directly lead to preemptive CEs. If a non-preemptive CE is desired
then one must solve an integer LP (ILP), which is a somewhat less tractable
problem than solving LPs. However, our experiments indicate that Gurobi is
able to solve most ILP problems representing non-preemptive CEs for collections
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of implicit-deadline periodic tasks quite effectively in a reasonable amount of
time. We have also developed an approximation algorithm for constructing non-
preemptive CEs that runs in polynomial time, and performs quite favorably in
comparison to the exact algorithm in terms of both a worst-case quantitative
metric (speedup factor) and in experiments on randomly-generated synthetic
workloads.
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