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Abstract. 

 

An electrochemical cell for in-situ neutron powder diffraction studies of electrode materials 

for lithium-ion batteries is presented. The device has a coin cell geometry, consisting of 8.4 

cm diameter, circular components that can be stacked together and clamped tight using 

sixteen polyetheretherketone (PEEK) screws. The background issue associated with 

incoherent scattering from hydrogen within the organic electrolyte was addressed by 

replacing the normal electrolyte with a deuterated analogue, significantly improving the 

peak-to-background ratio of the in-situ neutron data. Initial in-situ studies showed clear 

structural evolution within LixCoO2 during charge in a half-cell with lithium metal as the 

counter electrode, in agreement with previous studies. In addition, the in-situ cell was shown 

to provide electrochemical performance comparable to that of equivalent coin cells of the 

commercial design and, following these demonstration studies, is available for in-situ 

structural studies of other lithium cathode and anode materials during charge/discharge 

cycling. 
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1. Introduction. 

 

1.1. Lithium-ion Batteries. 

 

The world’s energy demands are likely to be doubled to 28TW by 2050, largely due to global 

population growth [1]. In order to suppress CO2 emissions and minimize global warming 

effects, energy must increasingly be provided by greener resources, such as solar and wind, 

rather than fossil fuels. This, in turn, requires the development of sustainable energy storage 

technologies.  

 

Since the development of the first commercial cells using a carbon anode and a LiCoO2 

cathode by Sony in 1991 [2], lithium-ion batteries have attracted considerable interest, 

because their combination of high specific energy and specific power makes them uniquely 

suitable for portable energy storage systems. Indeed, lithium-ion batteries are a suitable 

energy storage technology to contribute more widely to an energy sustainable economy, 

including electric vehicles (EV) and grid applications of energy harvesting. However, the 

increasing market demands provide a relentless challenge to develop new electrode materials 

with still higher energy and power densities, longer cycle life, minimal environmental impact 

and lower cost. In parallel, safety issues arising from the use of flammable organic liquid 

electrolytes provide a strong motivation towards the development of either ionic liquids [3, 

4] which are safer or solid electrolyte materials for use in all solid state batteries [5].  

 

Capacity fading in Li-ion batteries is related to complex and interrelated processes which 

include chemical reactions at the particle surface in contact with the electrolyte or solid 

electrolyte interface (SEI) [6,7], and/or structural changes within the electrode materials [8,9]. 

Such issues are a direct consequence of the materials used within the current lithium-ion 

batteries and have motivated the use of neutron powder diffraction to probe the relationship 

between electrochemical performance and structural properties within the electrode materials. 

There are a number of reviews which provide more detailed descriptions, including those 

devoted to the design of in-situ electrochemical cells for neutron diffraction [10], the wider 

topic of neutron scattering applications to study energy related materials [11] and the use of 
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in-situ neutron powder diffraction studies across the broader fields of chemistry and materials 

science [12].  

 

1.2. Neutron Powder Diffraction. 

 

Powder diffraction studies, using either X-ray or neutron radiation, are extensively used to 

characterise the crystal structure of materials employed within technological devices and 

assess candidate new compounds. Neutron powder diffraction possesses a number of 

advantages over its X-ray counterpart, which stem from its inherent properties [13-17]. These 

include increased sensitivity to the locations of light atoms in the presence of heavier ones 

and, often, a better ability to distinguish between neighbouring atoms within the periodic 

table [18]. Furthermore, as the scattering power differs between different isotopes of the same 

element, isotopic substitution can be used to increase (or, indeed, decrease) the sensitivity of 

the technique to the locations of certain chemical species. The absence of a ‘form factor’ for 

neutron scattering also allows diffraction data to be collected to shorter d-spacings, which 

can be important to determine reliable information on the thermal vibration parameters and 

fractional site occupancies during Rietveld refinement using the diffraction data. Finally, 

neutron scattering is a comparatively weak process and, for most nuclei, absorption processes 

are insignificant. Thus, neutron powder diffraction can be used to investigate bulk samples 

(typically several cm3 in size) and the penetrating power of neutrons also permits studies of 

samples contained within complex containment devices. This is a major factor in the 

development of in-situ neutron powder diffraction techniques, which form the subject of this 

paper. 

 

1.3. In-situ Studies. 

 

In recent years, there has been increasing interest in the application of neutron powder 

diffraction methods to probe technologically relevant materials, using in-situ cells to 

reproduce the conditions experienced by the sample within its application.  
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There are essentially two methods used to produce the intense beams of neutrons required 

for diffraction studies - fission of uranium within a nuclear reactor and the acceleration of 

protons within a synchrotron, which then bombard a heavy metal target. For in-situ powder 

diffraction studies, the polychromatic nature of the “white” beam produced by accelerator-

based facilities has the advantage that a diffraction pattern can be collected at fixed scattering 

angle 2using the so-called ‘time-of-flight’ method and, in practise, large area detectors 

covering an extended 2range are generally used in order to maximize the count rate. 

However, in reality, the development of such specialised cells is not straightforward, as 

inevitably, the design process involves a compromise between the desire to collect the best 

possible quality of diffraction data and the need to mimic the conditions found in the 

technological application.  

 

As discussed by Biendicho et al [19], the quality of the structural information that may be 

obtained during an in-situ neutron powder diffraction experiment into a battery electrode 

material is highly dependent on the design of the cell and the choice of its components. The 

typical incident flux at a neutron source is rather low, especially when compared to 

synchrotron X-ray sources, requiring the use of relatively large (~cm3) sized samples. Whilst 

neutrons can easily penetrate metal containers, such components will produce additional 

Bragg peaks within the measured diffraction pattern, adding complexity to the data analysis 

process. For instance, aluminium diffraction peaks, as observed by Roberts et al [20], may 

be reduced by the use of aligned single crystal wafers, e.g. silicon (100), as casing material 

[21]. Furthermore, in order to probe the locations of H within an electrode material, it is then 

advisable to replace H with the isotope D if possible, to exploit its higher scattering power 

and significantly lower incoherent scattering cross section which, in the case of nickel metal 

hydride (Ni-MH) battery studies, was achieved by ex-situ cycling of the cell prior to in-situ 

diffraction [22]. Likewise, the amount of H within other components (e.g. the electrolyte) 

within the cell should be minimised, or replaced with deuterated analogues, if possible [23]. 

In this sense, a low-cost deuterated ethyl acetate based electrolyte suitable for in-situ neutron 

diffraction has been reported, showing comparable electrochemical performance and signal-

to-noise ratio of neutron diffraction patterns to more expensive conventional deuterated 

electrolytes [24]. Most importantly, the electrochemical performance of the in-situ cell should 



5 

 

be similar to that of the real (commercial) battery, so that the structural information extracted 

can be directly compared to that found within the technological applications. However, this 

is not straightforward, since an in-situ cell design that shows a good signal-to-noise ratio of 

neutron diffraction patterns is usually limited to electrochemical experiments at equilibrium 

conditions i.e. slow C rates. Conversely, in-situ cells that operate at non-equilibrium 

conditions i.e. high C rates, usually show lower signal-to-noise ratios, and most often the 

structural information that can be obtained is limited to lattice parameter variation during 

charge/discharge. The compromise between electrochemical performance and diffraction 

pattern quality for an in-situ cell is rather complex and, for that reason, investigation of 

commercially available batteries by in-situ techniques has regained interest recently [25,26], 

even though the extracted structural information of electrode materials is limited compared 

to the use of specially designed in-situ cells. 

 

1.4. In-situ Electrochemical Cells.  

 

In-situ electrochemical cells for neutron diffraction experiments can be classified into two 

designs with respect to the layered sheets that build up the battery; cylindrical or planar. The 

first usually contains a wound laminate made up of cathode, anode, current collector and a 

separator sealed into a battery casing to preserve moisture- and oxygen- free conditions. A 

significant number of cells have been fabricated and tested with this design, following the 

work conducted by Bergstöm et al [27]. A cylindrical cell with rolled-up components is 

generally fabricated using printed electrodes, which ensure comparable electrochemical 

results to the ones obtained ex-situ at the laboratory. However, the assembly of a large 

cylindrical cell for in-situ experiments requires a large amount of separator. For instance, ~32 

cm2 of separator for 1 g of printed electrode. This represents a similar % in weight for both 

active material and separator in the case of a glass-fibre separator, which is usually preferred 

to Polypropylene (PP) for in-situ experiments. The large amount of separator within the cell 

increases the intensity of the background signal in the neutron diffraction patterns, often 

masking the less intense diffraction peaks of the active material. Figure 1 a) shows the in-situ 

cell originally presented by Bergstöm et al in 1998 and in b), an upgraded version with a 

wound-type configuration as presented by Sharma et al [28,29]. Other cells with similar 
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characteristics have been used to investigate LiFePO4 [20], a perovskite-type electrode 

Li0.18Sr0.66Ti0.5Nb0.5O3 [30] and more recently, LiNi0.5Mn1.5O4 [31,32].  

 

The other cell design used for in-situ neutron diffraction studies is based on a planar 

configuration, and basically consists of layered sheets of components stacked on top of each 

other. This configuration is based on the pouch or coin cell configuration commonly used for 

ex-situ battery testing in a laboratory, but has been adapted to in-situ neutron experiments 

[33, 34]. On the other hand, specially designed cells have been constructed following this 

configuration in order to minimize the contribution of current collectors and battery casing 

to the in-situ neutron diffraction patterns. Figure1 c) shows the circular in-situ cell developed 

by the Novák group [35] which was used to characterize LiFePO4 at C/10, and reliable 

structural information was obtained. Other cells with a similar geometry have been used to 

monitor the structural changes of LiCoO2 [36], Li1.1Mn1.9O4 [37] and LiNi1/3Mn1/3Co1/3O2 

[38].  

 

As mentioned above, we have previously presented an in-situ electrochemical cell, figure 1 

d), that was used for studies of both Ni(OD)2 and MmNi3.6Al0.4Mn0.3Co0.7 electrodes, where 

Mm refers to mischmetal, in a Ni-MH battery [22]. The results were interesting, since 

structural information obtained as a function of battery charge/discharge showed that the 

largest amount of deuterium contained at the positive electrode de-intercalates as a 

continuous solid solution, rather than by a phase transformation of the hexagonal Ni(OH)2 

phase as commonly observed by ex-situ measurements. The cell demonstrated comparable 

electrochemical performance to commercial Ni-batteries and afforded good diffraction 

patterns in relatively short data collection times. Furthermore, due to its modular 

configuration, we anticipated that other energy systems could be investigated with only minor 

modifications of the components that built up the cell. In this paper, therefore, we have 

investigated the potential application of our design to characterize a Li-based electrode, more 

specifically LiCoO2. The aim is to broaden the spectrum of materials and/or energy which 

can be investigated by the in-situ cell and make it more widely available for users of the 

POLARIS diffractometer at the ISIS neutron spallation source. 
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2. Experimental. 

 

2.1. In-situ Electrochemical Cell Design. 

 

The electrochemical cell used for in-situ neutron diffraction has a planar design and has been 

presented previously [19]. It consists of 84 mm diameter circular disk-type components: two 

stainless steel clamp rings, two nickel metal windows, two thin nickel metal sheets, one 

separator module and one boron nitride shield. The cell is assembled and stacked using the 

sequence from right hand to left hand shown in figure 2a. Rear and front views of the 

assembled cell with respect to an incident neutron beam are also shown in figures 2b and 2c.  

 

The main body of the cell is constructed of nickel metal and stainless steel alloy rings 

clamped each side of the cell, together using 16 polyetheretherketone (PEEK) screws (figure 

2). The front and back windows of the cell are constructed using nickel metal (1mm thick, 

99.99% purity) with an aperture of 20 mm width  40 mm height, this being chosen as typical 

of the dimensions of the neutron beam commonly found on neutron powder diffractometers. 

The windows hold nickel metal sheets of around 0.1 mm thickness in place, which hold the 

electrode materials and act as current collectors. The choice of nickel metal for this 

component follows from its relatively simple diffraction pattern, which minimises the 

number of Bragg reflections contaminating the measured diffraction pattern from the in-situ 

cell. In principle, vanadium is a potentially useful metal for use in neutron powder diffraction 

studies, as its very low coherent scattering cross section gives rise to only weak Bragg peaks. 

However, its relatively high incoherent scattering cross section contributes to an increased 

background level across the entire diffraction pattern. Furthermore, nickel has the advantage 

of good chemical compatibility with a wide range of liquid electrolytes. The central part of 

the cell is a 2mm thick insulating separator module with an aperture of the same dimensions 

as the neutron window, which separates the nickel sheets so as to avoid a short circuit. The 

separator module is made of polyoxymethylene, in view of its good chemical resistivity to 

most commonly used liquid electrolytes. The free volume inside the module provides the 

main chamber of the cell, which is filled with cathode, anode and separator. O-rings seals are 
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located in circular grooves on each side of the separator module to avoid leakage of the 

organic electrolyte. Finally, a shield manufactured from boron nitride ceramic is placed at 

the front of the cell, exploiting the high thermal neutron absorption cross-section of boron to 

prevent any part of the incident neutron beam from striking the stainless steel clamp rings or 

the PEEK screws[18].  

 

2.2. POLARIS instrument. 

 

In-situ neutron diffraction data were collected at the Polaris diffractometer [39] at ISIS. 

Whilst the diffractometer has detector banks covering a wide range of scattering angles (2), 

the geometry of the cell means that the best quality diffraction data are collected in two of 

the five detector banks - low angle (40 o 2ș  67 o, dmax 7 Å) and backscattering (135 o  

2ș  168 o, dmax 2.7 Å). Diffraction data were analysed by the Rietveld method using the  

GSAS least-squares refinement software [40]. The Bragg peak profile was described using 

function 3 in GSAS (a convolution of a pseudo-Voigt and two back-to-back exponential 

functions) and only the components of the Gaussian part of the pseudo-Voigt function were 

refined. 

 

2.3. Lithium Cobalt Oxide, LixCoO2. 

 

The lithium cobalt oxide, LiCoO2, used as cathode material for in-situ neutron experiments 

was purchased from Sigma Aldrich. It adopts a rhombohedral crystal structure (space group 

3R m), with alternating layers of Co and Li located between close packed layers of oxygen 

anions [41-44], During electrochemical charge/discharge, Li ions are 

deintercalated/intercalated and diffuse to the counter electrode through a separator whilst 

electrons are transported through an external circuit to provide the electrical power. This 

process is reversible, so energy is stored/released during the charge/discharge processes. The 

charge/discharge reaction at the positive LiCoO2 electrode is shown below;  

 

LiCoO2  Li 1xCoO2  xLi  xe       (1) 
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2.4. Electrode and Separator Fabrication. 

 

The cathode materials for the in-situ electrochemical tests were prepared in three different 

ways. Firstly, Polyvinylidene fluoride (PVDF) binder was dissolved into 1-Methyl-2-

Pyrrolidinone (NMP) using a magnetic stirrer at 80 oC for 2 hr before the transfer of the 

LiCoO2 and carbon into NMP to form a slurry. The slurry was then printed onto an aluminium 

foil or a nickel mesh. Secondly, LiCoO2, carbon and PVDF were mixed using a mortar and 

pestle for 30 mins before pressing into a pellet using either a 10 mm diameter circular die or 

a 18 mm  36 mm rectangular die. Finally, LiCoO2 and carbon were dissolved in isopropanol 

and ball-milled for 12 hr to achieve homogeneity before drying in a vacuum oven at 80 oC to 

evaporate the isopropanol. In all cases, the final drying stage was performed in a vacuum 

oven at 120 oC for 10 hr. As LiCoO2 adopts a rhombohedral layered crystal structure, there 

is the possibility that it might show preferred orientation when pressed into the ~1mm thick 

sheets. However, there is no evidence for this tendency in the neutron powder diffraction 

patterns (i.e. no increased intensity of (hkl) Bragg reflections with a strong l component). The 

separator foils were cut into 26 mm  46 mm (PP, PTFE) and 20 mm  40 mm (glass fibre) 

pieces. The lithium metal anode was handled inside a glove box, cut into pieces of 0.38 mm 

thickness and scratched to give a shiny surface.  

 

2.5. Electrolyte Preparation. 

 

Electrolyte preparation was carried out inside a glove box in order to obtain a low oxygen 

and water content, which is beneficial to prevent side reactions during the operation of the 

batteries. The cell was assembled in the glove box and only removed once sealed. 

Stoichiometric lithium hexafluorophosphate (LiPF6) and lithium bis(fluorosulfonyl) imide 

(LiFSI) were weighed with a balance before normal (hydrogeneous) or deuterated propylene 

carbonate (PC) / ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl acetate (EA) 

were added with a syringe. The lithium salts and organic solvent were transferred into a 

plastic jar and mixed using a magnetic stirrer for 24 hr. A number of different electrolytes 

were prepared and tested. In the hydrogenous electrolyte case, these were 1M LiPF6 in PC, 
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1:2 (n/n) of LiFSI in EA and a commercial LP30 electrolyte of 1M LiPF6 in 50:50 (v/v) 

EC/DMC. Additional tests with deuterated electrolytes used 1:2 (n/n) of LiFSI and d8-EA. 

 

2.6 Electrochemical tests. 

 

A large number of ex-situ tests were performed using different Li metals, separators, carbons, 

graphite and carbon black ratios and various quantities of active materials and the electrolytes 

mentioned above. In addition, the influence of the nickel mesh, PVDF and different cathode 

fabricating methods were tested in order to optimise the electrochemical performance of the 

in-situ cell. Electrochemical tests were conducted either using a versatile multichannel 

potentiostat (VMP, Perkin-Elmer, U.K.) or a Bio-Logic SP-240. The EC-Lab software was 

used to control and analyse the collected electrochemical data.  

 

3. Results and Discussion. 

 

3.1. Electrochemical results 

  

Ex-situ electrochemical tests of the cell showed that the best electrochemical performance 

was found with 1g of a mixture of LiCoO2, graphite and carbon black in the ratio 89:3:8, a 

Whatman GF/D glass fibre separator, a 0.38mm thick lithium metal anode and 1.5ml of 1M 

LiPF6 EC/ DMC electrolyte. The electrochemical performance of the cell was compared with 

that of a standard coin cell constructed using the same battery components, and results are 

shown in figure 3 a). The charge/discharge profile of the in-situ cell shows a slightly higher 

over potential both during charge and discharge, and its discharge capacity is lower compared 

to the one obtained by standard coin-cell assembly. This is expected because of the large 

amount of electrode material within the in-situ cell in the form of a pellet of mass ~1 gr. 

Maximizing the amount of active material in the cell is motivated by the need to improve the 

signal-to-noise ratio of the neutron diffraction patterns collected during preliminary ex-situ 

neutron tests. Hence, for in-situ measurements conducted at ISIS using a normal electrolyte, 

the cell was galvanostatically charged at C/20 with a cut-off voltage up to 4.8 V in order to 
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observe the maximum number of phase transitions at the positive electrode while neutron 

diffraction patterns were collected every 10 min (corresponding to 0.00833 Li+ per dataset). 

 

In the case of measurements using deuterated electrolyte, there were no preliminary ex-situ 

tests due to the high cost of electrolyte components and these were only assembled for in-

situ experiments.  Figure 3 b) shows the charge profile of the cell recorded during in-situ 

measurement and, again, the profile corresponds to the one typically observed for LiCoO2 

during charge. In order to compensate for the slightly lower conductivity of the deuterated 

electrolyte i.e. LiFSI in d8-EA, compared to the normal one i.e. 1M LiPF6 EC/ DMC, the in-

situ cell was charged at a slightly lower C-rate (C/25) and with a cut-off voltage increased to 

5 V. The neutron diffraction patterns were recorded every 10 min, corresponding to 

0.00667Liper dataset.   

 

3.2 The effect of deuterated electrolyte  

 

To demonstrate the effects of using a deuterated electrolyte, figure 4 shows neutron 

diffraction patterns of LiCoO2 contained within a standard cylindrical sample can and cells 

assembled with normal (hydrogenous) and deuterated electrolytes. It is clear that the use of 

deuterated electrolyte dramatically decreases the background, leading to a significant 

increase in the peak-to-background ratio. Indeed, the statistical quality of the neutron 

diffraction data from LiCoO2 collected from the in-situ cell with deuterated electrolyte is 

comparable to that collected from the sample in a vanadium can. Furthermore, due to the 

high symmetry of the crystal structure of nickel, Ni diffraction peaks arising from the 

casing/current collector do not occupy a significant portion of the powder diffraction pattern, 

so electrode materials with lower symmetry than LiCoO2 could potentially be investigated 

in-situ using the cell, with minimum peak overlap.  

 

Figure 5 compares the in-situ diffraction data collected from cells assembled with deuterated 

electrolyte and normal (H) electrolyte for the same collection time i.e. 10 min. The 

significantly lower background in the case of the former is clear, and emphasises that, in 

practice, the choice of liquid electrolyte has the major role in providing the best possible data 
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quality. The advantage is most clearly seen at d-spacings beyond around 2Å where a number 

of weaker Bragg reflections are more clearly seen when using the deuterated electrolyte. 

Allowing for the differing quality of the two sets of diffraction data, and the slight difference 

in charging rates used, the choice of electrolyte has no significant influence on the structural 

behaviour of the LixCoO2 during the in-situ charge process, as observed in figure 5. 

 

Before commenting on the structural changes observed in LixCoO2 during charge, it is 

instructive to explore what influence the lower background obtained when using the 

deuterated electrolyte has on the quality of structural information derived from the diffraction 

data. Table 1 lists the crystal structure parameters refined using the diffraction data collected 

from the initial LiCoO2 material in the in-situ cell assembled with normal (H) and deuterated 

(D) electrolytes. As both datasets were collected for comparable lengths of time, the refined 

structural parameters and their estimated standard deviations (esds) may be compared: the 

refined parameters are essentially identical within +/- 1 esd, however the esds are consistently 

lower for the data collected from the cell using the deuterated electrolyte. The somewhat 

higher values of the goodness-of-fit parameters, Ȥ2, Rwp and Rp, in the case of the deuterated 

electrolyte are largely a consequence of the improved quality of the data (higher signal to 

noise ratio). More importantly, visual inspection of the fit in the d-spacing range 2.2 to 2.5 is 

significantly improved for the cell assembled using deuterated electrolyte with respect to the 

one assembled with normal electrolyte (see figure 6). Notice that main reflections of LiCoO2 

are fitted in this d-spacing range: (102), (106) and (101). The use of deuterated electrolyte is 

clearly shown to be a valuable approach for in-situ neutron diffraction experiments, both 

from the consistency of the refined values and the improved agreement between the structural 

model and experimental data (as shown by the difference curve).  
 

3.3 In-situ structural changes of LiCoO2  
 

 

Previous in-situ studies of LiCoO2 using commercial batteries by Sharma et al [45] showed 

that both forms of LiCoO2; the hexagonal one and the spinel-like phase [46-52], undergo a 

series of phase transitions during cycling, and it was proposed that the gradual build-up of 

the spinel-type phase might be a contributing factor to the observed capacity fade within 
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LixCoO2 based batteries. Rodriguez et al [53] determined the variations in the lattice 

parameters of a LiCoO2-type material as a function of charge state, also in a commercial Li-

ion cell, whilst changes in both the lattice parameters and lithium occupancies with repeated 

cell cycling were shown to be correlated with the degradation of cell performance [54]. In 

the case of in-situ X-ray powder diffraction studies, Reimers et al [55] and Morcrette et al 

[56] showed that LixCoO2 undergoes multiple phase transitions on removal of Li. Initially, 

a single phase material with a rhombohedral structure (named R1) is observed over a small 

range 1.0 x 0.93, followed by a two-phase mixture of phases R1 and R2 for 0.93 x 

0.73, where the R2 phase has a similar structure to R1, but differs in a and  c lattice 

parameters. Single phase R2 forms over the composition range 0.73 x 0.55, followed by 

a transformation into a monoclinic phase (named M1) which is stable for 0.55 x 0.45. 

The M1 phase then transforms to an R2 phase for 0.45 x 0.13 and, whilst the structure 

of the R2 phase is similar to that of R2, there is currently no detailed characterisation of the 

atomic positions. 
 

Figure 7 shows the phase transitions observed in LixCoO2 up to x0.38, using the in-situ cell 

filled with deuterated electrolyte. The structural changes at the cathode are clearly identified; 

in particular, the d-spacing of the (110) peak is shifted to lower d-spacing whilst the d-spacing 

of the (003) peak is shifted to higher d during charge or Li+ deintercalation from LixCoO2 

(the last is not shown since it corresponds to a d-spacing range measured using the low angle 

detector bank 3). The shift in d-spacing of these peaks indicate an increase in the lattice 

parameter a and a decrease in lattice parameter c. Within the widely accepted picture of fully 

occupied hexagonal close packed O2 layers, these changes are related to the oxidation of the 

Co3+ species to Co4+ and the increased repulsion between adjacent anion layers, respectively, 

in agreement with previous in-situ XRD work [55,56]. 

 

Other phase transitions can be monitored using the single (104) peak observed at 2.005 Å at 

x 1 which corresponds to R1 in figure 7 but also in figure 8 in the form of a) contour map 

of the diffraction data with the corresponding changes in the cell voltage, and b) lattice 

parameter evolution of LixCoO2 as a function of charge. During charge, the (104) peak 

becomes broader at x 0.89 - 0.80 and then a second peak appears next to it at 2.014 Å, that 
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corresponds to the R2 phase and is indexed as (104) on a hexagonal unit cell. At LixCoO2 

with x 0.55 transformation of the R2 phase to the M1 phase occurs. Finally, a new peak 

appears at ~2.021 Å which can be indexed as (104) using a hexagonal unit cell for R2, and 

indicates the formation of the R2 single phase [55,56]. These structural changes are also 

supported by the evolution of (107) and (108) peaks which show similar behaviour to that of 

(104). 

 

In summary, a number of phase changes are visible in the diffraction pattern, with the material 

adopting pure phase R1 for 1.00 ≥ x ≥ 0.90; a mixed phase R1 plus R2 for 0.90 ≥ x ≥ 0.70; a 

single phase R2 region for 0.70 ≥ x ≥ 0.5,  a mixture of two or more phases including the 

monoclinic M1 from 0.55 ≥ x ≥ 0.46 and, finally the R2' phase from x = 0.46 to x = 0.38, at 

which point the cell reached the cut-off voltage of 4.8 V. This sequence of phase changes is 

consistent with that observed previously [55,56], though with slightly wider phase co-

existence ranges, probably due to the relatively low current rate applied to the in-situ cell 

during the in-situ experiment. Differences in the structural evolution as a function of applied 

current rate have already been observed in layered rock-salt materials [57] as well as in 

LiFePO4 [58].  

 

4. Future work.  

 

The electrochemical and neutron powder diffraction data presented in this paper demonstrate 

that the charge/discharge behaviour of the in-situ cell closely mirrors that of commercial Li -

batteries, whilst allowing changes in crystalline phases of the cathode material to be studied 

in detail. Clearly, this study of the well-known LixCoO2 material illustrates that there is an 

opportunity to study new lithium-based cathode materials and, indeed candidate anode 

compounds. The modular nature of the in-situ electrochemical cell allows individual 

components to be easily exchanged, allowing studies to be performed with different cell 

geometries and different materials for the current collectors, etc. Indeed, the cell has been 

successfully used for in-situ neutron diffraction studies of nickel-metal-hydride cells [19,22] 

and to probe rechargeable alkaline iron electrodes [59]. Experiments using sodium based 

electrodes are planned for the future. 
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From the technique point-of-view, analysis of the Bragg scattering component of a neutron 

powder diffraction pattern provides a description of the contents of the unit cell, averaged 

over time and all the unit cells in the sample. However, within the field of neutron (and, 

indeed, X-ray) powder diffraction, there is currently a major expansion of interest in so-called 

‘Pair Distribution Function (PDF)’ or ‘total scattering’ studies. This approach includes the 

diffuse scattering component, observed as undulations in the background between the Bragg 

peaks, and can provide information on deviations from the average structure (i.e. local 

defects). However, in the case of in-situ studies, accurate data corrections are required to 

remove background contributions arising from the instrument and cell and to account for 

attenuation of the beam by the cell and the sample itself [60,61]. Whilst the increased 

complexity of the experimental setup has, to date, hampered widespread application of PDF 

methods within the area of in-situ studies, this is likely to be an area of development in the 

future.  

 

5. Conclusions. 

 

The technique of neutron powder diffraction offers unique possibilities to study the locations 

of light species such as H, Li and O within materials containing heavier elements and, as a 

consequence, provide information central to our understanding of the performance of 

technologically relevant battery materials. As a contribution to that field, this paper describes 

an electrochemical cell with a coin cell geometry that has been successfully tested for in-situ 

neutron diffraction studies of lithium-ion battery materials. Initial studies showed clear 

structural evolution of LiCoO2 during charge in agreement with previous diffraction studies. 

Several stages during Li deintercalation from LiCoO2 were identified and correlated with 

electrochemical data. Significant improvements in the peak-to-background ratio were 

achieved by replacing normal electrolyte with a deuterated analogue which, in turn, allowed 

neutron powder diffraction data of good statistical quality to be collected in relatively short 

counting times. Both from the consistency of the refined values and the best agreement 

between the structural model and experimental data, the use of deuterated electrolyte is 

shown to be a valuable approach to in-situ neutron diffraction experiments. 
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Tables and Figures captions 

 

Table 1. The refined structural parameters of LiCoO2 derived from diffraction data collected 

in the in-situ cell with normal (top) and deuterated (bottom) electrolyte. 

 

Figure 1 Schematic diagram of several cells for  in-situ electrochemical measurements using 

neutron radiation, a) and b) are cylindrical designs presented by Bergström et al [27] and 

Sharma et al [28,29], respectively; c) and d) are planar designs presented by Novák et al [35] 

and Biendicho et al [19] , respectively. 

 

Figure 2 Pictures showing (a) the individual components of the in-situ cell, (b) the assembled 

cell and (c) the cell with the addition of the neutron absorbing boron nitride shield on the 

front of the cell. 

 

Figure 3 Pictures showing electrochemical results (a)  in the form of cell potential versus 

capacity for the in-situ electrochemical cell and coin-cell measured in the laboratory using 

normal (H containing) electrolyte, and b) measured using the electrochemical cell with 

deuterated electrolyte during in-situ experiment. For all cases, battery components were 

LiCoO2, graphite and carbon black in the ratio 80:2.5:7.5, Whatman GF/D as glass fibre 

separator and a 0.38 mm thickness lithium foil. 

 

Figure 4 The neutron powder diffraction patterns collected from LiCoO2  in a vanadium can 

(red), inside the in-situ cell filled with normal (H) electrolyte (blue) and inside the in-situ cell 

filled with deuterated electrolyte (green). In the latter two cases, additional reflections from 

the nickel windows are observed (indicated by the red stars). The weak peaks observed at d-

spacings of ~1.3Å, ~1.65Å, ~1.80Å and ~2.45Å are associated with the glass fiber separator, 

carbon and lithium metal within the electrochemical cell. 

 

Figure 5 The evolution of the neutron powder diffraction patterns collected from LixCoO2 

during charge, with the sample charged in the in-situ cell and the data collected using high 
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angle detectors. The improved quality of the diffraction data collected when using deuterated 

electrolyte (left) rather than protonated electrolyte (right) is clear. 

 

Figure 6 Fitted powder neutron diffraction patterns after Rietveld refinement with data 

collected from in-situ cells in their initial state filled with normal (H) (top) and deuterated 

(D) (bottom) electrolyte. The reflections of LiCoO2 and Ni metal are shown by the tick marks. 

In the case of the Ni peaks, the greater differences arise from preferred orientation within the 

metal sheets. The insets highlight the d-spacing ranges from 2.2Å to 2.5Å.  

 

Figure 7 In-situ neutron diffraction patterns collected from the cell in the Polaris high angle 

(backscattering) detector bank during battery charge. The battery components were LiCoO2, 

graphite and carbon black in the ratio 80:2.5:7.5, Whatman GF/D as glass fibre separator, a 

0.38mm thick lithium metal anode and 1.5ml of deuterated electrolyte. The labels R1, R2 

and R2 denote the phase of LixCoO2, where x is the Li content. The presence of the M1 phase 

is seen in the appearance of a number of weak peaks in the data collected at x~0.5, such as 

those seen at d-spacings around 2Å. The lower figures highlight the variation of the position 

of the (110) and (003) reflections during charge. 

 

Figure 8 Contour map showing a) the structural changes of LiCoO2 during charge and, next 

to it, the voltage profile of the cell as measured during the in-situ experiment, b) variation of 

the lattice parameter of the rhombohedral R1, R2 and R2 phases as a function of cathode 

oxidation (Li content x
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Tables and Figures 

 

Atom Type x y z Mult. Occupancy uiso (100) 

Li1 Li+ 0 0 0 3 1 2.6(7) 

Co1 Co3+ 0 0 0.5 3 1 0.6(3) 

O1 O2- 0 0 0.2385(4) 6 1 0.1(1) 

LiCoO2, 3R m, a2.8181(2) Å, c14.0618(19) Å, Ȥ22.57, Rwp7.32%, Rp5.86% 

 

Atom Type x y z Mult. Occupancy uiso (100) 

Li1 Li+ 0 0 0 3 1 2.1(5) 

Co1 Co3+ 0 0 0.5 3 1 0.4(2) 

O1 O2- 0 0 0.2385(3) 6 1 0.1(1) 

LiCoO2, 3R m, a2.8096(1) Å, c14.0183(13) Å, Ȥ25.48, Rwp13.01%, p15.05% 

 

Table 1 
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