
This is a repository copy of Low‐temperature crystallization of La0.15Sr0.775TiO3 using 
ionic liquids.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131424/

Version: Published Version

Article:

Mottram, L., Martin, D., Reeves-McLaren, N. et al. (1 more author) (2018) Low‐
temperature crystallization of La0.15Sr0.775TiO3 using ionic liquids. Journal of the 
American Ceramic Society, 101 (10). pp. 4468-4471. ISSN 0002-7820 

https://doi.org/10.1111/jace.15754

© 2018 The Authors Journal of the American Ceramic Society published by Wiley 
Periodicals, Inc. on behalf of American Ceramic Society (ACERS). This is an open access 
article under the terms of the Creative Commons Attribution License, which permits use, 
distribution and reproduction in any medium, provided the original work is properly cited 
(http://creativecommons.org/licenses/by/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi:10.1111/jace.15754 

This article is protected by copyright. All rights reserved. 

MS LUCY MADELEINE MOTTRAM (Orcid ID : 0000-0001-9662-4616) 

DR REBECCA  BOSTON (Orcid ID : 0000-0002-2131-2236) 

Article type      : Rapid Communication 

 

Low temperature crystallization of La0.15Sr0.775TiO3 using ionic liquids 

 

Lucy Mottram
1
, Daniel ZC Martin

1
, Nik Reeves-McLaren

1
 and Rebecca Boston

1
* 

1Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK 

 

Abstract 

The n-type thermoelectric oxide La0.15Sr0.775TiO3 (LST) has been synthesized at 600 °C using an ionic 

liquid method. The method uses the ionic liquid 1-ethyl 3-methylimidazolium acetate as the sole 

complexing agent: the lack of a second, carbon-rich template decreases the quantity of reduced 

intermediate phases which form during heating. By suppressing these phases, greatly reduced 

temperatures can be used to crystallize the perovskite LST phase, enabling the formation of 

nanoscale crystallites of the LST phase. These nanoparticles have the potential to be used to increase 

the figure of merit in n-type thermoelectric oxide devices. 

 

Introduction 

Control of crystallisation in oxide systems is becoming increasingly important for the functionality of 

technological materials. One such type, thermoelectric oxides, could benefit significantly from the 
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control of nanostructure as a means to reduce thermal conductivity.1 Most current schemes for 

nanoscaling of thermoelectric oxides in bulk rely on costly nanoscale starting reagents, still leaving 

little opportunity for the bespoke control of morphology, so schemes are sought to synthesize these 

oxides using bottom-up approaches which can control morphology or particle size. With the advent 

of cold sintering2, if such nanostructures can be formed, new morphology-function relationships can 

be accessed as the technology now exists to retain nanostructuring during post-processing and 

sintering. Additionally, the ability to synthesize highly complex oxides at reduced temperatures is of 

great importance for a sustainable future, and novel methods which reduce reliance on high 

temperatures are urgently needed.   

Thermoelectric materials enable the capture and recycling of waste heat energy; however further 

optimisation of materials is required to enable commercialisation of oxide-based technology.3 One 

of the primary reasons for this is the lack of n-type thermoelectric oxides with high figure of merit.4 

One of the highest values for ZT achieved thus far in an n-type oxide has been found in La0.15Sr-

0.775TiO3 (LST, 0.41 at 973 K),5 however this material has only been synthesized using solid state 

synthesis. Nanoscaling is likely to improve the figure of merit1,6 as has been observed in other 

materials, but due to the sensitivity of the La-Sr-Ti system to processing conditions,5 a reliable, low 

temperature nanoscale synthesis for the A-site deficient material has not yet been found.  

Additionally, LST in its various stoichiometries has a number of other applications including as an 

anode7 or anode backbone8 in solid oxide fuel cells.   

There are numerous schemes for the direction of crystal morphology in oxides. One such method is 

the use of ionic liquids9 or deep eutectic solvents10 to form transient intermediates which lower the 

reaction temperature required, either through a high degree of intermediate-composition 

nanoparticle mixing, low temperature decomposition, or through complex eutectic mixtures of the 

reagents themselves. These types of synthesis lend themselves to technologically useful titanate 

materials as they enable easy incorporation of Ti ions from alkoxide precursors. Choline 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

chloride/malonic acid deep eutectic solvents, for example, has been used to form barium titanate at 

reduced temperatures through the formation of titanium dioxide nanoparticles and barium chloride, 

which reacted at lower temperatures than typically encountered in solid state reactions.10 The 

nanoscale nature of the intermediates formed enabled easy egress of the chloride ions during 

heating, however some concerns remain regarding the retention of small (often undetectable) 

quantities of the chloride ions which can have an effect on functionality.10  

The ionic liquid 1-ethyl 3-methylimidazolium acetate has also been used as a solvent medium to 

synthesize complex oxide materials,9,11 however this has always been with the inclusion of a 

secondary, carbon-rich biotemplate (e.g. cellulose), which will create a greater degree of reduction 

in the early stages of synthesis, leading to well-formed albeit nanoscale oxide or carbonate 

intermediate phases.9 Whilst this can be effective at reducing reaction temperature in many 

syntheses, wide-scale formation of highly-reduced titanate phases (e.g. TiO2) can be difficult to react 

with other oxides or carbonates, often reverting to similar temperatures as required by solid state.9  

Herein we describe the use of 1-ethyl 3-methylimidazolium acetate without an added biotemplate to 

crystallize nanoscale LST between 350 °C and 420 °C, forming phase-pure LST phase by 600 °C, 500 

°C lower than solid state through suppression of an intermediate titania phase.  

Experimental  

All chemicals were obtained from Sigma Aldrich UK, and used without further purification. 

Stoichiometric quantities of lanthanum and strontium acetates were dissolved in water, and added 

to the ionic liquid (1-ethyl-3-methylimidazloium acetate). Samples was heated at 90 °C  

with continuous stirring until all of the water evaporated. Once dry, a stoichiometric volume of 

titanium isopropoxide was added under vigorous stirring to form a gel. Samples were then heated in 

a muffle furnace in air with a heating rate of 5 °C/min to a variety of temperatures, each held at 

temperature for 2 h.  
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X-ray diffraction (XRD) was performed using a PANalytical X’pert3 Powder diffractometer. Lattice 

parameters were calculated using Bragg’s law from the peak positions. Single crystalline domain 

sizes were estimated using the Scherrer equation (k=0.9).  

Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were performed on an as-

prepared sample from the gel state using a Perkin Elmer SDT Q600. 

Samples for scanning electron microscopy (SEM) were affixed to carbon tape and sputtered with 15 

nm of gold before examination using a Phillips Inspect F SEM. Particle size was estimated by 

manually measuring a statistically significant (>500) particles on SEM images. 

 

Results and discussion 

Phase pure LST phase is produced at 600 °C (Figure 1), significantly lower than the temperature 

required for solid state synthesis (1100 °C).5 Examination of the phases formed at intermediate 

temperatures indicate that nanoscale anatase TiO2 emerges first, with the peak width indicating that 

the particles are of the order 15 ± 2 nm (at 300 °C) calculated using the Scherrer relationship. This 

initial crystallisation of TiO2 is rapidly followed by strontium carbonate (or more likely a mixed 

strontium/lanthanum carbonate phase), and interestingly, by 400 °C the amount of anatase phase 

has been reduced to an undetectable level. This is key to the successful low temperature phase 

formation, as large quantities of TiO2 (as observed in similar titanate syntheses10) require elevated 

temperatures to react. The absence of TiO2 is concurrent with the emergence of the LST phase 

(visible as a minor phase in the 400 °C sample) indicating that the newly formed carbonate and 

anatase nanoparticles are acting as reaction sites, with the high surface area promoting rapid 

formation of the LST phase.   
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The lattice parameter of the phase pure (600 °C) sample was calculated and found to be 3.9076 ± 

0.0009 Å, higher than previously reported for solid state LST phase.5 This is commensurate with 

previous work using combustion-type syntheses, where lattice parameters for on-stoichiometry LST 

were found to be higher when using the Pechini or combustion methods than when using solid 

state.12-15 This has been attributed to a higher oxygen content in the combustion method syntheses, 

creating a slight lattice expansion or due to the formation of a difficult-to-detect Ruddlesden Popper 

phase, although there is still ongoing debate about this.16 

 

DTA and TGA were conducted to more closely examine the thermal processes during the reaction 

(Figure 2). Evaporation of the ionic liquid is detected in the TGA with an onset temperature of 200 °C 

(A) commensurate with the endothermic feature in the DTA (X). This is rapidly followed by 

crystallisation of the anatase phase evident as an exothermic event (Y), as the ions are released from 

complexation with the ionic liquid. Initial formation of the carbonate phase (shoulder at Z, 400 °C) 

and LST phase can be identified (Z) at 420 °C, in agreement with the emergence of the LST phase on 

XRD (between the 400 °C and 500 °C patterns). The continued slight mass loss between 350 °C and 

430 °C (B) can be attributed to egress of CO2 from the carbonate phase as this is reacted to form LST, 

after which the TGA remains stable. The DTA indicates that at the temperature range covered by the 

feature at Z (peaking at 420 °C), all of the ions in the system react to form LST. Above this 

temperature, the reaction is complete, and the system exhibits normal thermally driven grain 

growth. SEM (Figure 3) demonstrates the typical particle sizes obtained, of the order 26 ± 10 nm at 

300 °C, increasing to 36 ± 12 after heating to 600 °C (Figure 3c) at which point the sample is phase 

pure. This represents a significant decrease in particle size as compared to powders produced using 

standard solid state processes, which are more usually of the order of 0.5-2 μm.4,17  
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Evaporation, rather than combustion prevents reduction of the intermediate materials, which is 

known to promote wide-scale oxide/carbonate intermediate phase formation. Eliminating any 

combustible template, as has been used with the ionic liquid systems previously,9,11 decreases the 

likelihood of reduced phases forming, promoting the almost immediate crystallisation of the LST 

phase in this case. This leads to a reduced reaction temperature, and enables the formation of 

significantly smaller LST crystallites than solid state, or indeed many combustion-type syntheses.  

 

In conclusion we have demonstrated that by omitting a carbon-rich, reducing template in ionic liquid 

syntheses, it is possible to promote perovskite crystallisation by reducing the quantities of reduced 

intermediate phases produced, synthesizing nanoscale A-site deficient LST as an example. The 

temperatures required to produce phase pure LST have been significantly reduced over solid state 

and these reduced temperatures enable synthesis of nanoscale crystallites. In the case of LST this 

may have significant benefits to functional properties, in particular improvements in the 

thermoelectric figure of merit, providing the nanostructuring can be retained during post-processing 

using, for example, cold sintering2. Given the previously demonstrated flexibility of ionic 

liquid/biotemplate composite syntheses, it is likely that this “biotemplate-free” method can be 

applied across a wide range of oxide materials, perhaps enabling access to otherwise unavailable 

reaction mechanisms.   
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Figure 1. XRD patterns for LST samples heated to different temperatures to show phase evolution 

during heating. Symbols correspond to the following phases: □ anatase, O SrCO3 (or mixed La/Sr 

carbonate) and ● LST.  

Figure 2. DTA (left axis, red) and TGA (right axis, black) plots showing the progress of thermal events 

throughout heating. The ionic liquid evaporates at A, commensurate with an endothermic event in 

the DTA, X. Crystallization events of the carbonate phase and LST phase are shown as Y and Z 

respectively.  

Figure 3. SEM micrographs of LST samples heated to a) 300 °C and b) 600 °C, showing an increase in 

particle size c) a histogram of particle size.   
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