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Abstract—The use of Gaussian mixture model (GMM) in
nonlinear/non-Gaussian filtering problems has been extensively
investigated. This paper advocates two enhancements for GMM-
based nonlinear filtering techniques, namely, the adaptive order-
ing of the measurement update and normalized innovation square
(NIS)-based mixture component management. The former tech-
nique selects the order of measurement update that maximizes
the marginal measurement likelihood to improve performance.
The latter takes the filtering history of a mixture component
into account and prunes those components with NIS larger than
a threshold to eliminate their impact on the filtering posterior.
The advantage of the proposed enhancements is illustrated
via simulations that consider source tracking using the time
difference of arrival (TDOA) and frequency difference of arrival
(FDOA) measurements received at two unmanned aerial vehicles
(UAVs). A GMM-cubature quadrature Kalman filter (CQKF) is
implemented and its performances with different measurement
update and mixture component management strategies are com-
pared. The superior performance obtained via the use of the two
proposed techniques is demonstrated.

I. INTRODUCTION

The problem of nonlinear/non-Gaussian Bayesian filtering

arises frequently in e.g., target tracking applications. The opti-

mal solution to this problem, according to the minimum mean

square error (MMSE) criterion, is known to be the conditional

mean of the state posterior distribution [1]. However, the

nonlinearity and/or non-Gaussianity in the filtering problems

may render obtaining closed-form state estimates infeasible.

To address the above difficulty, a number of suboptimal but

mathematically tractable filtering methods have been devel-

oped. Among them, the particle filtering (PF) [1] approaches

can provide global approximation to the optimal solutions.

They are computationally expensive and could suffer from

the curse of dimensionality when handling high-dimensional

problems [2]. On the other hand, the Kalman filter (KF)-

based methods [3], [4] have lower computation burden. But

only local approximations of the optimal solutions can be

obtained as they often assume Gaussian prior and posterior

distributions. This assumption may be violated in practice,

which would lead to degraded performance especially when

the system nonlinearity becomes severe.

The Gaussian mixture model (GMM)-based methods [5] are

known to have a better tradeoff between the computational

cost and filtering accuracy. They maintain multiple nonlinear

KF filters, also known as Gaussian components, to cover the

state space. The Gaussian components are running in parallel,

each of which is associated with a weight. The GMM filter

combines the estimates from all the components to produce its

state estimate. Splitting the Gaussian components can further

reduce the system nonlinearity and improve performance. But

this would increase the number of mixture components expo-

nentially over time. The use of appropriate mixture reduction

(MR) schemes [6] is therefore essential for making the GMM-

based tracking methods practically applicable.

The decisions of the MR module on which components

are pruned or merged may have significant impact on the

filtering performance. Existing MR methods, which will be

briefly surveyed in Section II, consider the structure of the

mixture distribution at the current sampling time only. Whether

the Gaussian component has yielded a consistent estimate of

the state over time is not taken into account. In particular,

if KF filters that produce inconsistent results are propagated

further, significant performance degradation or even filtering

divergence can occur. As a result, new MR schemes that are

based at least partially on the filtering history of the mixture

components would be beneficial for GMM-based tracking.

Another important aspect in nonliner/non-Gaussian filtering

is the measurement update order with which the measurements

at each sampling time are utilized in a sequential manner in-

stead of being exploited together. It is preferable to determine

for each component an update order such that its weight, which

is indeed proportional to the marginal measurement likelihood,

is enlarged for improved tracking accuracy.

We shall propose in this paper two enhancements for the

GMM-based filtering methods. Specifically, an innovation-

based mixture pruning technique that removes Gaussian com-

ponents with inconsistent state estimation results is developed.

This scheme is found to be able to help preserve the com-

ponents that yield estimates close to the true solutions in

the mixture. Another enhancement is the adaptive measure-

ment update ordering technique. It is incorporated into every

Gaussian component such that the component weight after

measurement update would be maximized.

We demonstrate the effectiveness of the two proposed en-

hancements via developing a GMM-based cubature quadrature

Kalman filter (CQKF). The resulting GMM-CQKF algorithm

with different measurement update ordering and MR strate-

gies is applied to track a moving source using the time



difference of arrival (TDOA) and frequency difference of

arrival (FDOA) measurements obtained at two unmanned

aerial vehicles (UAVs). Extensive simulation experiments are

conducted. They verify that the two proposed methods can

offer performance improvements in terms of better tracking

accuracy and smaller track loss probability over alternative

measurement update ordering and MR schemes.

The remainder of this paper is organized as follows. Section

II reviews the related works with a focus on MR. Section III in-

troduces the CQKF algorithm, a recently developed nonlinear

KF [7]. Section IV presents the GMM-CQKF algorithm with

the adaptive measurement update ordering and innovation-

based mixture pruning. Section V provides the simulation

results. The conclusions are given in Section VI.

II. RELATED WORKS ON MIXTURE REDUCTION

In the GMM-based filtering, MR techniques are adopted

in order to prevent the exponential increase in the number

of mixture components [8]. The principle behind most MR

methods is to find, via least modifications, a new mixture with

a limited number of components from the original one. In

the literature, there exist quite a few MR methods. Among

them, pruning is perhaps the most straightforward approach

to control the number of components. But it is subject to the

loss of information and may cause filtering divergence because

eliminating components could lead to insufficient coverage of

the state space. Besides pruning, a more sophisticated way is

to merge multiple components into one to achieve MR [9].

The selection of components for merging can be based on

minimizing some cost functions or distance measure. We shall

briefly review several commonly used MR algorithms in the

rest of this section.

Suppose at time k, the state posterior distribution is approx-

imated using a weighted sum of Mk Gaussian components as

p(xk|Zk) =

Mk
∑

j=1

wj
kN (xk|x̂j

k|k,P
j

k|k) (1)

where xk is the state vector at time k. Z
k

= {z1, z2, . . . , zk}
collects the measurements available up to time k, where zi,

i = 1, 2, ...k, is the measurement vector at time i. x̂
j

k|k

and P
j

k|k denote separately the mean vector and covariance

matrix of the jth Gaussian component. wj
k is the weight of

component j and they satisfy
∑Mk

j=1 w
j
k = 1. In this work, we

use N (x|µ,Σ) to represent that the random vector x follows

the Gaussian distribution with mean vector µ and covariance

matrix Σ. The objective is to approximate the mixture on

the right hand side (RHS) of (1) using Nmax(Nmax < Mk)
Gaussian components.

In [10], Salmond developed the joining algorithm for MR.

The two components that minimize the following distance

d2ij,k =
wi

kw
j
k

wi
k + wj

k

(x̂i
k|k − x̂

j

k|k)
TP−1

k|k(x̂
i
k|k − x̂

j

k|k) (2)

are merged, where i, j = 1, 2, ...,Mk. Pk|k denotes the sample

covariance of xk, which is given by, from (1),

Pk|k =

Mk
∑

j=1

wj
k[P

j

k|k + x̂
j

k|k(x̂
j

k|k)
T ]− x̂k|kx̂

T
k|k. (3)

x̂k|k is the sample mean of xk, which is equal to

x̂k|k =

Mk
∑

j=1

wj
kx̂

j

k|k. (4)

We can deduce from (2) that the joining method [10] tends to

merge components with low weights or mean vectors close to

each other.

[11] proposed an integral square difference (ISD)-based

technique. It can choose either component pruning or merging,

depending on the original mixture distribution. The ISD cost

function is in closed form but the parameters of the new

mixture can only be found via iterative numerical optimization.

Convergence to the globally optimal solution is not guaranteed.

Alternative MR method that exploits the statistical decision

theory is available in [12].

Similarity-based MR methods were developed in [6], [9],

[13]. In particular, [6] suggested a Kullback-Leibler (KL)

divergence-based similarity measure such that the component

pair selected for merging is the one minimizing

Dij,k =
1

2
[(wi

k + wj
k) log det(P

ij

k|k)

− wi
k log det(P

i
k|k)− wj

k log det(P
j

k|k)].
(5)

Here, the covariance matrix P
ij

k|k is equal to

P
ij

k|k =w
i|ij
k Pi

k|k + w
j|ij
k P

j

k|k

+ w
i|ij
k w

j|ij
k (x̂i

k|k − x̂
j

k|k)(x̂
i
k|k − x̂

j

k|k)
T

(6)

w
i|ij
k = wi

k/(w
i
k +wj

k) and w
i|ij
k +w

j|ij
k = 1. With the above

cost function, the two components having low weights, mean

vectors near to each other or similar covariance matrices would

tend to be merged [6].

In [9], another similarity measure is given by

S2
ij,k =

N (0|x̂i
k|k, 0.5P

i
k|k)N (0|x̂j

k|k, 0.5P
j

k|k)

N (0|x̂ij

k|k,P
ij

k|k)
2

. (7)

x̂
ij

k|k and P
ij

k|k represent separately the product mean vector

and covariance matrix of Gaussian components i and j. They

are defined as

P
ij

k|k = [(Pi
k|k)

−1 + (Pj

k|k)
−1]−1 (8)

x̂
ij

k|k = P
ij

k|k[(P
i
k|k)

−1x̂i
k|k + (Pj

k|k)
−1x̂

j

k|k]. (9)

The component pair that maximizes (7) is selected for merg-

ing. A potential drawback of this approach lies in the fact

that the similarity measure (7) does not take into account the

weights of the components.

Apart from the pairwise MR methods described above, there

exist techniques that merge at least three Gaussian components



at a time, such as the one developed in [14] that chooses

several components with small weights for merging. However,

these methods may introduce significant bias if the mean

vectors of the chosen components are distant from one another.

To address this weakness, MR methods that utilizes clustering

algorithms when merging multiple components have been

developed in [10] and [15]. The progressive MR approaches

can be found in [16]. For a more comprehensive review of the

MR methods, interested readers can refer to [17].

III. CUBATURE QUADRATURE KALMAN FILTER

We shall illustrate the CQKF algorithm via showing its

application in estimating the state of the following state-space

model with additive process and measurement noises

xk = fk(xk−1) + nk (10)

zik = hi
k(xk) + vik, i = 1, 2, . . . , nz. (11)

xk is the unknown state vector at time k to be identified. fk(·)
is the state propagation function, which could be nonlinear

with respect to xk−1. nk is the process noise assumed to be

white Gaussian with zero mean and known covariance matrix

Qk. The system has nz measurements at time k and we collect

them as zk = [z1k, z
2
k, . . . , z

nz

k ]T . The ith measurement zik has

a true value hi
k(xk), which could also be nonlinearly related

to xk. The measurement noise vik is zero-mean Gaussian

distributed with variance σ2
i,k. We further assume that the

measurement noises are independent to one another1.

The recently developed CQKF [7] estimates xk using all

the available measurements up to time k and the state-space

model given in (10) and (11). Specifically, it exploits the third-

order spherical-cubature rule and Gauss-Laguerre quadrature

rule to evaluate numerically the integrals involved in the

optimal Bayesian filtering (BF). It has been shown [7] that the

performance of CQKF is comparable to these of the existing

numerical integral-based nonlinear KFs such as the cubature

KF (CKF) [4], [18], Gauss-Hermite KF (GHKF) [3] and

stochastic integration filter (SIF) [19]. Furthermore, its filtering

accuracy can improve with adopting higher-order quadrature

rules. The CQKF relies on the well-known prediction-update

recursion for state estimation, as other nonlinear KFs.

A. CQ Points

The CQKF filter works with a set of weighted cubature

quadrature (CQ) points. The number of CQ points increases

linearly with the dimension of the state xk, denoted by nx.

The CQ points ξl and corresponding weights w̄l are obtained

using

ξl =
√

2δmζm′ (12)

w̄l =
nd!Γ(ϕ+ nd + 1)

2nxδmΓ(nx/2)[L̇
ϕ
nd
(δm)]2

. (13)

1When the measurement noises vi
k

are correlated, pre-whitening can be
performed such that a linearly transformed version of the measurements would
have independent noises.

ζm′ is the cubature point from the third-order spherical-

cubature rule, which is equal to

ζm′ = [Inx
,−Inx

]m′ , m′ = 1, 2, . . . , 2nx (14)

where [A]m′ represents the m′th column of the matrix A,

and Inx
is a nx×nx identity matrix. The quadrature point δm

in (12) is the mth root of the nd-order Chebyshev-Laguerre

polynomial

Lϕ
nd
(δ) =δnd − nd

1!
(nd + ϕ)δnd−1 +

nd(nd − 1)

2!
× (nd + ϕ)(nd + ϕ− 1)δnd−2 − . . . = 0

(15)

where ϕ = (nx/2− 1), m = 1, 2, . . . , nd and l = 1, 2, . . . , L.

L̇ϕ
nd
(δm) is the first-order derivative of Lϕ

nd
(δm) with respect

to δm. The required number of CQ points is L = 2nxnd when

the nd-order Gauss-Laguerre quadrature rule is used.

B. CQKF Prediction

Similar to other nonlinear KFs, CQKF assumes Gaussianity

for the state posterior. Suppose x̂
j

k−1|k−1 is the mean vector

of the state estimate at previous time k − 1 and P
j

k−1|k−1 =

S
j
k−1(S

j
k−1)

T is its covariance matrix. CQKF achieves the

state prediction via

µ
l,j

k−1|k−1 = S
j
k−1ξl + x̂

j

k−1|k−1 (16)

µ
l,j

k|k−1 = fk(µ
l,j

k−1|k−1) (17)

x̂
j

k|k−1 =

L
∑

l=1

w̄lµ
l,j

k|k−1 (18)

P
j

k|k−1 =

L
∑

l=1

w̄l(µ
l,j

k|k−1 − x̂
j

k|k−1)(µ
l,j

k|k−1 − x̂
j

k|k−1)
T +Qk

(19)

where x̂
j

k|k−1 is the predictive mean of the current state

vector xk and P
j

k|k−1 = S
j

k|k−1(S
j

k|k−1)
T is the predictive

covariance matrix.

C. CQKF Measurement Update

The measurements can be utilized with an arbitrary order to

update the predictive distribution of xk to produce its posterior

distribution. Alternatively, they can be exploited in a joint

manner as in [7]. We shall present the measurement update of

CQKF using the measurement zik. Subsequent measurement

updates using the remaining measurements follow similarly.

First, the predicted measurement ẑi,j
k|k−1 is calculated using

α
l,j

k|k−1 = S
j

k|k−1ξl + x̂
j

k|k−1 (20)

βl,j

k|k−1 = hi
k(α

l,j

k|k−1) (21)

ẑi,j
k|k−1 =

L
∑

l=1

w̄lβ
l,j

k|k−1. (22)

The Kalman gain is

G
i,j
k = P

i,j
xz,k(P

i,j
zz,k)

−1 (23)



where the cross covariance P
i,j
xz,k and the innovation covari-

ance P
i,j
zz,k are equal to

P
i,j
xz,k =

L
∑

l=1

w̄l(α
l,j

k|k−1 − x̂
j

k|k−1)(β
l,j

k|k−1 − ẑi,j
k|k−1) (24)

P
i,j
zz,k =

L
∑

l=1

w̄l(β
l,j

k|k−1 − ẑi,j
k|k−1)

2 + σ2
i,k. (25)

The state posterior mean and covariance can then be found

using their predictive version, x̂
j

k|k−1 and P
j

k|k−1, as well

as the Kalman gain G
i,j
k , the measurement zik and predictive

measurement ẑi,j
k|k−1. They are given by

x̂
i,j

k|k = x̂
j

k|k−1 +G
i,j
k (zik − ẑi,j

k|k−1) (26)

P
i,j

k|k = P
j

k|k−1 −G
i,j
k P

i,j
zz,k(G

i,j
k )T . (27)

x̂
i,j

k|k is the posterior mean and P
i,j

k|k is the posterior covariance

matrix after the measurement update using zik is carried out.

To perform measurement update using another measure-

ment, we just need to replace x̂
j

k|k−1 with x̂
i,j

k|k and P
j

k|k−1

with P
i,j

k|k, and then repeat (20) ∼ (27).

IV. GMM-CQKF WITH MEASUREMENT UPDATE

ORDERING AND INNOVATION-BASED PRUNING

As pointed out in the previous section, the CQKF ap-

proximates the posterior distribution of the state using a

single multivariate Gaussian distribution. This may degrade

its performance in handling filtering problems with severe

nonlinearity and/or non-Gaussianity. In this section, we shall

incorporate the GMM framework so that a GMM-CQKF filter

can be obtained, which has better approximation of the state

posterior with multiple Gaussian components.

Under the GMM-CQKF, the state posterior at previous time

k−1 may be expressed as the following Gaussian mixture with

Nk−1 components

p(xk−1|Zk−1) =

Nk−1
∑

j=1

wj
k−1N (xk−1|x̂j

k−1|k−1,P
j

k−1|k−1)

(28)

where x̂
j

k−1|k−1 and P
j

k−1|k−1 represent the state mean vector

and covariance matrix of the jth component. The weights

wj
k−1 are normalized such that

∑Nk−1

j=1 wj
k−1 = 1.

The GMM-CQKF also adopts the prediction-update recur-

sion to calculate the state posterior at time k using the state

posterior at time k − 1 , nz newly obtained measurements in

zk = [z1k, z
2
k, . . . , z

nz

k ]T , and the state-space model in (10) and

(11). Each Gaussian component of the GMM-CQKF carries

out its state prediction in parallel. In particular, the state

prediction of the jth component yields the predicted mean

vector x̂
j

k|k−1 and covariance matrix P
j

k|k−1 by following (16)

∼ (19), where j = 1, 2, ..., Nk−1.

We shall next present the measurement update of the GMM-

CQKF, which is enhanced with a proposed measurement

update ordering scheme, and the MR for the GMM-CQKF,

which is a newly proposed technique based on the innovation.

A. GMM-CQKF Measurement Update

The measurement update needs to be performed at every

component using the same measurements in zk. The associated

processing has been described in Section III.C where the

measurements are utilized in an arbitrary order. Here, we shall

introduce an enhancement for measurement update in GMM-

CQKF, the determination of the measurement update order that

maximizes the component weight. The measurement update

of GMM-CQKF ends with splitting components with large

weights, which is aimed at reducing the nonlinearity and non-

Gaussianity of the filtering problem to improve performance.

1) Measurement Update Ordering: Theoretically, under the

framework of optimal Bayesian filtering, carrying out mea-

surement update in any order should lead to the same state

posterior distribution [5]. However, this is no longer valid in

practice when the measurement is nonlinearly related to the

state and nonlinear KFs such as the CQKF is adopted for

state estimation. This is because after the measurement update

using one particular measurement, the state posterior would

be approximated using a Gaussian distribution, causing an

approximation error. As a result, different measurement order-

ing can result in different approximation errors and discrepant

filtering outcomes. To enhance the filtering accuracy of GMM-

CQKF, we propose to determine the optimal measurement

update order for each component.

There are in total nz! possible measurement update orders.

But for each component, we shall use the one that maximizes

the corresponding component weight after the measurement

update. If nz is high, the computation cost can be large. But

for a small value of nz , an exhaustive search can be carried

out and the proposed measurement update scheme for the jth

component is summarized in Algorithm 1.

2) Component Splitting: Splitting a Gaussian component

normally refers to decreasing the system nonlinearity and

non-Gaussianity through covering the most likely area in the

state space with more components. For this purpose, in the

developed GMM-CQKF, we choose the component whose

weight after measurement update is the largest for component

splitting. To prevent excessive increase in the computational

cost, the component splitting is only executed when the num-

ber of components Nk−1 is smaller than some pre-specified

value Nmax.

Suppose after the measurement update the tth compo-

nent has the largest weight wt
k and it is selected for

splitting. The idea is to split its predictive distribution

N (xk|x̂t
k|k−1,P

t
k|k−1) into multiple Gaussian components

and then carry out the measurement update for each new

component again. To reduce modification in the mixture struc-

ture due to component splitting, we assume that the predictive

distribution of the tth component can be approximated via

N (xk|x̂t
k|k−1,P

t
k|k−1) ≈

wcN (xk|x̂t
k|k−1,P

t
k|k−1) + wpN (xk|x̂p,Pp)

(29)

where x̂p = x̂t
k|k−1, Pp = κ2Pt

k|k−1 (κ > 1), wc = 1 − wp

and wp ≈ 0.



Algorithm 1: Optimal Measurement Update Ordering

Determination

Input: zk, x̂
j

k|k−1,P
j

k|k−1, w
j
k−1

Output: x̂
j

k|k,P
j

k|k, w
j
k, ǫ

j
k

1 Initialize d1 = [1, 2, . . . , nz]
T

2 Set µ0 = x̂
j

k|k−1, Σ0 = P
j

k|k−1 and γ0 = wj
k−1

3 for n = 1 : nz! do

4 Set x̂
j

k|k−1 = µ0, P
j

k|k−1 = Σ0 and wj
k = γ0

5 Initialize ǫn = 0
6 for n′ = 1 : nz do

7 Set i = dn(n
′) and zik = zk(i)

8 Compute x̂
i,j

k|k and P
i,j

k|k using zik via (20) ∼
(27)

9 Update the weight

wj
k = wj

kN (zik|ẑi,jk|k−1,P
i,j
zz,k)

10 Calculate the NIS (see Section IV-B)

ϕi
n = (zik − ẑi,j

k|k−1)
T (Pi,j

zz,k)
−1(zik − ẑi,j

k|k−1)

11 Update ǫn = ǫn + ϕi
n

12 Set x̂
j

k|k−1 = x̂
i,j

k|k and P
j

k|k−1 = P
i,j

k|k

13 end

14 Set µn = x̂
i,j

k|k, Σn = P
i,j

k|k and γn = wj
k

15 if n < nz! then

16 Permute dn to produce dn+1 such that

dn+1 6= dj′ , ∀j′ ≤ n.
17 end

18 end

19 Find γd = argmax{γ1, γ2, . . . , γnz !}
20 Set x̂

j

k|k = µd, P
j

k|k = Σd, wj
k = γd and ǫjk = ǫd.

We next proceed to split N (xk|x̂p,Pp) into three com-

ponents such that N (xk|x̂p,Pp) ≈ ∑3
q=1 πqN (xk|η̂q,Ωq),

where the parameters of the new components, πq , η̂q and

Ωq , are listed in Table I [20]. Here, e is the eigenvec-

tor corresponding to the largest eigenvalue of Pp, λ, and

δ = 0.5. π3N (xk|η̂3,Ω3) has the same mean vector as

wcN (xk|x̂t
k|k−1,P

t
k|k−1), and they are merged to maintain

that after splitting the predictive distribution, only 3 compo-

nents are retained. Eventually, the predictive distribution of the

tth component N (xk|x̂t
k|k−1,P

t
k|k−1) is split as

N (xk|x̂t
k|k−1,P

t
k|k−1)

≈ wpπ1N (xk|η̂1,Ω1) + wpπ2N (xk|η̂2,Ω2)

+
wc

wa

N (xk|η̂3, waP
t
k|k−1 + (1− wa)Ω3)

(30)

where wa = wc/(wc + wpπ3). The three components in (30)

are then updated separately using the measurement update

described in Algorithm 1.

After the measurement update, the state posterior at time

k can be expressed as a Gaussian mixture given in (1) with

Mk (Mk ≥ Nk−1) components, due to possible component

splitting. The final output of the developed GMM-CQKF is the

TABLE I

Weight Mean Covariance

π1 = 1/6 η̂1 = x̂p + δ
√
λe Ω1 = Pp − 1/3δ2λeeT

π2 = 1/6 η̂2 = x̂p − δ
√
λe Ω2 = Pp − 1/3δ2λeeT

π3 = 4/6 η̂3 = x̂p Ω3 = Pp − 1/3δ2λeeT

sample mean x̂k|k and sample covariance matrix Pk|k, which

can be computed using (4) and (3).

B. Innovation-based Mixture Reduction

Different from existing MR techniques such as those sur-

veyed in Section II, the newly proposed innovation-based MR

method does not attempt to constrain the number of Gaus-

sian components under a desired value. In fact, limiting the

number of components has been achieved in the measurement

update, where only when the number of components is less

than Nmax, the component splitting will be performed. The

aim of the proposed MR technique is to remove, from the

posterior mixture distribution, the components failing to pass

the innovation-based filtering consistency test. This prevents

the components with relatively small weights but following the

true state from being pruned or merged. As will be shown in

the simulation section, this can mitigate the degrading effect

of inconsistent components on the filtering accuracy.

To decide whether to eliminate the jth component, we

compute the associated normalized innovation squared (NIS)

[21]. Specifically, the NIS of the jth component is equal to

ǫjk =

nz
∑

i=1

νi,jk (Pi,j
zz,k)

−1(νi,jk )T (31)

where νi,jk = zik − ẑi,j
k|k−1 is the measurement innovation and

P
i,j
zz,k is its covariance matrix. In fact, ǫjk is calculated during

the measurement update ordering process (see lines 10-11 in

Algorithm I). It is known that when the filtering is consistent,

ǫjk should follow a chi-squared distribution with nz degrees of

freedom (i.e, ǫjk ∼ χ2
nz

).

To account for the filtering history, the jth component that

satisfy (32) is removed

k
∑

k′=k−NT+1

ǫjk′ > χ2
NTnz

(1− α) (32)

where χ2
NTnz

(1−α) is the 100(1−α) percentile point of the

chi-squared distribution with NTnz degrees of freedom. NT

determines the memory length of the consistency test.

It is possible that after the innovation-based pruning, the

remaining number of components is smaller than a pre-

specified threshold Nmin, which may lead to a poor coverage

of the state space. In this case, we choose to keep all the

components.

V. SIMULATIONS

This section evaluates the performance of GMM-CQKF in

a nonlinear target tracking problem. We shall demonstrate the

advantage of using the proposed measurement update ordering



and innovation-based MR technique in improving the target

tracking accuracy.

A. Tracking Scenario

Consider a three-dimensional (3D) target tracking scenario

where TDOA and FDOA measurements observed by a pair of

UAVs are used for estimating target trajectory. The target has

a known altitude h = 20km. Its position and velocity at time k
are denoted as uk = [xk, yk, h]

T and u̇k = [ẋk, ẏk, 0]
T . This

indicates that the target is moving in a plane that is parallel to

and 20km above the x-y plane. The target trajectory follows

xk = Fkxk−1 + nk. (33)

xk = [xk, yk, ẋk, ẏk]
T is the target kinematic state at time k

to be identified. Fk is the state transition matrix and Qk is the

covariance matrix of the process noise nk. They are given by

Fk =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









, Qk = q











T 4

4 0 T 3

2 0

0 T 4

4 0 T 3

2
T 3

2 0 T 2 0

0 T 3

2 0 T 2











where T = 3s is the sampling period and q = 10−4m2/s4 is

the process noise intensity.

There are nz = 2 measurements observed at each sampling

time k and they are collected in zk = [z1k, z
2
k]

T . The first

measurement z1k = h1
k(xk) + v1k is the TDOA of the target

signal received at the two UAVs. The measurement noise v1k is

assumed to be Gaussian with zero mean and standard deviation

σ1,k = 40ns. The true TDOA h1
k(xk) is equal to

h1
k(xk) =

1

c
(‖uk − s

(2)
k ‖ − ‖uk − s

(1)
k ‖)

where c is the signal propagation speed, ‖ ∗ ‖ represents the

Euclidean norm and s
(g)
k (g = 1, 2) are the known positions

of the two UAVs at time k. z2k = h2
k(xk) + v2k is the FDOA

measurement and its true value is

h2
k(xk) =

f0
c
[e

(2)T
k (u̇k − ṡ

(2)
k )− e

(1)T
k (u̇k − ṡ

(1)
k )].

f0 = 1GHz is the carrier frequency of the target signal, ṡ
(g)
k

(g = 1, 2) are velocities of the two UAVs at time k and e
(g)
k =

(uk − s
(g)
k )/‖uk − s

(g)
k ‖ is the unit vector from UAV g to

the target position uk. The FDOA noise v2k is assumed to be

Gaussian with zero mean and standard deviation σ2,k = 5Hz.

We further assume that v1k and v2k are uncorrelated and they

are both independent of the process noise nk.

B. Performance Metrics

We quantify the tracking performance using the root mean

square error (RMSE) of the target position estimates from

simulations, which is defined as

RMSE(uk) =

√

√

√

√

1

Mc

Mc
∑

i′=1

(xk − x̂i′

k )
2 + (yk − ŷi

′

k )
2

where [x̂i′

k , ŷ
i′

k ]
T is the target position estimate in the i′th

ensemble run and Mc = 500 is the number of ensemble runs.

The posterior Cramér-Rao Lower Bound (pCRLB) gives the

best tracking performance we can achieve. Denoting A[i, j] as

the element in the ith row and jth column of matrix A, the

pCRLB for the target position estimate at time k is

pCRLB(uk) =
√

J−1
k [1, 1] + J−1

k [2, 2]

The information matrix Jk for the considered tracking problem

can be calculated recursively via [1], [22]

Jk = (FkJ
−1
k−1F

T
k +Qk)

−1 +HT
kR

−1
k Hk

where Rk = diag{c2σ2
1,k, (c/f0)

2σ2
2,k} is the measurement

noise covariance. Hk is the Jacobian matrix equal to

HT
k =











e
(2)
k (1)− e

(1)
k (1) φ

(2)
k (1)− φ

(1)
k (1)

e
(2)
k (2)− e

(1)
k (2) φ

(2)
k (2)− φ

(1)
k (2)

0 e
(2)
k (1)− e

(1)
k (1)

0 e
(2)
k (2)− e

(1)
k (2)











φ
(g)
k = (s

(g)
k −uk)ṙ

g
k/(r

g
k)

2+(u̇k−ṡ
(g)
k )/rgk, rgk = ‖uk−s

(g)
k ‖

and ṙgk = e
(g)T
k (u̇k − ṡ

(g)
k ). We assume a non-informative

prior for the state estimate such that Jk is initialized with

J1 = HT
1 R

−1
1 H1.

C. Implementation Details

In the simulation experiments, we set the GMM-CQKF filter

to initially have N1 = 6 components. The TDOA measurement

z11 obtained at time 1 is used to initialize them. In particular,

we adopt the GMM representation of the TDOA measurement

developed in [5] for component initialization. The generated

components are assigned weights equal to wj
1 = 1/N1.

Note from (29) that the scalar κ is required to determine the

covariance matrix Pp in N (xk|x̂p,Pp). This distribution will

be split to improve the coverage of the part of the state space

originally covered by the component with the largest weight in

the mixture, N (x̂k|x̂t
k|k−1,P

t
k|k−1). Let µj be the first two

elements of x̂
j

k|k−1 and Σj be the 2 × 2 upper left block

of P
j

k|k−1. Suppose N (x̂k|x̂r
k|k−1,P

r
k|k−1) is the component

whose mean vector has the smallest Euclidean distance to

x̂t
k|k−1. κ is thus obtained via

κ = max{ 1√
λt

ρT
t (µt − µr), 1}

where ρt is the eigenvector of Σt corresponding to its largest

eigenvalue λt.

D. Results

The simulated target tracking scenario is depicted in Fig. 1.

The target moves with an initial speed of 125m/s to the left and

its position at time 1 is u1 = [58.1434, 159.7477, 20]T km. The

two UAVs have parallel trajectories with a speed of 150m/s

and they maintain a fixed distance of 25km from each other

such that s
(2)
k − s

(1)
k = [25, 0, 0]T km and ṡ

(2)
k = ṡ

(1)
k . They

both move with a constant turn rate of 0.05rad/s. They would



change their turn directions when crossing the line y = 3km.

The two UAVs have an altitude of 5km and at time 1, UAV

1 is located at s
(1)
1 = [−12.5, 0, 5]T km and moving with a

velocity of ṡ
(1)
1 = [150, 0, 0]T m/s.
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Fig. 1. The TDOA and FDOA target tracking scenario, the cross × on the
TDOA curve denotes the mean of a mixture component after initialization.
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Fig. 2. Target position RMSE of the GMM-CQKF filter with different
measurement update ordering schemes.

The first simulation experiment evaluates the performance

of the GMM-CQKF with different measurement update order-

ing schemes. The results are summarized in Fig. 2, where the

target position RMSE is plotted as a function of time. Besides

the proposed ordering technique in Section IV.A, we con-

sider other three strategies. They include performing TDOA

update first (denoted as TDOA-FDOA), performing FDOA

update first (denoted as FDOA-TDOA) and joint exploration

of TDOA and FDOA (denoted as TDOA+FDOA).

The GMM-CQKF is realized with parameters set to be

nd = 3, Nmax = 16, Nmin = 3, wp = 10−4, α = 0.01 and

NT = 3. It can be seen from Fig. 2 that these four ordering

methods provide comparable target position RMSEs close to

the pCRLB. Among them, the estimation accuracy from jointly

exploiting the TDOA and FDOA in the measurement update

is the worst. Performance improvement can be obtained when

the measurements are used in sequence, because measurement

update in a sequential manner may reduce the nonlinearity

in the measurement update stage. The proposed measurement

update ordering, which selects the ordering to maximize the

component weight, offers the best performance, as expected.

In the second simulation, we compare the performance of

the GMM-CQKF with various MR techniques. The simulated

scenario is different from that shown in Fig. 1 in three aspects:

1) the target moves to the right; 2) the two UAVs now have a

smaller turn rate of 0.0064rad/s and they do not change their

turn directions during the whole tracking process; 3) UAV 1

has an initial velocity of ṡ
(1)
1 = [127.1997,−79.4998, 0]T m/s.

The parameters for implementing the GMM-CQKF are the

same as those used to generate Fig. 2, except that here, we set

the maximum number of components to Nmax = 6. For a fair

comparison, the realized GMM-CQKFs have the same mea-

surement update ordering and component splitting strategies,

as detailed in Section IV. A. We change the simulation scenario

so that the target position RMSE would converge slower than

in the first simulation, which could better demonstrate the

effect of different MR techniques on the tracking performance.
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Fig. 3. Target position RMSE of the GMM-CQKF filter with different MR
techniques.

The obtained results are summarized in Fig. 3, where the

target position RMSEs of the GMM-CQKF with different

MR techniques are plotted as a function of time. The results

from bootstrap PFs with different number of particles are

also shown. We can see that the pruning method, which

removes the components with lowest weights to fix the number

of components at Nmax, and the MR technique from [14]

have poor performance. This is because the pruning method

may mistakenly eliminate component following the true target

trajectory. Moreover, the technique from [14] could introduce

significant errors due to merging components distant from

each other. Although the similarity-based method from [9]

exhibits fast convergence, its target position RMSE increases

drastically after 5 minutes, possibly due to that it does not

consider the component weights when merging them. On

the contrary, MR methods such as the KL-based method

[6] and joining method [10] merge components that have

small weights, close mean vectors and similar covariances

perform better. But they are still inferior to the proposed MR

technique that is based on innovation process and takes into



account the filtering history. This clearly demonstrates the

advantage of removing inconsistent components in improving

the tracking accuracy. The bootstrap PFs, on the other hand,

even with a large number of 106 particles, yield unsatisfactory

performance probably due to the lack of particle diversity.
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Fig. 4. Track loss probability of the GMM-CQKF filter with different MR
techniques.

Fig. 4 shows the track loss probabilities of the GMM-

CQKF filter when using different MR methods as a function of

time. We declare the filter to have a track loss if its position

estimation error is larger than 4 · pCRLB. The observations

are very similar to those obtained from Fig. 3. The proposed

innovation-based MR method provides the lowest track loss

probability. The underlying reason is that the component

following the true target track is likely to be consistent and

it would not be eliminated by the proposed MR technique.

Therefore, the probability that the GMM-CQKF can converge

to a solution close to the true target trajectory is increased.

VI. CONCLUSIONS

In this paper, we integrated the GMM framework with a re-

cently developed nonlinear KF and established GMM-CQKF,

a new filter capable of handling nonlinear and non-Gaussian

filtering problems. Two enhancements were introduced. The

first enhancement is to determine the optimal measurement

update order for each component in the GMM-CQKF by

selecting the one that maximizes the component weight. The

second enhancement is an innovation-based MR technique that

also takes into account the filtering history of a component

when deciding whether it is about to be removed from the

posterior mixture. Simulations using a nonlinear TDOA and

FDOA tracking problem verified that significantly improved

target tracking accuracy close to the pCRLB can be obtained

with GMM-CQKF with the two proposed enhancements over

GMM-CQKF with other measurement update ordering and

MR strategies. These two enhancements may be incorporated

into other GMM-based filtering techniques for performance

improvement.
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