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ABSTRACT 

The Ga2O3(ZnO)m family of homologous compounds have been identified as potential 

thermoelectric materials, but properties are often limited due to low densification. By use of 

B2O3 as an effective liquid phase sintering aid, high density, high quality ceramic samples of 

Ga2O3(ZnO)9 have been synthesized. The atomic structure and local chemical composition of 

Ga2O3(ZnO)9 have been determined by means of high resolution X-ray diffraction and atomic 

resolution STEM-HAADF, EDS and EELS measurements. X-ray analysis showed that the 

compound crystalizes in the Cmcm orthorhombic symmetry. Atomically resolved HAADF-

STEM images unambiguously showed the presence of nano-sized, wedge-shaped twin 

boundaries, parallel to the b-axis. These nano-scale structural features were chemically 

investigated, for the first time, revealing the exact distributions of Zn and Ga; it was found that 

Ga ions occupy sites at the junction of twin boundaries and inversion boundaries. HAADF-EDS 

analysis showed that the calcination step has a significant impact on crystal structure 

homogeneity.  By use of a sintering aid and optimization of processing parameters the ceramics 

achieved a low thermal conductivity of 1.5 to 2.2 W/m.K (for the temperature range 300 to 900 

K), a power factor of 40 to 90 µW/K.m2, leading to a ZT of 0.06 at 900 K. The work shows a 

route to exploit nanoscale interface features to reduce the thermal conductivity and thereby 

enhance the thermoelectric figure of merit in complex thermoelectric materials.  

Keywords: Ceramics; oxide materials; thermoelectic materials; solid state reactions; transmission 
electron microscopy, TEM; Ga2O3(ZnO)9;  
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1.  INTRODUCTION 

The application of traditional thermoelectric metallic alloys is restricted by several challenges. 

For instance, alloy sublimation at elevated temperatures limits their reliability and operational 

range. Meanwhile the low abundance, cost and environmental impact of key constituent elements 

is driving the search towards more environmental friendly alternatives, such as oxides [1–3], 

which can operate over broader and more demanding temperature ranges. Selection criteria for 

candidate materials include the need for both high electrical conductivity and low thermal 

conductivity. The typical thermoelectric figure of merit (    of oxide materials is lower than that 

of their alloy counterparts, but the interesting crystal structures exhibited by nano-periodic 

oxides, make them promising candidates for thermoelectric applications.  

Recently, the Ga2O3(ZnO)m homologous compounds [4–9] have attracted attention as potential 

thermoelectric materials due to the presence of naturally occurring twinned nanostructures, 

which readily scatter phonons, thereby reducing the thermal conductivity. The first Ga2O3(ZnO)m 

compounds were synthesised by Nakamura et al. [10]. They proposed a “distorted” wurtzite 

structure for the solid solution range of (Ga2O3)x(ZnO)1-x (0≤x≤0.093) instead of a layered type 

structure. Subsequently, Kimizuka et al. [11] reported the formation of Ga2O3(ZnO)m 

homologous compounds with an orthorhombic Cmcm space group. It was suggested that Ga 

atoms can only occupy tetrahedral sites in Ga2O3(ZnO)m [11], and thus why they do not 

crystallise isostructurally with LuFe3(ZnO)m [12]. Later, Li et al. [13] examined Ga2O3(ZnO)m 

(m=9 and 13) by high resolution transmission electron microscopy and image simulation 

techniques and proposed a twinned structure comprising stacks of Ga-O and (m + 1) Ga/Zn-O 

layers along the c-axis, with a zigzag arrangement of anions and cations with the non-

centrosymmetric Cmc21 space group for m = 9.  Michiue and Kimizuka [5]   introduced a 
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superspace formalism to describe the structure of the homologous series Ga2O3(ZnO)m, treating 

them as compositely-modulated structures, consisting of two subsystems. They suggested that 

the distribution of Ga and Zn in Ga2O3(ZnO)m resembles the arrangement of Zn cations in the 

Wurtzite structure of ZnO, and the arrangement of O anions resembles the framework made by O 

anions in the Wurtzite structure.  

The exact structures of the Ga2O3(ZnO)9 homologous compound and specifically the 

occupancy of the Zn and Ga lattice sites are not well established [4–8,14]. This is, in part, due to 

analytical limitations of the radiation techniques, arising from the close proximity of the atomic 

numbers of Zn and Ga, making the exact determination of the site occupancy of Ga and Zn in the 

twin boundaries and the accompanying inversion boundaries very difficult. The presence of Ga-

induced, non-periodic twin boundaries and inversion boundaries on the         planes of ZnO 

has been reported [9,15], showing segregation of Ga in the twin and inversion boundaries.   

The twinned crystal structure of the Ga2O3(ZnO)m compounds tends to encourage anisotropic, 

plate-like grains which are difficult to densify in ceramic form. Michiue et al.[6] synthesised 

polycrystalline Ga2O3(ZnO)9 at 1723 K and achieved a density of only 57% theoretical. By the 

use of Cold Isostatic Pressing (CIP) the density was increased to 73%, which is still modest by 

the standards of most functional ceramics. However, the electrical conductivity of the low 

density sample was as high as 13 S/cm, which was comparable with that exhibited by the more 

expensive indium analogue, In2O3(ZnO)9  [16]. In view of the encouraging electrical conductivity 

reported for the very low density Ga2O3(ZnO)9 ceramics [6], and the fact that the layered 

structure materials are expected to have low thermal conductivity [17], the Ga2O3(ZnO)9 

ceramics should exhibit enhanced and potentially useful thermoelectric properties if the problem 

of very low density can be addressed.  
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In this study, we synthesised and investigated the crystal structure and thermoelectric 

properties of ceramic Ga2O3(ZnO)9. We selected this member of the homologous series because 

of the promising thermoelectric properties [6], although recognising that limited structural data 

had been reported [5,6]. To enhance density we employed B2O3 as a sintering aid to both reduce 

the processing temperatures and increase sample quality [18].  

In view of the uncertainties concerning structural details of Ga2O3(ZnO)9 and the fact that 

nano-scale features in the microstructure have a significant impact on thermoelectric properties 

[6,9,19], we employed X-ray diffraction and electron microscopy techniques. The exact crystal 

structure of Ga2O3(ZnO)9 was determined by combined high resolution X-ray diffraction and 

atomic resolution analytical Scanning Transmission Electron Microscopy (STEM) techniques; 

namely High and Medium Angle Annular Dark Field imaging (HAADF and MAADF, 

respectively), Energy Dispersive X-ray spectroscopy (STEM-EDS) and Electron Energy Loss 

spectroscopy (STEM-EELS). The atomically resolved HAADF- and MAADF-STEM images 

unambiguously showed the presence of nano-sized features; these structural features were 

chemically investigated, for the first time, revealing the exact distribution Zn and Ga in 

Ga2O3(ZnO)9.  

 

2. MATERIALS AND METHODS 

Ga2O3(ZnO)9, hereafter identified as Z9GO, ceramics were prepared by the conventional solid-

state reaction technique. The starting raw materials, reagent-grade ZnO and Ga2O3 were mixed in 

molar ratios 9:1 and vibratory milled for 24 h. After a series of trial experiments the mixed 

powders were calcined at 1473 for 4 h. The calcined powders were milled again for 24 h; during 

this second milling stage 0.2 wt% of B2O3 was added. The dried powders were uniaxially 
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pressed in a 20 mm die at ~25 MPa and then sintered in air for 2, 4 and 12 h at 1673 K, under 

powder bed of the same composition; samples are denoted as 2H, 4H and 12H respectively. One 

set of samples were sintered at 1673 K for 4 h without being calcined; these are denoted as NC.  

The microstructures of the polished surfaces of the samples were analysed using Philips® 

XL30 (FEG)-SEM HKL® microscope equipped with an energy-dispersive X-ray (EDX) detector. 

Initial X-ray diffraction studies and phase identification of the calcined powders were carried 

out using a Philip PANalytical X'Pert Pro® diffractometer with Cu Kα radiation, for 2θ ranging 

from 10° to 100° in steps of 0.017. For Synchrotron Radiation X-ray Powder Diffraction (SR-

XPD) study, the sintered pellets were ground and mounted in a 0.5 mm borosilicate glass 

capillary, which was irradiated with the I11 beamline (λ = 0.825625(10) Å and E=15 keV) at the 

Diamond Light Source over the 0-100° 2θ range. Rietveld full-profile refinement [20] was 

undertaken using Topas 5.0 [21]. 

For the Transmission Electron Microscope (TEM) observations, samples were conventionally 

prepared by crushing in a pestle and mortar and drop cast onto lacey carbon support grids. The 

specimens were initially investigated using selected area electron diffraction (SAED) and high-

resolution transmission electron microscopy (HRTEM) techniques using an FEI FEG-TEM 

(Tecnai G2 F30) operating at 300 kV. 

Atomic-resolution structural characterization was carried out using a Nion UltraSTEM 

aberration-corrected dedicated STEM equipped with a Gatan Enfina electron energy loss 

spectrometer. This microscope was operated at 100 kV acceleration voltage and the probe-

forming optics were adjusted to form a 0.9 Å electron probe with a convergence of 31 mrad and 

beam current of approximately 50 pA. The HAADF detector inner and outer semi-angles were 

calibrated at 82-189 mrad, while for all electron energy loss spectroscopy (EELS) data presented 
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here the collection semi-angle (spectrometer acceptance angle) was 36 mrad. EELS spectrum 

images (EELS SI) were acquired by rastering serially across a defined area of the specimen, 

recording an EEL spectrum at each position. EELS SI data for chemical mapping were de-noised 

by Principal Component Analysis using the MSA Cime- EPFL plugin [22] for Digital 

Micrograph. EELS chemical maps, namely Zn L2,3 were subsequently produced by integrating 

pixel-by-pixel the intensity edges) over a fixed energy window of 40 eV above the edge onset, 

after subtraction of the decaying background using a standard power law fitting function.  

Atomic-resolution Energy-dispersive X-ray spectroscopy (EDS) was performed in an FEI 

Themis Electron Microscope operated in STEM mode at 200 kV. EDS acquisition was carried 

out using a Super-X detector system (ChemiSTEM technology). EDS spectrum images were 

acquired by continuously rastering serially across a defined area of the specimen, recording 

cumulative EDS spectra at each position. EDS chemical maps were produced by integrating the 

intensity of the Zn K and Ga K absorption peaks, respectively.  

The Electrical Conductivity of the samples was measured using the four-probe method, and 

their Seebeck coefficient was measured using the differential method. Both properties were 

measured simultaneously from room temperature to 873   in an ULVAC® ZEM-3® using 

2x2x12mm samples. The thermal conductivity ( ) was determined from the thermal diffusivity 

(    heat capacity (    and density ( ), using the relationship:                       (1) 

The thermal diffusivity of the samples was measured using the Laser Flash Technique (LFT) in 

an Argon atmosphere at atmospheric pressure using the NETZCH® LFA 427®.  The heat 

capacity was measured by the Differential Scanning Calorimeter Netzsch® STA 449 C® in a 

reducing atmosphere. Density was determined by the Archimedes method. 
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3. RESULTS AND DISCUSSION 

3.1.Optimization of the Microstructure 

Following trial experiments, a calcination temperature of 1473 K was adopted. It enabled 

development of a significant fraction of the target phase Ga2O3(ZnO)9 (denoted as Z9GO), 

without excessive particle growth, although both ZnO and ZnGa2O4, were present in the powder 

(Figure 1a). A range of sintering temperatures were explored. At and below 1623 K, the products 

were of low density (less than 90% theoretical) and still contained the ZnGa2O4 secondary phase. 

Temperatures above 1673 K led to microcracks and unnecessary volatilisation of ZnO. Samples 

sintered at 1673 K for 2 to 12 hours (denoted as 2H to 12H etc) were single-phase (Figure 1b), 

crack-free, high density and typically 90% theoretical, independent of the sintering time.  Figure 

2 shows typical Back Scattered Electron (BSE) SEM micrographs of samples sintered for 2 and 

4 hours. All the grains exhibit plate-like morphologies with an average grain size ~ 20 µm 

(Figure 2); for longer sintering times there was a slight increase in grain size. The resulting 

samples (sintered at 1673 K for 2 to 12 hours) were subjected for further crystal structure and 

thermoelectric property analysis.  
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Figure 1. XRD spectra for the Z9GO powders (a) calcined for 4 hours at 1473 and then (b) 

sintered at 1673 K (sample 4H).  

 

Figure 2. BSE-SEM images of ceramic Z9GO: (a) 2H, and (b) 4H. 

(a) (b) 
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3.2.Atomic scale characterization 

As mentioned earlier, the refinement the crystal structure, and explicitly the relative occupancy 

of the lattice sites in Ga and Zn, is particularly challenging solely from XRD data. In order to 

better inform the structure refinement, atomic scale structural and chemical information is 

needed. For this we turn to local probe techniques and more specifically electron microscopy. 

High precision STEM imaging and analysis as well as atomically resolved chemical mapping 

were performed in order to obtain the relative occupancy of atomic columns in Zn and Ga.  

Figures 3a and 3b show HAADF STEM images (non-rigid reconstructed from stacks of ~30 

frames) of the sample with the highest figure of merit, 4H-Z9GO, acquired with the incident 

electron beam parallel to the [100] direction; the images reveal a head to head type twinned 

nanostructure, with a wedge apex angle of about ~63.37  (marked in Figure 3b).  The boundaries 

of the twins, labelled as TB in Figure 3b, are parallel to the b- axis of the crystal structure. The 

deduced width of the twins from the lattice images is about 33 Å in agreement with HRTEM (see 

Figure S1 in the in the supplementary information provided).  The well-ordered nano-TB are 

marked with parallel white lines (Figure 3b). The        atomic columns in between the 

wedge shaped nano-TB boundaries are observed, as reported in previous HRTEM studies [13]. 

The width of the nano-twins is uniform throughout the region screened in Figure 3, 

corresponding to        atomic columns. The stacking sequence in the modular structure 

of the Ga2O3(ZnO)m compounds must be described considering both, the twin and inversion 

boundaries as structure building operators [4,14,15][9]. Recently Guilmeau et al. [9] showed that 

in HAADF images of heavily twinned ZnO doped with 4mole% Ga, the twin widths were 

generally large, about 100 nm, and the inversion boundaries appeared as dark bands mid-way 

between the twin boundaries. However, in the present samples there is no variation in the 
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contrast of the HAADF image of sample 4H (Figure 3a,b). This is possibly because of the 

smaller width of twin in this sample. 

 In contrast to the 4H-Z9GO sample, the HAADF–MAADF-STEM images of the 

corresponding NC-Z9GO sample (prepared without calcination processing stage, Figure 3c and 

d), show a non-periodic arrangement of the nano-TB with evidence of the presence of inversion 

boundaries (white bands in the MAADF image). This non-periodic arrangement of the nano-TB 

boundaries cannot be expressed as Ga2O3(ZnO)m or (Ga2O3)2(ZnO)2m+1 homologous compounds. 

The distribution of Zn and Ga in the Z9GO structure was investigated by atomically resolved 

STEM-EDS (Figure 4). The atomically resolved STEM-EDS maps shown in Figure 4 reveal the 

prevalence of Ga (and corresponding Zn depletion) at the TB, more specifically by the darker 

atomic columns in the HAADF images of both the 4H- and NC-Z9GO samples (Figure 4 c and g, 

respectively). The Ga partially-occupied TB observed in the HAADF-EDS maps (Figure 4) 

shows that Ga and Zn occupy the alternate lattice sites in the twin boundaries. The distribution of 

Zn in the NC sample was also confirmed by atomic resolution EELS mapping (Figure 3 in SI). 

This finding is in good agreement with the predictions of Barf et al. [15], based on their low-

resolution EELS study, and the Guilmeau et al. [9] HAADF-STEM-EDS study of twin 

boundaries of Ga doped ZnO. It should be noted that in the Guilmeau et al study [9], the Ga EDS 

signal was not clearly resolved. However, based on the Zn deficiency in the EDS map at the TBs 

it was concluded [9] that the TBs should be rich in Ga. The experimental observations by Barf et 

al. [15] and Guilmeau et al. [9] were supported by the theoretical calculations [14] for a low end 

member of the homologous series (Z6GO); it was predicted that twin boundaries on the         
planes of ZnO would be half occupied by Ga, and would have the polar   axis of the ZnO 

pointing towards the twin boundary (head to head configuration) [15]. Furthermore, Ga enriched 
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bands (depleted in Zn) can be observed parallel and in between the TBs (Figure 4). These Ga 

rich boundaries can be inferred as inversion boundaries. The formation of Ga containing 

inversion boundaries in between the nano-TB boundaries has been proposed as structure-

building-operators associated with inversion of the orientation of the ZnO teterahedra [15]. 

Figure 4 confirms past experimental prediction and calculations, showing Ga rich inversion 

boundaries halfway between the twin boundaries corresponding to Ga agglomerations reversing 

the polarity of the ZnO   axis.   
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Figure 3. HAADF – MAADF STEM images acquired along the [100] zone axis of Z9GO 

samples: (a) and (b) are HAADF images for 4H sample; (c) and (d) are HAADF and MAADF 

images respectively for the NC sample. The twin boundaries (TB) of the Ga2O3(ZnO)9 structure 

are marked in (b). 
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Figure 4. (a),(e) HAADF STEM images and (b-d), (f-h) atomically resolved EDS maps of the 

4H and NC- Z9GO compounds respectively, showing the prevalence of  Ga in TB and IB. 

 

HAADF STEM imaging and STEM-EDS mapping therefore clearly show that the calcination 

process helped to homogenize the Zn and Ga distribution throughout the structure of the 

homologous compounds, achieving a more periodic distribution of the nanotwin and inversion 

boundaries after a calcination stage. Although, in the NC-Z9GO sample the number of Ga/Zn-O 

layers is not even, the distribution of Ga atoms is preserved (Figure 4).  
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3.3.XRD refinement 

For the structural refinement, the crystal structure parameters given in the       dimensions 

using the superspace formalism presented by Michiue et al. [5] (and converted to three 

dimensional format by the same group [6]) was used as a starting point to further improve the 

structural model. In the prosed model [6], Zn has been considered as the main element for all the 

lattice sites throughout of the entire crystal structure. This is the same for the distribution of Ga 

but with much lower content compared to the Zn to maintain the stoichiometry. However, our 

HAADF-STEM-EDS data showed very different site occupancies specifically for both Ga and 

Zn. Therefore, the elemental distribution data from both HAADF-STEM imaging and atomic 

resolution EDS mapping was used for site occupancies of Zn and Ga in the input structural file 

for Rietveld refinement of the synchrotron X-ray diffraction data.  

The modified structural parameters (coordinates and site occupancies for Ga) based on  

electron microscopy observations from the sample 4H-Z9GO were used to perform a Rietveld 

refinement on the SR-XPD data, using the suggested Cmcm space group [6]. Cell dimensions, 

lattice parameters, peak shape, site occupancies, thermal displacement parameters and 

background were refined; the final lattice parameters obtained through the Rietveld refinement, 

are shown in Table 1, along with the goodness of fit (GOF) and the R indexes (Rwp and Rp). The 

refined coordinates for Zn, Ga and O and their site occupancies are listed in Table S1. All the 

reflections are fully indexed with the optimized crystal structure obtained. The refined lattice 

parameters were not significantly affected by the sintering time; a slight increase in the unit cell 

volume is observed for the 4H sample due to slightly higher values for unit cell dimensions, a 

and b. The result of the Rietveld refinement of the full spectrum for 4H –Z9GO sample is shown 

in Figure 5. 
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Table 1. Structural parameters and R-factors obtained after Rietveld refinement. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Final Rietveld refinement of data for the 4H-Z9GO sample using the proposed crystal 

structure for Z9GO. The red crosses correspond to the experimental data, the blue line to the 

calculated pattern, and the grey line the difference between experimental and calculated data.  

      Sample Label 

 

Parameter 

2H 4H 12H 

a (Å) 3.25226(6) 3.25302(6) 3.25240(6) 

b (Å) 19.7124(4) 19.7142(4) 19.7111(4) 

c (Å) 33.6306(6) 33.6355(6) 33.6315(7) 

Rwp 3.17 3.15 3.13 

Rp 2.18 2.16 2.13 

GOF 4.82 4.68 4.68 
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The resulting crystal structure from the Rietveld refinement of sample 4H- Z9GO is shown in 

Figure 6a – alongside a corresponding HAADF STEM image. The purple bipyramids in Figure 

6a are occupied by Ga; the positions of the twin and inversion boundaries identified are marked 

by black arrows. In the twin boundaries Ga and Zn occupy the lattice sites alternatively along the 

b-direction (Figure 6a); Ga is coordinated with 5 oxygen atoms inside a square pyramid and Zn 

is located within tetrahedron coordinated with 4 oxygen atoms. In this structure, the occupancy 

of Ga-O and Zn-O at the twin boundaries is the same the model proposed by Barf et al. [15] for 

Ga doped Zinc oxide.   The superimposed [100] projection of the final crystal structure on the 

[100] HAADF image is shown in Figure 6b. 

 

Figure 6. (a), [100] Schematic structural representation of the Z9GO compound; the position of 

Ga and its oxygen environment is shown inside black ellipsoid. The position of Zn and its 

oxygen environment is shown inside blue ellipsoid. An example of tail to tail type inversion of 
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Zn-O tetrahedral on the either side of IB is shown by black lines.   (b) The superimposed [100] 

projection of the final crystal structure on the [100] HAADF image. 

 

 

3.4.Thermoelectric Properties 

The thermoelectric properties of the Z9GO compounds are presented in Figure 7.  All the 

samples show n-type behavior, with high Seebeck coefficients that increase with increasing 

temperature (Figure 7a). The Seebeck coefficients for sample 4H are in the range of -210 and -

300 µV/K, and across all samples they are as high as -340 µV/K. In comparison with other 

homologous compounds, these Seebeck coefficients are at least comparable with or higher (at 

high temperatures) than most other materials, including the much more expensive indium 

analogue In2O3(ZnO)9 [16,23-25].  

All the samples show semiconductor behaviour from room temperature up to 600 K, then 

metal-like behaviour at higher temperatures (Figure 7b). However, the total variation in electrical 

conductivity across the full temperature range is modest (~10%). This consistency in electrical 

conductivity has been noted previously for ZnO ceramics heavily doped with Ga, and was 

attributed to tunnelling effects induced by superlattice interfaces which limit the electrical 

conductivity of Ga-ZnO materials [26]. Among the samples investigated, the sample sintered for 

4 h (4H-Z9GO) exhibits the highest electrical conductivity (in the range of 9.5 to 10.5 S/cm), 

being slightly higher than that for other calcined and the one non-calcined sample. The reason for 

slightly increased electrical conductivity of sample 4H is not known. However, this increase is 

consistent with the reduction of Seebeck coefficient of sample 4H compared to the Seebeck 

coefficients for other samples (Figure 7a). It is noted that the electrical conductivities of the 
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samples in this study with 90% theoretical density are in the same range as those reported by 

Michiue et al [6] which had much lower densities (70% theoretical). Very different processing 

conditions were used in the two studies; higher sintering temperatures and longer times by 

Michiue et al [6] along with an ‘open’ sintering atmosphere. The use of B2O3 in the present study 

was critical for achieving high densities, but its ultimate presence in the grain boundaries may 

have had a deleterious effect on electrical conductivity.   

All the samples showed very low thermal conductivity of 2.3 to 1.5 W/K.m (Figure 7c). These 

values are the lowest reported for homologous compounds based on ZnO heavily doped with Ga9  

and Indium analogues [16,23]. Commonly, all the samples show limited variation in thermal 

conductivity with temperature (Figure 7c), this being more pronounced for 4H-Z9GO. The 

contribution of lattice thermal conductivity (  ) to total thermal conductivity was calculated by 

assuming a Wiedemann-Franz relationship and a constant Lorentz number, (                            ). Data for the two components are presented in Figure S3. It is clear that 

lattice thermal conductivity dominates, being two orders of magnitude larger than the electronic 

component. This suggests that the total thermal conductivity is mainly controlled by the complex 

crystal structure exhibited by these homologous compounds and the low thermal conductivity is 

intimately linked to the range of nano-scale features acting as phonon scattering centers. In 

particular we propose that the following factors control the thermal conductivity response of 

Z9GO homologous compounds: (i) presence of twinned crystal structures; (ii) presence of 

inversion boundaries; (iii) alternating sequence of occupancy for Ga and Zn with different 

oxygen coordination in the TB boundaries along the b-direction; (iv) segregation of the Ga in the 

IBs having different oxygen coordination compared with oxygen coordinated Zn which occupy 

all the lattice sites between TB and IB boundaries. The low thermal conductivity of the Z9GO 
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compounds (Figure 7c) clearly demonstrates the importance and benefit of optimising the 

processing conditions. There is a dramatic 25 % reduction in thermal conductivity between 

samples which were not calcined and those which were calcined. This almost certainly reflects 

the increased homogeneity of microstructure in the samples subjected to a two stage heat 

treatment.  

Finally, the thermoelectric figure of merit (ZT) data for the samples is presented in Figure 7d. 

As anticipated, the ZT values for 4H-Z9GO samples are highest while those for NC-Z9GO 

samples are the lowest, reflecting the significant differences between their electrical conductivity 

and thermal conductivity values (Figure 7 a, c).  The figure of merit of the NC-Z9GO sample was 

effectively doubled by the calcination step, both homogenizing the bulk microstructure and 

homogenizing the width of the nano-twinned region, thereby lowering the thermal conductivity. 

Thus, the samples with the most promising thermoelectric properties are those calcined prior to 

sintering for 4 h at 1673 K, giving densities of 90% theoretical; in the optimised samples, a 

power factor of 90 µW/K.m2 was obtained at 900 K leading to ZT of 0.06 at 900 K.  
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Figure 7. Thermoelectric properties of 0.2 wt% B2O3 doped Z9GO samples (NC, 2H, 4H and 

12H): (a) Seebeck coefficient, (b) electrical conductivity, (c) thermal conductivity, (d) 

thermoelectric figure of merit. 

 

To understand the wider compositional dependence of the thermoelectric properties of the 

Ga2O3(ZnO)m compounds we have combined our data with the recent results of Guilmeau et al 

[9]. The relationships can be better revealed by using Zn1−xGaxO1+x/2 description for the 

homologous compounds (Figure 8). Samples reported by Guilmeau et al [9] cover low values of 

x from x = 0.005 to x = 0.04; our samples are equivalent to x = 0.18.  
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Figure 8. Thermoelectric properties of homologous compounds Zn1−xGaxO1+x/2 as a function of 

composition and temperature: (a) electrical conductivity, (b) Seebeck coefficients, and (c) 

thermal conductivity. Data for samples 0.005 < x ≤ 0.04 taken from Guilmeau et al.
 
[9]; data 

labelled 4H (equivalent to x = 0.18) from this study.  
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The collected data in Figure 8 shows that increasing the level of Ga significantly increases the 

Seebeck coefficients but dramatically reduces electrical conductivity and thermal conductivity. 

The net reduction in electrical conductivity with increasing Ga content is ascribed to a reduction 

in carrier concentration and mobility
 
[8,9] as a result of the formation of Ga-rich twin boundaries 

and inversion boundaries and an increased density of planar defects. The increasingly resistive 

nature of the samples is accompanied, as expected, by a rapid beneficial increase in Seebeck 

coefficients. As the homologous series Ga2O3(ZnO)m moves to the lower values of m, such as m 

= 9 for Ga2O3(ZnO)9, not only is there an increase in the number and density of planar defects, 

but there is also a reduction in the width of the twin domains. Together these lead to the 

exceptionally low thermal conductivities of ~1.5 W/K.m recorded for Ga2O3(ZnO)9 (Figures 7 

and 8); such values are very low for any oxide thermoelectric. Whilst the high Seebeck 

coefficients and low thermal conductivity for Ga2O3(ZnO)9 are desirable, the low electrical 

conductivity limits the thermoelectric figure of merit to ~0.055 at 900 K, which is only 

marginally lower than the value of 0.065 (at 900 K) reported for  Zn1−xGaxO1+x/2 with x = 0.04 by 

Guilmeau et al. [9]. Intrinsically, these homologous series compounds are not yet suitable in their 

own right as viable thermoelectric materials, but understanding and exploiting the nanostructured 

planar defects in other complex-structured materials could be very valuable.   

To summarize, we have confirmed that boron oxide is effective in aiding the synthesis of 

dense, high quality samples of Ga2O3(ZnO)9 as the first essential requirement for further 

improvement of the properties through control of the processing parameters. Following 

optimization of the processing parameters, the overall figure of merit sample was doubled by 

including calcination step to homogenize the width of the nano-twinned region, as confirmed by 

atomic resolution imaging. 
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We have shown, for the first time, the existence of the inversion domain boundaries in Z9GO. 

Moreover, we have determined the chemistry and cation-oxygen environment for this material. 

Our data shows that the crystal structure of Z9GO contains various atomic and nano scale 

features, namely Ga-O pyramids and Zn-O tetrahedrons at the twin boundaries, Ga-O bipyramids 

at the inversion boundaries and inverted Zn-O tetrahedrons either side of the inversion 

boundaries. Consequently, these act as phonon scattering centers promoting very low thermal 

conductivity for Z9GO, with the values being the lowest reported so far for any dense 

homologous ceramic. However, since the samples have been sintered in air, they possess low 

electrical conductivity, which could be further improved through donor doping. In addition, the 

thermal conductivity could be further reduced by changing the width between each V-shaped 

interface when the value of m is modified. Texturing in conjunction with optimized m and 

doping should be also considered for overall improvement of thermoelectric response, since the 

ZT value of the textured Indium analogue is very much higher than that of the normally-

processed (randomly grain distributed) samples (0.08 compared with 0.30 at 1100 K  [17].  

 

4. CONCLUSIONS 

High quality Z9GO ceramics were prepared by liquid phase sintering through the addition of 0.2 

wt% of B2O3 to the starting materials. The crystal structure was unambiguously resolved by 

employing a combination of synchrotron radiation and atomic resolution electron microscopy. 

The Z9GO crystallizes in an orthorhombic symmetry with       ,          and         

Å in the Cmcm space group. The crystal structure contains two types of planar interfaces; (i) 

head to head twin boundaries and (ii) and tail to tail inversion boundaries. Ga ions occupy the 

lattice sites at the interface of twin boundaries and inversion boundaries. As a result, Z9GO 
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exhibits very low thermal conductivity.  The contribution of the low thermal conductivity to the 

figure of merit, is the main factor increasing the    at high temperatures.  The thermoelectric 

properties of the Z9GO compounds are comparable with most expensive and extensively studied 

In2O3(ZnO)m homologous compounds. The overall thermoelectric response of the Z9GO and 

related compounds is still modest. There is scope for improvement through a combination of 

suitable doping, further inclusion of nano-defects and use of alternative synthesis routes. 

However, it is clear that the development and presence of natural nanoscale interface features 

can dramatically reduce thermal conductivity. Exploiting such features by engineering the 

nanostructures of complex thermoelectric materials could lead to significant improvement in 

thermoelectric performance.  
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Highlights 

 High quality ceramic  Ga2O3(ZnO)9 has been synthesised 

 Very low thermal conductivity for an oxide of 1.5 to 2.2 W/m.K has been achieved 

 HAADF-STEM showed the presence of nano-sized, wedge-shaped twin boundaries 

 The nano-scale features, chemically investigated for the first time, revealed the Zn and Ga 

distribution 

 Ga ions occupy the sites at the interfaces of twin boundaries and inversion boundaries 
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