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ABSTRACT13

Environmental change is expected to increase the frequency and severity of problems14

caused by harmful algal blooms. We investigated the ecology of phytoplankton blooms in UK15

canals to determine the environmental predictors and spatial structure of bloom16

communities. The results revealed a significant increase in bloom presence with increasing17

elevation. As predicted, higher temperatures were associated with a greater probability of18

blooms, but the relationship between temperature and bloom occurrence changed across19

landscapes. At the minimum level of agricultural land, the probability of bloom presence20

increased with increasing temperature. Conversely, at the maximum level, the probability21

decreased with increasing temperature. This pattern could be due to higher temperatures22

increasing phytoplankton growth rates despite lower nutrient concentrations at low levels of23

agricultural land, and nutrient depletion by rapidly growing blooms at high levels of24

agricultural land and temperatures. Community composition exhibited spatial autocorrelation:25

nearby blooms were more similar than distant blooms. Hydrological distances through the26

canal network showed a stronger association with community dissimilarity than Euclidean27

distances, suggesting a role for hydrological connectivity in driving bloom formation and28

composition. This new knowledge regarding canal phytoplankton bloom origin and ecology29

could help inform measures to inhibit bloom formation.30

31
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INTRODUCTION33

Algal blooms cause significant harm to humans, the economy and wildlife (Landsberg 2002).34

Some bloom-forming algae, particularly freshwater cyanobacteria, synthesise toxins that can35

cause health problems for humans and other animals (Landsberg 2002; Codd et al. 2005;36

Malbrouck and Kestemont 2006). Furthermore, algal blooms result in a reduction in water37

clarity and potential oxygen depletion, negatively impacting aquatic organisms (Paerl and38

Otten 2013). Consequently, removal of these toxins from water systems and prevention of39

future contamination are of critical importance. Although algal blooms occur naturally, human40

activity has significantly increased the incidence of blooms (Anderson et al. 2002). Both41

freshwater and marine algal blooms are exacerbated by eutrophication from N and P inputs.42

Previously, P has been identified as the most problematic nutrient (Smith 2003) although43

subsequent work has illustrated the need to control both N and P depending upon the44

composition of the blooms and the nature of the ecosystem (Conley et al 2009). While45

blooms of N2-fixing cyanobacteria were thought to prevent N-limitation in aquatic systems,46

subsequent experiments have shown that this N2-fixation is unable to compensate for N47

limitation (Scott et al 2010). Based on experimental studies of whole-lake ecosystems,48

combinations of N and P have been shown to have the greatest effect, necessitating their49

combined control (Paerl et al 2016). In freshwater habitats, such as lakes, rivers and50

streams, this N loading is often derived from fertiliser runoff and animal waste from51

agriculture, and in the UK P is primarily pollution from sewage (Anderson et al. 2002). The52

costs associated with the damage caused by freshwater eutrophication and algal blooms in53

England and Wales have been estimated at £75.0-114.3 million per year, with an additional54

£54.8 million of costs is being spent per year on policy responses in order to attend to the55

damage (Pretty et al. 2003). However, Pretty et al. (2003) suggest that if eutrophication was56

prevented before the damage occurred, the costs would be reduced.57

58

In the absence of a predictive framework for the control of algal blooms prior to their59

occurrence, research has focused on how to inhibit algal blooms shortly after formation.60
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Some studies have found cyanophages and viruses that could be introduced into water61

systems to control them (Brussaard, 2004; Yoshida et al. 2006). However, as with any62

biocontrol method, there are highly complex potential problems that can result from the63

release of other species as a means of control (Simberloff and Stiling 1996). It should also64

be pointed out that the treatment of algal blooms with cyanophages and viruses would not fix65

the underlying cause of the problem. In order to do this, measures by which water pollution66

can be prevented need investigation. While a 37-year study investigating the efficacy of67

reducing N input to control algal blooms suggested that N limitation does not reduce bloom68

formation (Schindler et al. 2008), recent experimental work has emphasised the role of both69

N and P in driving eutrophication in standing waters (Scott et al 2010; Paerl et al 2016).70

However, efforts to reduce the concentration of P in the River Frome, UK, by inhibiting river71

pollution from sources such as sewage treatment works, suggested that algal blooms could72

be reduced using a P-focused approach (Bowes et al. 2011).73

74

Climate change is also predicted to affect algal bloom frequency. Increases in global75

temperatures are expected to benefit algal development as taxa such as cyanobacteria have76

higher growth rates in warmer waters (Johnk et al. 2008; Paerl and Huisman 2008; O'Neil et77

al. 2012). In the UK, predicted reduced rainfall in summer months will result in lower78

concentrations of dissolved oxygen and reduced river flow, leading to an accumulation of79

nutrients such as P in watercourses. Furthermore, unpredictable heavy rainfall will80

intermittently flood watercourses with nutrients from the land (Whitehead et al. 2009; Watts81

et al. 2015).82

83

Rivers are a particular type of watercourse that pose a unique set of questions regarding84

algal blooms, due to the dendritic network structure of these waterways. Dendritic networks85

are characterised by primarily linear features separating into branches. The movement of86

aquatic and semiaquatic species is largely restricted within these connected channels, as87

they are generally unable to leave the network (Grant et al. 2007). Research involving88
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experimental microcosms found that connectivity in dendritic networks could influence the89

transportation of species throughout these systems. In comparison to linear networks, the90

active dispersal of six protist and one rotifer species occurred quicker in dendritic networks,91

leading to faster colonisation of new areas (Seymour and Altermatt 2014). The flow of water92

in natural dendritic networks, including rivers, could also potentially enable passive dispersal93

of non-motile species of algae. Thus, the understanding of how network connectivity can94

facilitate active or passive dispersal of species, such as algae, is important for understanding95

the development of algal blooms in dendritic networks, such as rivers. This knowledge could96

also be vital for invasive species research, such as in the case of the invasive freshwater97

algae species Didymosphenia geminata which forms blooms in New Zealand and Canadian98

rivers with low-nutrient conditions, as well as those with higher P and N levels (Kirkwood et99

al. 2007; Bothwell and Kilroy 2011; Kilroy and Bothwell 2012).100

101

Canals are another example of a dendritic network that contains algae and associated102

blooms (Nagai et al. 2008; Zhu et al. 2015). As canals are manmade structures, they are of103

economic importance to humans as a means of transport, for recreational activities (Willis104

and Garrod 1991; Leuven et al. 2009), and as part of built heritage (Firth 2015). Importantly,105

in the UK, 23 canal stretches are designated Sites of Special Scientific Interest (SSSI), some106

of which are due to the presence of nationally rare species and habitats (Natural England107

2016). Also, the design of canals for industrial transport means that they often flow through108

densely populated urban areas. The study of algal blooms in canals (and, indeed, the109

ecology of canals in general) is a neglected area, with little information known about the110

origin and ecology of the blooms. Consequently, the conservation implications associated111

with understanding the origin and ecology of algal blooms in canals is of some importance,112

as such understanding has the potential to aid the protection of nationally rare species and113

habitats. A study of the River Thames basin, UK, found that rivers that are connected to114

canals have greater chlorophyll concentrations, indicating larger algal biomasses (Bowes et115

al. 2012). Thus, canals may be intensifying the problem of algal blooms in rivers. Moreover,116
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as with rivers, canals are potentially important networks for movement of native (Kim and117

Mandrak 2016) and invasive species (Leuven et al. 2009; Strayer 2010; Altermatt 2013).118

Due to the construction of many canals occurring near urban areas and other areas of119

human activity, it is more likely that invasive species will be introduced into canals and120

subsequently disperse into rivers (Willis and Garrod 1991).121

122

Much work has been done before on the drivers of algal and phytoplankton blooms. Instead,123

the main aims of this study were to investigate phytoplankton bloom ecology in canals to124

determine (i) the structure of the autocorrelation in the resulting residuals from models of125

bloom presence, and (ii) the spatial variability in the taxonomic composition of those blooms.126

We predict that the presence of blooms will exhibit a spatially-autocorrelated pattern,127

accounting for drivers of bloom formation, and that connectivity within the canal network will128

result in taxonomic compositions of phytoplankton blooms that are closer together129

geographically being more similar than those that are further apart. We test these130

hypotheses using a novel data source which arises from a bloom reporting system in131

operation in England.132

133

METHODS134

Land use data, including patterns of natural, agricultural, and urban land, were obtained from135

the Land Cover Map (LCM) 2007 (Centre for Ecology & Hydrology 2011) and elevation was136

derived from a digital elevation model (DEM) (Ordnance Survey 2016). From the UK137

Government’s Department for Environment, Food and Rural Affairs (Defra), data concerning138

canals, reservoirs, locks, wharves, docks, and lakes, ponds and fisheries, were obtained.139

From the WorldClim dataset, two environmental BioClim variables were downloaded for the140

UK: Bio1 (mean annual temperature, °C) and Bio5 (maximum temperature of the warmest141

month, °C) (Hijmans et al. 2005; Haylock et al. 2008). These two variables were selected142

because water temperature is known to affect cyanobacterial growth, with higher143

temperatures causing an increase in growth rate (Johnk et al. 2008; O'Neil et al. 2012). Both144
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variables represent air temperature which was predicted to correlate positively with water145

temperature, however the uniform structure of canals (a relatively standardised depth, width,146

and profile) means that we might expect a spatially consistent relationship between147

atmospheric and water temperature. However, the maximum temperature of the warmest148

month may be considerably higher than all of the other months, with a cooler temperature149

throughout the rest of the year. Where this occurs, the mean annual temperature would be150

more useful as areas with a higher temperature will be warmer, on average, throughout the151

entire year, not just during the warmest month. Therefore, both variables were obtained as152

either one may influence phytoplankton bloom presence. The Canal & River Trust (CRT) and153

the Environment Agency (EA) provided phytoplankton bloom data for both canals and154

reservoirs. Both datasets originate from a bloom reporting system, and so the definition of a155

bloom for the purpose of this study is a visible aggregation of phytoplankton at the water156

surface. Since the canal network is used extensively by recreational boaters, we assume157

that survey effort is relatively high across the network. Water samples are collected158

containing phytoplankton cells and preserved in Lugol’s iodine. The sample is then mixed159

thoroughly, and a representative subsample is transferred to a sedimentation tube. After160

settling, cells are identified and counted to give a density estimate for each taxon. The EA161

dataset includes the enumeration while the CRT dataset only contains presence/absence,162

and so the dataset was converted to all presence/absence to ensure that the data were163

comparable. While this data source does not give a standardised sample of blooms across164

the canal network, it provides a large number of samples from across the network that we165

believe represent an adequate view of where blooms occur. Details of the SSSI site canals166

in Great Britain were obtained from Natural England (Natural England 2016).167

168

Initial analysis of the data was performed in ArcGIS 10.4.1 for Desktop (Esri 2016), with all169

layers projected in the British National Grid. In order to produce individual canal stretches in170

which to analyse the phytoplankton bloom data, the canal dataset was split into “pounds”171

(stretches of canal on the same elevation that are divided by locks) along the canals.172
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Subsequently, a 5 km buffer was produced around each resultant canal pound (n = 2,439).173

The land cover, DEM, and climate data were then clipped to these buffers and the mean,174

minimum, and maximum values were calculated for each buffer using R 3.3.2 (R175

Development Core Team 2016). The same buffers were used to extract the proportions of176

the areas of aggregated land cover types (woodland, grassland, agriculture, and urban).177

Subsequently, these proportions were arcsine square root transformed. Woodland178

comprised broadleaved and coniferous woodland land cover types. Grassland comprised179

rough grassland, neutral grassland, calcareous grassland, acid grassland, and fen, marsh180

and swamp land cover types. Agriculture comprised arable, horticulture, and improved181

grassland land cover types, and is assumed to be the main source of N entering the system.182

Urban comprised urban and suburban land cover types, and is assumed to be the main183

source of P entering the system. The locations of 279 unique sites in which phytoplankton184

blooms had been recorded by the EA were given in national grid references (NGRs).185

Northing and easting values were calculated using a converter equation in Microsoft Excel186

2013 (permission granted by author, Ryan Burrell). Blooms were only included if they were187

identified as being within the canal network (including feeder streams and reservoirs), and188

any blooms located outside of the 5 km buffers were removed as they were deemed too far189

from the canals, leaving 93 bloom locations.190

191

Statistical analysis192

All statistical analyses were performed using the “Hmisc”, “MuMIn”, “car”, and “vegan”193

packages in the statistical software, R 3.3.2 (BartoĔ 2015; Harrell 2016; Fox, et al. 2016; 194

Oksanen, et al. 2017). The presence/absence of phytoplankton blooms was investigated in195

relation to the environmental predictor variables for each canal pound using generalised196

linear models (GLZs) with binomial errors. Spearman’s rank correlations performed between197

each of the predictor variables revealed that the mean, minimum and maximum values for198

the elevation, Bio1, and Bio5 variables were significantly correlated with each other (ȡ >199

0.600, df = 2437, P < 0.001). Thus, only mean elevation, mean Bio1 and mean Bio5 were200
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retained in the models along with the proportions of the areas of the four aggregated land201

cover type variables. In addition, two-way interactions terms between mean Bio1 and the202

transformed proportion of agricultural land, and mean Bio5 and the transformed proportion of203

agricultural land, were included in the model. These interaction terms were included as it204

was predicted that a combination of the nutrient concentration derived from agricultural land205

and temperature would have a synergistic, as opposed to additive, effect on the presence of206

phytoplankton blooms.207

208

VIF analysis of this full model and the Spearman’s rank order correlations revealed209

multicollinearity (VIF>5) between mean Bio1 and mean Bio5, and the transformed210

proportions of urban and agricultural land. Consequently, mean Bio5 and the associated211

interaction term were removed from the model, as Bio1 is a more biologically important212

variable. Bio5 represents the maximum temperature of the warmest month; yet213

phytoplankton blooms were reported in all months, not just the summer months, likely due to214

peaks in chlorophyll in April-June while peak temperatures occur in August (e.g. Skidmore et215

al. 1998). Therefore, we argue that Bio1 is more appropriate as it represents the mean216

annual temperature. In addition, the transformed proportion of urban areas was removed as217

the elimination of agricultural areas (and the two interaction terms) from the model resulted218

in a higher ǻAICc value (30.9), than the elimination of urban areas (and the two interaction 219

terms) (ǻAICc = 21.2). Hence, there is a greater decline in explanatory power when the 220

transformed proportion of agricultural land is removed from the model. The full model221

included (i) mean annual temperature, (ii) elevation, and the proportions of (iii) agricultural,222

(iv) woodland, (v) grassland cover, and (vi) the interaction between temperature and223

agricultural land cover.224

225

The dredge function (“MuMIn” package) was used on the full model to calculate the AICc226

values for a set of models, each containing a different possible combination of the variables.227

Since three models had ǻAICc < 2 compared to the top model, indicating negligible 228
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difference in explanatory power, model averaging with shrinkage was performed. As the229

odds and 95% C.I. of the resultant model could not be calculated due to model averaging,230

the values were estimated from the top model.231

232

To evaluate the role of distance and connectivity, we conducted three complementary spatial233

analyses: non-spatial, pseudo-spatial, and network distance. The non-spatial model does not234

take spatial autocorrelation into account and so represents a null model assuming all235

locations are independent. The pseudo-spatial model used the Euclidian distance between236

each canal pound as a measure of distance but did not take into account hydrological237

connectivity along the network. The dist function was used on the centroid data to produce238

pairwise geographical distances between each of the blooms. Finally, the network distance239

used the distance along the canal network between each pair of pounds. The canal network240

was imported into the riverdist package in R (Tyers 2017), and a hydrological distance matrix241

was created for each pairwise distance between sites using the riverdistmat() function.242

These three distance models were then incorporated into the analyses in order to explore243

the spatial autocorrelation in the data. The residuals from the top GLZ model were analysed244

for spatial autocorrelation using Moran’s I based on the pseudo-spatial (Euclidian) and245

network distance (hydrological) distance matrices. Finally, the full GLZ with binomial errors246

was repeated, with spatial filtering performed on the model using the centroids of the canal247

stretches for the pseudo-spatial and network distance data (Dormann et al. 2007). The248

effectiveness of this control for autocorrelation was verified by performing Moran’s I tests on249

the model residuals with the spatial filters.250

251

Community composition252

A more conservative analysis was conducted to evaluate spatial patterns in the composition253

of phytoplankton within each reported bloom. Bloom locations were only incorporated if they254

were within 500m of the canal network, giving greater confidence in their location along the255

hydrological system. Comparisons of the phytoplankton bloom community compositions in256
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this subset of blooms (n = 39) in connecting canal stretches were performed in relation to257

geographical distance. Presence-absence species-by-site matrices were transformed by258

Hellinger transformation using the decostand function (“vegan” package). Redundancy259

analysis (RDA) of the Hellinger-transformed data was computed in order to produce an260

ordination plot of the phytoplankton bloom sites by community compositions. The vegdist261

function (“vegan” package) was then used on the Hellinger transformed species data to262

produce pairwise Bray-Curtis dissimilarity matrices describing the ecological distance263

between each of the blooms. Subsequently, a Mantel test (with Spearman’s rank order264

correlation due to non-normality of the two distance matrices (Shapiro-Wilk normality tests:265

W > 0.601, P < 0.001)) was performed between the community distance matrix and each of266

the Euclidian and hydrological distance matrices.267

268

RESULTS269

Canal phytoplankton blooms with species-level identification were reported from 1.6% (39270

out of 2439) of the associated canal pounds between 1990 and 2014. The UK canal system271

is generally located in low-lying areas (median elevation 101.83 m; interquartile range (IQR)272

= 72.03 m). The temperature data revealed that there was only an approximately 3°C273

difference between the sites with the highest and lowest mean annual temperatures (median274

= 9.33 °C; IQR = 0.45 °C). The landscape through which canals pass is dominated by275

agricultural land (median proportion cover = 0.64; IQR = 0.44), with a smaller coverage of276

grassland and woodland (0.04 and 0.05, respectively; IQR = 0.06 and 0.05, respectively) (for277

more details, see Table 1). Bloom composition varied from 1 to 127 taxa, with a mean278

taxonomic richness of 10.4 taxa (±1.3 SE). The most common species recorded from279

blooms were Euglena sp. (104 sites). Of particular interest are the toxic cyanobacteria280

Microcystis sp. (from 52 sites, including M. aeruginosa from 27 sites), Anabaena sp. (from281

50 sites, including A. flos-aquae from 46 sites) and Oscillatoria sp. (from 67 sites, including282

O. agardhii from 28 sites). The identification of potentially toxic cyanobacteria from these283

samples emphasises the importance of understanding their ecology and control.284
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285

Presence/absence286

Model selection produced three models containing subsets of these six predictor variables287

that had ǻAICc < 2. Model averaging with shrinkage found that four of the predictor variables 288

had a significant effect on the presence of phytoplankton blooms, and were found in all three289

models. The two other variables were only present in one model (Table 3). The results290

revealed a significant increase in the proportion of phytoplankton bloom presence with an291

increase in elevation (Table 3) (Figure 2). The estimated odds and 95% C.I. for the averaged292

model, revealed that the odds of phytoplankton bloom presence increased by 9% (95% C.I.293

3-14%) for each 10 m increase in elevation.294

295

As the interaction term is significant (Table 3), the effect of mean annual temperature on the296

presence/absence of phytoplankton blooms depends on the transformed proportion of297

agricultural land. As the proportion of agricultural land increases, the effect of temperature298

on presence/absence changes (Figure 2). At the minimum level of agricultural land, the299

predicted probability of phytoplankton bloom presence increases with increasing300

temperature. Conversely, at the maximum level of agricultural land, the predicted probability301

of phytoplankton bloom presence decreases with increasing temperature. At the median302

level of agricultural land, the predicted probability of phytoplankton bloom presence remains303

relatively similar with increasing temperature, with only a slight increase observed. Due to304

the significance of the interaction term, the single main effects cannot be interpreted in305

isolation. However, the transformed proportion of agricultural land and the mean annual306

temperature are still important.307

308

The GLMs with spatial filtering based on Euclidean or network distances between sites309

showed that there were no spatial eigenvectors that explain a significant proportion of the310

variance in the residuals of the models. Thus, there was no spatial autocorrelation in the311

data. The Moran’s I test confirmed that no spatial autocorrelation was present in the312



13

residuals of the non-spatial models using either the Euclidean (Moran’s I = -2.912 x 10-04, s =313

0.341, P = 0.367) or network distances (Moran’s I = -4.287 x 10-04, s = -1.963, P = 0.975). As314

a result, no further incorporation of spatial data into the presence/absence analysis was315

attempted.316

317

Community composition318

The results of the Mantel tests revealed that the compositions of phytoplankton species are319

more similar in blooms that are closer together than blooms that are further apart. There was320

a significant positive correlation between the distance between phytoplankton bloom sites321

and the dissimilarity of those sites when distance was measured using Euclidean distances322

(Mantel r statistic = 0.183, df = 38, P = 0.001), and this correlation was stronger for323

hydrological distance (Mantel r statistic = 0.278, df = 38, P = 0.001).324

325

DISCUSSION326

Based on the results of this study, the environmental conditions found around the canals of327

the UK affect the probability of phytoplankton bloom presence. Phytoplankton blooms are328

more likely to be present at higher elevation canals. Furthermore, it was found that as the329

proportion of agricultural land surrounding the canal stretches increases, the effect of330

temperature on the likelihood of phytoplankton bloom presence changes. These variables331

were found to be significant at the non-spatial level, with no spatial autocorrelation observed332

in the data as demonstrated by the pseudo-spatial analysis. Nevertheless, spatial analysis333

revealed that the community compositions of phytoplankton blooms that are closer together334

are more similar than those that are further apart. Hydrological connectivity seems to be335

more important than Euclidean distance, as would be predicted if there was a role in336

structuring blooms for movement of propagules through the canal network.337

338

The reason for the increased likelihood of phytoplankton blooms at higher elevations is not339

obvious (Figure 1). The growth rate of phytoplankton, such as cyanobacteria, is known to be340
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greater at higher water temperatures (Johnk et al. 2008; O'Neil et al. 2012). Thus, the341

opposite outcome would be expected as higher temperatures are generally found at lower342

elevations (Fitter et al. 1998; Ineson et al. 1998; Tipping et al. 1999). Nevertheless, blooms343

have been documented at high elevation sites in the past (Mwaura et al. 2004; Derlet et al.344

2010; Anderson et al. 2014; Zhang et al. 2016). However, it should be noted that the345

altitudinal gradient of this study area is not particularly large compared to other areas (Table346

1), which could have affected the results. A potential reason for this unexpected result could347

be that there is greater precipitation at high elevations (Ineson et al. 1998; Tipping et al.348

1999); thus, larger quantities of pollutants may be washed into the canals. This effect of349

greater run-off, combined with higher levels of N and P that have not yet been stripped from350

the water supplies as much as downstream, could lead to higher nutrient availability for351

blooms. Blooms are known to occur in upland reservoirs that feed into the canal network,352

which could also result in concentrations of blooms in upland areas. However, Figure 1 also353

shows a number of blooms that arise close to urban areas (London, West Midlands,354

Liverpool) and which might be indicative of local P pollution via sewage entering the system.355

A recent study found that the effect of nutrients on blooms is greater than water temperature356

(Deng et al. 2014); hence, the potentially higher nutrient concentrations caused by greater357

precipitation may compensate for the decrease in temperature. Furthermore, a mesocosm358

experiment with marine phytoplankton suggested light as an important factor for bloom359

initiation (Sommer and Lengfellner 2008). Potentially fewer or smaller trees at upland canal360

sites may result in greater light intensity and thus, an increased likelihood of bloom presence361

(Coomes and Allen 2007). For example, canal stretches that traverse upland moors may be362

running through entirely deforested areas. Previous research suggests that reforestation363

along the edges of waterways could reduce bloom growth more effectively than decreasing364

eutrophication, by reducing light intensity (Hutchins et al. 2010). This complex spatial pattern365

of bloom formation, combined with issues of hydrological connectivity, raises a series of366

hypotheses that should be tested in future studies in order to inform local control measures367

based on local problems.368
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369

The interaction between the transformed proportion of agricultural land and the mean annual370

temperature was also not as predicted. Based on previous research, agricultural land is371

often associated with the formation of phytoplankton blooms (e.g. Bussi et al., 2016;372

Hamilton et al., 2016). This is due to the leaching of fertilisers and animal waste into373

waterways, leading to increased concentrations of N and P; two nutrients that are key drivers374

of phytoplankton blooms (Anderson et al. 2002; Smith 2003). Moreover, higher temperatures375

are known to be beneficial for phytoplankton species such as cyanobacteria due to their high376

thermal optima for growth rates (Johnk et al. 2008; O'Neil et al. 2012). In contrast, the377

interaction reveals that the effect of agricultural land on the probability of phytoplankton378

bloom presence differs depending on the temperature (Figure 2). At the minimum level of379

agricultural land, the predicted probability of bloom presence increases with increasing380

temperature. This can be explained by previous research regarding the effect of agricultural381

pollution and temperature on bloom formation (Anderson et al. 2002; Smith 2003; Johnk et382

al. 2008; O'Neil et al. 2012). At low levels of agricultural land, N and P may be at low383

concentrations, limiting the formation of phytoplankton blooms (Anderson et al. 2002).384

Nevertheless, as long as those low concentrations are not limiting, an increase in385

temperature may overcome these low concentrations by increasing the phytoplankton386

growth rate, leading to an increased probability of bloom formation (Johnk et al. 2008; O'Neil387

et al. 2012). At intermediate levels of agricultural land, nutrients may no longer be a limiting388

factor for phytoplankton bloom formation, as they may be present at sufficient389

concentrations. Hence, increasing temperature may not result in an increased probability of390

bloom presence, as nutrients are of greater importance than temperature and sufficient391

nutrients may be provided (Deng et al. 2014). However, the results suggest that at high392

levels of agricultural land, the predicted probability of phytoplankton bloom presence393

decreases with increasing temperature. The reason for this may be that when there are high394

concentrations of nutrients available as well as a higher temperature, the phytoplankton395

blooms may grow excessively leading to depletion of the nutrients available in the water396
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(Smayda 1998; Winder and Cloern 2010). In addition, cell sinking and consumption of algae397

by predators can occur as the blooms peak (Smayda 1998; Van Wichelen et al. 2010;398

Winder and Cloern 2010). The rate of this algae consumption is known to increase at higher399

temperatures (Sommer and Lengfellner 2008). Consequently, the blooms may collapse400

shortly after they peak (Smayda 1998; Van Wichelen et al. 2010; Winder and Cloern, 2010),401

resulting in fewer reported blooms at sites with both a high level of agricultural land and a402

higher temperature. However, other research has suggested that blooms can continue for403

months even when ambient concentrations of N and P are low (Paerl and Otten 2013),404

emphasising a role for internal nutrient cycling and regeneration.405

406

Factors suggested as potential controls for blooms include grazing by predators, and407

bacterial and viral lysis. However, despite the potential controlling effect of grazing on408

blooms, some phytoplankton are known to survive travelling through the digestive system of409

grazers such as Daphnia, and are even capable of extracting nutrients from the gut (Porter410

1976; VanDonk et al. 1997). Furthermore, the sinking of large quantities of decaying411

phytoplankton material can result in hypoxia, leading to death of other aquatic organisms412

and changes to the biogeochemical cycling of the waterway. The collapse of blooms can413

also release dissolved toxins into the water (Paerl and Otten 2013). Due to these problems414

associated with controlling blooms and bloom senescence, the prevention of algae blooming415

in the first place is of critical importance.416

417

We expected that agricultural land would be related to the presence of phytoplankton blooms418

due to the known effect of agricultural fertilisers and animal waste on algae (Anderson et al.419

2002). However, the presence of agricultural land does not necessitate the application of420

fertilisers. There have been efforts in recent years to try to reduce eutrophication and the421

associated blooms, which increased as a result of industrial and agricultural intensification422

(Anderson et al. 2002). For example, EU agri-environment schemes promote the termination423

of fertiliser application and lower livestock densities (Kleijn and Sutherland 2003). Thus, it424
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cannot be assumed that agricultural land in 21st century Great Britain leads to the425

eutrophication of waterways. In addition, run-off of nutrients into canals may not occur in the426

same way as natural waterways, such as rivers. The ease with which nutrients enter canals427

could be inhibited by the material used to construct the sides of the canals, for example428

concrete (Holland and Andrews 1998). The nutrient concentrations of the canal stretches429

were not sampled as part of this study. Therefore, even if there is a high proportion of430

agricultural land located around canal stretches, it does not mean that nutrients will be431

leaching into the waterways.432

433

The fact that phytoplankton blooms that are closer together have more similar community434

compositions suggests that these blooms are related. It is possible that algae in upland435

reservoirs and canal stretches are flowing down the canals and forming additional blooms in436

other areas. This information could be useful for preventing future phytoplankton blooms by437

identifying the origin of blooms and preventing eutrophication in these areas. Dispersal was438

also suggested by Altermatt et al. (2013) as a reason for greater aquatic insect community439

dissimilarity with increasing distance in dendritic river networks. Spatial along-stream440

distances were utilised in the analysis, and those findings are corroborated by our results.441

The research also suggested that environmental conditions could explain the community442

similarity patterns, as elevation had a significant effect on the pattern and is a factor that443

affects conditions such as temperature and precipitation (Altermatt et al. 2013).444

445

Other research has found that phytoplankton bloom community compositions are dependent446

on the environmental conditions of the waterway, such as turbidity and nutrient447

concentrations. Different phytoplankton species have different optimal conditions and448

therefore thrive in different environments, leading to diverse compositions of species (Smith449

1983; Zhu et al. 2015). For example, cyanobacteria are known to take over phytoplankton450

communities when there is a low N:P ratio. This could be due to the N2-fixing abilities of451

many cyanobacteria species, leading to a competitive dominance where N concentrations452
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are low and P concentrations are high (Smith 1983). Furthermore, temporal changes in453

compositions have been observed, with community succession associated with temporal454

changes in environmental conditions, particularly nutrient concentrations (Deng et al. 2014).455

The effect of the environment on specific phytoplankton communities may therefore allow456

blooms to persist even when the optimal conditions for a particular composition of species457

change, as the proportion of each species in the bloom will fluctuate (Smayda 1998). This458

presents problems with regard to controlling phytoplankton blooms as they may be resistant459

to environmental change. However, if the aim is to only control nuisance species such as460

toxin-producing cyanobacteria (Landsberg 2002; Codd et al. 2005; Malbrouck and461

Kestemont 2006), this may be possible by producing conditions that are not optimal for these462

specific species. For example, cyanobacterial blooms could be inhibited by increasing the463

N:P ratio (Smith 1983).464

465

Previous research comparing the results of terrestrial, ‘as the crow flies’ distances (pseudo-466

spatial analysis) with aquatic, ‘as the algae flows’ distances (network distance analysis)467

found differences in the pattern of results. Network distance analysis kept more spatial468

variables in the model compared to Euclidean distance analysis (Landeiro et al. 2011).469

Another study also suggested that network distance analysis would account for spatial470

autocorrelation in a way that is more appropriate for dendritic networks such as canals, than471

pseudo-spatial analysis. Furthermore, it will prevent violation of the statistical assumption472

that observations are independent and prevent inaccurate statistical inference, caused by473

clustering of measurements (Isaak et al. 2014). These studies highlight the importance of474

using network distances rather than traditional Euclidean distances for analysing species475

data in dendritic networks such as canals, rivers and streams (Landeiro et al. 2011; Isaak et476

al. 2014). Landeiro et al. (2011) also suggested that this method may have implications for477

terrestrial analyses where the environment is fragmented or the dispersal of the study478

species is limited, for example. Nevertheless, Euclidean, overland distances may still be479

useful for studying semiaquatic or amphibiotic species (Landeiro et al. 2011).480
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481

We make use of a novel dataset derived from an algal bloom reporting system. This dataset482

has the advantage of broad spatial scale, detailed taxonomic information, and a growing483

time series of bloom locations. However, the data lack accompanying water chemistry484

(especially N and P) data, making certain hypotheses difficult to evaluate. However, we feel485

that the insights produced in the study are of value as they focus on an understudied486

ecosystem and present some novel findings based on the external (land use) and internal487

(hydrological connectivity) drivers of bloom formation and taxonomic composition that can488

form the basis of subsequent work. In particular, the data from the models that inform the489

spatial autocorrelation of bloom formation could be strengthened by the addition of other490

variables. First, flushing rates (or retention times) are a key predictor of bloom formation and491

an important method of control (Paerl et al 2011), but are complex to calculate within canal492

systems. In the UK, “lockage” (the frequency of opening locks) is recorded and there are493

some flow gauges at certain sites around the network, but it is unclear how this relates to494

flow in the network as a whole. Second, the retrospective nature of the study means that495

nutrient concentrations are not available to accompany the analysis, while previous work496

suggests that there are complex interactions between N and P cycling that drive497

cyanobacterial bloom formation and senescence (Paerl et al 2016). Finally, there may be498

complex interactions between land use and topography, via the impacts of slope on the rate499

and composition of run-off in the different canal basins (Li et al 2006). Current attempts to500

reforest uplands as part of natural flood management or incorporate trees into agroforestry501

practices may influence this relationship further (Pavlidis and Tsihrintzis 2018).502

503

A number of canal stretches in Great Britain are designated SSSI sites, some of which are504

due to the presence of nationally rare species and habitats (Natural England 2016). Thus, it505

is of critical importance that phytoplankton blooms do not damage these sites. Bloom data506

analysed in this study reveal that phytoplankton blooms have occurred in at least 13 out of507

the 23 SSSI site canals in the past. As this study found that higher elevation is associated508



20

with increased phytoplankton bloom presence, measures could be implemented to prevent509

eutrophication in upland areas. Investigations of land use surrounding upland canal sites will510

determine the most appropriate way to achieve this. In addition, the interaction term511

suggests that a smaller proportion of agricultural land, and thus a lower nutrient512

concentration in the canals, will result in a decreased probability of phytoplankton bloom513

presence when the temperature is lower. Thus, preventing eutrophication in upland canal514

stretches where the temperature is typically lower will hopefully inhibit the formation of515

blooms (Smith 1983; Fitter et al. 1998; Ineson et al. 1998; Tipping et al. 1999; Schindler et516

al. 2008; Bowes et al. 2011). This will protect downstream sites, as the community517

composition analysis indicates that phytoplankton blooms may percolate down through the518

network to seed further blooms at lower elevations, where conditions are appropriate.519

Reforestation along canals could also aid with the inhibition of blooms by reducing light520

intensity (Hutchins et al. 2010). As discussed above, it is also essential to prevent blooms521

rather than control them once they have formed, as senescing blooms could result in the522

release of dissolved toxins into the water and could lead to hypoxia in the canals (Paerl and523

Otten 2013). Moreover, for invasive species such as other phytoplankton and macrophytes,524

this information regarding the movements of cyanobacteria could prove important. This new525

knowledge regarding the origin and ecology of canal phytoplankton blooms could therefore526

aid with the protection of nationally rare species and habitats in SSSI site canals, as well as527

potentially help improve other non-SSSI site canals. Furthermore, prevention of blooms in528

canals will benefit human health through improved safety during transport and recreational529

activities (Willis and Garrod 1991; Falconer 1999; Leuven et al. 2009).530
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Table Legends754

Table 1 The minimum, median and maximum values of each environmental variable755

calculated for each 5 km canal stretch buffer. The median values were calculated due to the756

non-normal distribution of each variable (Shapiro-Wilk normality tests: W > 0.915, P <757

0.001). Agricultural land, woodland and grassland denote the untransformed proportion of758

each land cover type.759

Table 2 The generalised linear models with binomial errors output for the six environmental760

predictor variables following model averaging with shrinkage. “Model presence” denotes the761

number of models each variable was present in. Significant terms are marked in bold. See762

text for details.763
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Figure Legends764

Figure 1 Locations of phytoplankton blooms (marked with triangles) within the UK canal765

network (5km buffer shown around each canal stretch).766

Figure 2 The predicted probability of phytoplankton bloom presence at different levels of767

elevation (solid line), with the standard errors displayed (dotted lines).768

Figure 3 The predicted probability of phytoplankton bloom presence at differing transformed769

proportions of agricultural land, with increasing mean annual temperature (°C).770












