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 ϭϴ 
Highlights ϭϵ 

 Learning curves are useful to diagnose data-model interactions. ϮϬ 

 Phenology model predictions improve asymptotically with size of the calibration Ϯϭ 

dataset. ϮϮ 

 More than 7-9 observations of anthesis did not improve model performance of Ϯϯ 

phenology models for 2050’s (RCP8.5) Ϯϰ 

 More abundant but less accurate measurements can lead to similar prediction Ϯϱ 

performance.  Ϯϲ 
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Abstract ϰϰ 

A prerequisite for application of crop models is a careful parameterization based on ϰϱ 

observational data. However, there are limited studies investigating the link between quality ϰϲ 

and quantity of observed data and its suitability for model parameterization. Here, we explore ϰϳ 

the interactions between number of measurements, noise and model predictive skills to ϰϴ 

simulate the impact of 2050’s climate change (RCP8.5) on winter wheat flowering time. The ϰϵ 

learning curve of two winter wheat phenology models is analysed under different assumptions ϱϬ 

about the size of the calibration dataset, the measurement error and the accuracy of the model ϱϭ 

structure. Our assessment confirms that prediction skills improve asymptotically with the size ϱϮ 

of the calibration dataset, as with statistical models. Results suggest that less precise but larger ϱϯ 

training datasets can improve the predictive abilities of models. However, the non-linear ϱϰ 

relationship between number of measurements, measurement error, and prediction skills limit ϱϱ 

the compensation between data quality and quantity. We find that the model performance does ϱϲ 

not improve significantly with a theoretical minimum size of 7-9 observations when the model ϱϳ 

structure is approximate. While simulation of crop phenology is critical to crop model ϱϴ 

simulation, more studies are needed to explore data needs for assessing entire crop models. ϱϵ 

Key words: Learning curve, Anthesis, Triticum aestivum, Dataset, Climate Change ϲϬ 
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 ϳϴ 
1. Introduction ϳϵ 

Models are increasingly used in impact assessments of climate change on crop production and ϴϬ 

food security (Ruane et al., 2017). Models intended for these applications require suitable ϴϭ 

datasets to minimize the error in the projections (Wallach, 2011). The crop modelling ϴϮ 

community has repeatedly addressed and improved the definition of suitable datasets (Nix, ϴϯ 

1983; Boote et al., 1999; Hunt et al., 2001; White et al., 2013). The latest efforts have been ϴϰ 

made in the context of AgMIP (Rosenzweig et al, 2013) and MACSUR (Rötter et al., 2013) ϴϱ 

projects. Boote et al., (2016) developed a generic qualitative method that ranks datasets based ϴϲ 

on the presence or absence of input and state variables. Kersebaum et al., (2015) designed a ϴϳ 

numerical classification approach where rules based on expert opinion provide scores for ϴϴ 

several desirable features. The total quality score of a dataset is the summation of scores from ϴϵ 

each feature. Further contributions to the definition of suitable datasets go through replacing ϵϬ 

expert opinion by empirically based rules. Hence, further research is needed assessing the ϵϭ 

impacts of dataset features on simulations and model performance. Confalonieri et al., (2016) ϵϮ 

worked in this direction by introducing a method for assessing changes in model performance ϵϯ 

depending on measurement errors. He et al., (2017) quantified the repercussions of the number ϵϰ 

of seasons and state variables on their effectiveness to calibrate a crop model. The results of ϵϱ 

these studies are key to elucidate the interactions between data and crop model but their ϵϲ 

comparison with the rules in Kersebaum et al., (2015) is not straightforward. In order to favour ϵϳ 
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this comparison, features of datasets should be changed and assessed in a progressive and ϵϴ 

comprehensive manner.  ϵϵ 

The number of observations and the measurement error (as a proxy for number of replicates) ϭϬϬ 

are two essential features of datasets in the scoring system by Kersebaum et al., (2015). This is ϭϬϭ 

due to their critical role in estimating model parameters and their uncertainty (Wallach et al., ϭϬϮ 

2011; Confalonieri et al., 2016) and the relevance of parameter uncertainty in impact ϭϬϯ 

assessments of climate change (Wallach et al., 2011; Wallach et al., 2017). Large and accurate ϭϬϰ 

datasets could reduce parameter uncertainty but the crop modelling community has suffered ϭϬϱ 

from chronic data scarcity exacerbated by ensemble modelling (Rötter et al., 2011; Jones et al., ϭϬϲ 

2017). The maturation of new information technologies, namely mobile technology and remote ϭϬϳ 

sensing, and the implementation of new initiatives, such as crowdsourcing, could help solving ϭϬϴ 

this situation (Janssen et al., 2017) at the cost of accuracy. An assessment of suitable datasets ϭϬϵ 

for crop modelling in terms of number of observations and measurement error may bring light ϭϭϬ 

to the potential benefits of these technologies to improve crop impact projection performance. ϭϭϭ 

The learning curve approach evaluates in a progressive manner the impact of the size and ϭϭϮ 

measurement error of the calibration dataset on model performance. Learning curves are graphs ϭϭϯ 

displaying the evolution of simulation errors with the size of the training dataset (Perlich et al., ϭϭϰ 

2003; Perlich, 2011). Errors usually evolve asymptotically with the size of the training dataset, ϭϭϱ 

increasing for the training dataset and decreasing for the testing dataset. The shape of the curves ϭϭϲ 

can reveal, for instance, when the model is considered to have a sufficiently large calibration ϭϭϳ 

dataset. The size is considered large enough when greater observations produce small changes ϭϭϴ 

in the simulation skills. However, defining when the changes are small enough depends on the ϭϭϵ 

model application. The learning curve approach has been used in the past with statistical ϭϮϬ 

models in the field of machine learning (e.g. Perlich, 2011 or Figueroa et al., 2012). To our ϭϮϭ 

knowledge, the method has not been applied yet for the assessment of dataset features in crop ϭϮϮ 

modelling. ϭϮϯ 

Drawing the learning curves requires calibrating and evaluating the model repeatedly, changing ϭϮϰ 

the size of the calibration dataset. This makes the process computationally demanding and data ϭϮϱ 

intensive. Phenology combines its relevance for yield (Craufurd and Wheeler, 2009) with its ϭϮϲ 

simple mathematical formulation and fast execution (e.g. Ceglar et al., 2011). Within the ϭϮϳ 

phenology phases, flowering is particularly critical; it is a very sensitive phase to temperature ϭϮϴ 

extremes (Ugarte et al., 2007) and it defines the balance between source-sink organs. Therefore, ϭϮϵ 
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the simulation of flowering time represents a practical starting point to introduce the learning ϭϯϬ 

curve approach into crop modelling. Phenology modelling offers several working solutions ϭϯϭ 

with different mathematical formulations (Ceglar et al., 2011; Alderman and Stanfill, 2017). ϭϯϮ 

Learning curves are likely influenced by model structures, since prediction skills of different ϭϯϯ 

modelling hypotheses vary due to specific error compensations forged during calibration ϭϯϰ 

(Wallach et al., 2011). Hence, robust conclusions about data-model interactions with the ϭϯϱ 

learning curves require the assessment of multiple structures.  ϭϯϲ 

Our study aims to analyse the influence of datasets on model simulation performance. More ϭϯϳ 

specifically, we seek to elucidate the impact of number and measurement error of crop state ϭϯϴ 

variables on the prediction skills of a phenology model intended for climate change ϭϯϵ 

applications. We apply the learning curve approach which allows the progressive assessment ϭϰϬ 

of properties of datasets and brings the opportunity to compare the evolution of model ϭϰϭ 

performance with the scoring rules specified in the data classification system. Additionally, we ϭϰϮ 

inspect possible compensations between size and measurement error thanks to their joint ϭϰϯ 

analysis. ϭϰϰ 

2. Methods ϭϰϱ 

The generation of learning curves is a two-step process repeated multiple times. The first step ϭϰϲ 

is the calibration and evaluation of the models against the training (or calibration) dataset. The ϭϰϳ 

second step is the evaluation of the predictive skills of the model against the testing (or ϭϰϴ 

evaluation) dataset. The training dataset varies in number of observations (quantity of ϭϰϵ 

observations) and levels of measurement error (quality of observations). Long series of records ϭϱϬ 

(greater than 10 seasons) of flowering dates required to construct the learning curves are scarce. ϭϱϭ 

Hence, data is replaced by the simulations of a “perfect model” with structure and parameter ϭϱϮ 

values considered to be true. The simulations from such perfect models are masked with ϭϱϯ 

different levels of noise. This perfect model approach gives us full control over the number of ϭϱϰ 

seasons and errors introduced in the datasets. In addition, it allows the evaluation of the ϭϱϱ 

simulation model predictive skills against the perfect model under climate change.  ϭϱϲ 

Two phenology models for simulating anthesis dates of winter wheat under climate change are ϭϱϳ 

considered; the Broken-Sticks (BS) and Continuous Curvilinear (CC) (Wang and Engel, 1998) ϭϱϴ 

models. The BS is a wide-spread practical model to simulate phenology whereas the CC model ϭϱϵ 

is considered a more realistic version from a biological perspective (Streck et al., 2008). ϭϲϬ 

Consequently, we assume that the CC model is the “perfect model” and the BS and the CC ϭϲϭ 
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models are used as simulation models. Thus, two situations concerning model structures are ϭϲϮ 

assessed; (S1) the structure of the simulation model is an exact representation of reality (the ϭϲϯ 

simulation model and the “perfect model” are the same, both represented by the CC model), ϭϲϰ 

and (S2) the structure of the simulation model approximates the reality (the BS and the CC ϭϲϱ 

model correspond to the simulation model and the “perfect model” respectively). The results ϭϲϲ 

are used to analyse the shape of the learning curves and understand the relationships between ϭϲϳ 

measurements, errors and model structures. ϭϲϴ 

2.1. Phenology models ϭϲϵ 

The fundamental difference between the BS and the CC model is the smoother reaction of crop ϭϳϬ 

development to changes in temperature and photoperiod with the latter model (Fig. 1b,c). In ϭϳϭ 

addition, our CC model uses the vernalization response proposed by Streck et al. (2003). Here, ϭϳϮ 

vernalization follows a sigmoidal curve instead of the linear response in the BS model (Fig. ϭϳϯ 

1a). Water or nitrogen limitations are not included, assuming models are applied under optimal ϭϳϰ 

conditions.  ϭϳϱ 

(Fig. 1) ϭϳϲ 

2.1.1. Vernalization response  ϭϳϳ 

The vernalization response ( ௩݂ିௌ) in the BS model is represented from zero to one for un-ϭϳϴ 

vernalized and fully vernalized wheat, respectively. The parameters in this model (Eq. 1) are ϭϳϵ 

the base vernalization ( ܸ௦) and the vernalization saturation ( ௦ܸ௧). Base vernalization is the ϭϴϬ 

minimum vernalization required to start the accumulation of vernal degree days (VDD). ϭϴϭ 

Vernalization saturation is the total accumulation of VDD at which the crop is considered fully ϭϴϮ 

vernalised. ϭϴϯ 

௩݂ିௌ ൌ ݉݅݊ ቈͳǡ ݔܽ݉ ቂͲǡ ሺି್ೌೞሻሺೞೌି್ೌೞሻቃ      (Eq. 1) ϭϴϰ 

In our version of the CC model, the vernalization response ( ௩݂ି) follows the description in ϭϴϱ 

Streck et al. (2003) (Eq. 2). Vernalization is accumulated based on a s-shaped curve. The ϭϴϲ 

parameter of this model is the inflection for vernalization ( ܸǤହ), that defines the VDD ϭϴϳ 

accumulated when the crop is half-way vernalized.  ϭϴϴ 

௩݂ି ൌ ሺሻఱሺబǤఱሻఱାሺሻఱ         (Eq. 2) ϭϴϵ 
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The BS and CC models are analogous when; (1) the ௦ܸ௧ in the BS model has twice the value ϭϵϬ 

of ܸǤହ in the CC model and ܸ௦ in the BS model is considered zero. The accumulation of ϭϵϭ 

vernal degree days (VDD) is computed by summing daily rates of vernalization. The daily rates ϭϵϮ 

are calculated using the Eq. 6-8 for the BS model and Eq. 9-11 for the CC model (see section ϭϵϯ 

2.1.3). In these equations, the cardinal temperatures, i.e. ܶ௦, ܶ௧ and ܶ௫, equal -4, 6.5, ϭϵϰ 

and 17ºC, for the BS model (Weir et al., 1984). ϭϵϱ 

2.1.2. Photoperiod response: ϭϵϲ 

In the BS model, the photoperiod response ( ݂ିௌ) ranges from 0 to 1 when the daylight hours ϭϵϳ 

(݄݀) are higher than the minimum threshold and lower than the maximum threshold (Eq. 3). ϭϵϴ 

These minimum and maximum thresholds are named base photoperiod ( ܲ௦) and optimum ϭϵϵ 

photoperiod ( ܲ௧), respectively. ϮϬϬ 

݂ିௌ ൌ ݉݅݊ ቈͳǡ ݔܽ݉ Ͳǡ ሺௗି್ೌೞሻ൫ି್ೌೞ൯൨      (Eq. 3) ϮϬϭ 

In the CC model, the response ( ݂ି) also varies between 0 and 1 (Eq. 4), but its shape is ϮϬϮ 

negatively exponential (Fig. 1-B). The model parameters are the base photoperiod ( ܲ௦) and ϮϬϯ 

the sensitivity to changes in photoperiod (߱). Changes of ܲ௦ in the BS model involve ϮϬϰ 

modifications in the sensitivity to photoperiod. In the CC model, the sensitivity (߱) is ϮϬϱ 

independent from ܲ௦. To resemble the reaction in both models, an empirical relationship ϮϬϲ 

was established between ߱ and ܲ௦ and ܲ௧ in the CC model (Eq. 5). ϮϬϳ 

݂ ൌ ͳ െ ݁ሾିఠሺௗି್ೌೞሻሿ        (Eq. 4) ϮϬϴ 

߱ ൌ ͳǤͶͻ െ ʹǤͻ ή ͳͲିଶ ܲ௦ െ ͳǤͳͶ ή ͳͲିଵ ܲ௧  ʹǤͺʹ ή ͳͲିଷ ܲ௦ଶ  ʹǤͶͳ ή ͳͲିଷ ܲ௧ଶϮϬϵ 

 (Eq. 5) ϮϭϬ 

With Eq. 5, the BS and CC model are defined by ܲ௦ and ܲ௧. Ϯϭϭ 

2.1.3. Temperature response: ϮϭϮ 

The response of the crop development ( ௧݂ିௌ) to the daily air temperature ( ܶ) in the BS model Ϯϭϯ 

is considered proportional when air temperatures are between the base ( ܶ௦) and optimum Ϯϭϰ 

( ܶ௧) cardinal temperatures (Eq. 6). If the temperature is above the optimum, but below its Ϯϭϱ 

critical temperature ( ܶ௫), the rate of development reacts inversely proportional to the Ϯϭϲ 
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difference between the air temperature and its optimum (Eq. 7). If the air temperature is below Ϯϭϳ 

its base temperature or above its critical temperature, the daily rate of development is zero (Eq. Ϯϭϴ 

8).  Ϯϭϵ ݂݅ ܶ௦ ൏ ܶ ൏ ܶ௧ ݄݊݁ݐ ௧݂ିௌ ൌ ሺ ܶ െ ܶ௦ሻ     (Eq. 6) ϮϮϬ 

݂݅ ܶ௧ ൏ ܶ ൏ ܶ௫ ݄݊݁ݐ ௧݂ିௌ ൌ ൫ ܶ௧ െ ܶ௦൯ሺ ܶ௫ െ ܶሻȀ൫ ܶ௫ െ ܶ௧൯ (Eq. 7) ϮϮϭ ݂݅ ܶ௦  ܶݎ ܶ  ܶ௧ ݄݊݁ݐ ௧݂ିௌ ൌ Ͳ      (Eq. 8) ϮϮϮ 

In the CC model, the response of the crop development ( ௧݂ି) to the daily air temperature ϮϮϯ 

oscillates between 0 and 1. The daily rate of development is described by a curve (Eq. 9) ϮϮϰ 

between a minimum and maximum temperatures ( ܶ௦ and ܶ௫, respectively). The term ߙ ϮϮϱ 

allows to peak the daily rate of development at ܶ௧ (Eq. 10). The daily rate of development is ϮϮϲ 

zero if the air temperature does not reach ܶ௦ or exceeds ܶ௫ (Eq. 11). ϮϮϳ 

݂݅ ܶ௦ ൏ ܶ ൏ ܶ௫ ݄݊݁ݐ ௧݂ି ൌ ଶሺ்ೌ ି்್ೌೞሻഀ൫ ்ି்್ೌೞ൯ഀିሺ்ೌ ି்್ೌೞሻమഀ൫ ்ି்್ೌೞ൯మഀ   (Eq. 9) ϮϮϴ 

ߙ ൌ ଶቈ൫ೌೣష್ೌೞ൯ቀష್ೌೞቁ          (Eq. 10) ϮϮϵ 

݂݅ ܶ௦  ܶ ݎ ܶ  ܶ௫ ݄݊݁ݐ ௧݂ି ൌ Ͳ     (Eq. 11) ϮϯϬ 

ܶ௦, ܶ௧ and ܶ௫ are 0, 24 and 35ºC in both models (Wang and Engel, 1998). Ϯϯϭ 

2.1.4. Development phase duration ϮϯϮ 

A development stage is reached when the accumulation of the daily rates equals a threshold Ϯϯϯ 

(ܶܶ) in the BS model. Eq. 12 shows the accumulation of daily rates between emergence and Ϯϯϰ 

terminal spikelet. The value of the threshold (ܶ ாܶெ்ௌ) is estimated from field observations Ϯϯϱ 

during calibration and is expressed in degree days (ºCd). Ϯϯϲ ܶ ாܶெ்ௌ ൌ σ ௧݂ି ή ௩݂ି ή ݂ିௗୀଵ        (Eq. 12) Ϯϯϳ 

In the CC model, a development stage is reached when the accumulation of daily rates (ܶܶܰ) Ϯϯϴ 

equals 1 (e.g., Eq. 13). This is achieved by using a scaling parameter (ݎ௫) that represents the Ϯϯϵ 

maximum daily development rate. The maximum development rate has an exponential form ϮϰϬ 
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based on a parameter ݇ (Eq. 14). Eq. 13 is an example of the computation between emergence Ϯϰϭ 

and terminal spikelet.  ϮϰϮ ܶܶ ாܰெ்ௌ ൌ ௫ǡாெ்ௌݎ σ ௧݂ି ή ௩݂ି ή ݂ିௗୀଵ      (Eq. 13) Ϯϰϯ 

௫ݎ  ൌ ݁ି          (Eq.14) Ϯϰϰ 

In both models, the period from sowing to anthesis was divided into three phases; (1) from Ϯϰϱ 

sowing to emergence, (2) from emergence to terminal spikelet and (3) from terminal spikelet Ϯϰϲ 

to anthesis. The first phase is responsive to temperature, the second to temperature, Ϯϰϳ 

vernalization and photoperiod and the last one to temperature and photoperiod. We assume that Ϯϰϴ 

the duration, i.e. ܶܶ ௌܰௐாெ, between sowing and emergence is a constant. We also considered Ϯϰϵ 

that 45% of the duration between emergence and anthesis corresponds to the development from ϮϱϬ 

emergence to terminal spikelet (ܶܶ ாܰெ்ௌ), and 65% corresponds to the development from Ϯϱϭ 

terminal spikelet to anthesis (்ܶܶܰௌே). ϮϱϮ 

2.1.5. Phenology model parameters Ϯϱϯ 

Key parameters in the BS model reflecting genotypic differences in flowering time are Ϯϱϰ 

vernalization saturation, base photoperiod and thermal time ( ௦ܸ௧, ܲ௦ and TT, respectively) Ϯϱϱ 

(Bogard et al., 2014). Therefore, we selected these parameters for calibration. We picked Ϯϱϲ 

analogous parameters to calibrate the CC model; half-way vernalized, base photoperiod and Ϯϱϳ 

maximum daily rate of development (V0.5, Pbase and k, respectively). Ϯϱϴ 

2.2. Perfect models and artificial flowering date records Ϯϱϵ 

A “perfect model” will be used in subsequent steps in substitution of the lacking long series of ϮϲϬ 

records of flowering dates. The “perfect model” has a structure and parameter values Ϯϲϭ 

considered to be true. Parameter values for this “perfect model” were derived from calibration ϮϲϮ 

using actual data. These data were collected and used in simulations of the Agricultural Model Ϯϲϯ 

Inter-comparison Project (Asseng et al., 2015). The information available covered the average Ϯϲϰ 

flowering date during 1980-2010 (ݕത௧௨), the average sowing date, daily maximum and Ϯϲϱ 

minimum temperatures for the same period, latitude and longitude and qualitative descriptions Ϯϲϲ 

of the sensitivities to vernalization and photoperiod of the varieties being grown. A subset of 8 Ϯϲϳ 

locations (Table 1) was selected among the 60-major wheat producing regions worldwide Ϯϲϴ 

available. The locations are Netherlands, Argentina, USA, China (with continental and oceanic Ϯϲϵ 

climates), Russia, Turkey and Canada, showing a wide diversity of environmental conditions.  ϮϳϬ 
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The “perfect model” was calibrated independently for each location using Ordinary Least Ϯϳϭ 

Squares (OLS). The calibration concerned the parameters related to vernalization, photoperiod ϮϳϮ 

and thermal responses (see section 2.1.5). The OLS method searched iteratively for those Ϯϳϯ 

parameter values ሺߠሻ that minimize the squared distance between the actual flowering date Ϯϳϰ 

ǡߠand the simulation ሺ݂ሺ (ത௧௨ݕ)  ሻሻ for every season (݅) between 1980 and 2010 (Eq. 15). Ϯϳϱݔ

The calibration was carried out in R (version 3.3.1) using the optim function (R Core Team, Ϯϳϲ 

2016). Ϯϳϳ ்ߠ௨ א ሼσ݊݅݉݃ݎܽ ሾݕത௧௨ െ ݂ሺߠǡ ሻሿଶଷୀଵݔ ሽ     (Eq. 15) Ϯϳϴ 

Then, we used the calibrated “perfect model” to generate two artificial datasets: (1) A training Ϯϳϵ 

dataset consisting of annual dates of anthesis (ݕି௧்௨ ) for all seasons between 1980 and 2010 ϮϴϬ 

using observed weather data from the AgCFSR dataset Ϯϴϭ 

(http://data.giss.nasa.gov/impacts/agmipcf/) and (2) a testing dataset (ݕି௧௦௧்௨ ) consisting of ϮϴϮ 

annual dates of anthesis over 30 years of bias-corrected weather data. The weather data was Ϯϴϯ 

sampled from the predicted 2050’s climate under the RCP8.5 by the GDFL-CM3 Global Ϯϴϰ 

Climate Model (Asseng et al., 2015). We assume that there is no adaptation to climate change, Ϯϴϱ 

hence sowing dates and cultivars were fixed for both time periods in each location. Ϯϴϲ 

(Table 1) Ϯϴϳ 

To mimic the sampling error that exists in field measurements (Kersebaum et al., 2015), we Ϯϴϴ 

added noise (ߝ) to the flowering time datasets created with the “perfect model” (Eq. 16 and 20 Ϯϴϵ 

in Fig. 2). Noise values were sampled from normal distributions with mean at zero and ϮϵϬ 

variance ߪఌଶ. We assume hereinafter that the resulting values (ݕି௧ெ௦௨ or ݕି௧௦௧ெ௦௨) represent Ϯϵϭ 

the long series (݅ ൌ  ሼͳǡ ǥ ǡ͵Ͳሽ) of records of anthesis dates under baseline and future climate. ϮϵϮ 

The artificial datasets generated for the simulation experiment are listed in Table 2. Ϯϵϯ 

 (Table 2) Ϯϵϰ 

2.3. Steps to generate the learning curves Ϯϵϱ 

The models were recalibrated (Fig. 2) using OLS (Eq. 17) and n randomly sampled seasons Ϯϵϲ 

from the training dataset (Eq. 16). The resulting model (݂ௌ൫ߠǡ  ൯) was used to simulate the n Ϯϵϳݔ

seasons of the calibration dataset (baseline) and the 30 seasons of the testing dataset (i.e. 2050’s Ϯϵϴ 

anthesis dates under RCP8.5). The assessment of the performance of ݂ௌ൫ߠǡ  ൯ was based on Ϯϵϵݔ
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its Mean Square Error (MSE) (Eq. 18) and the Mean Square Error of Prediction (MSEP) (Eq. ϯϬϬ 

20).  ϯϬϭ 

We repeated the calibration-evaluation process multiple times (Fig. 2), changing the number ϯϬϮ 

of measurements (n) and noise levels (ߪఌଶ) in the training dataset. The number of measurements ϯϬϯ 

ranged from 5 up to 30 seasons, in steps of 2. The lower limit in the number of seasons was set ϯϬϰ 

just above the minimum number required to calibrate 3 parameters from a mathematical point ϯϬϱ 

of view. We also increased the noise in training set from 0 to 0.25, 1, 2.25 and 4 days2. We ϯϬϲ 

consider that the upper limit in the level of noise is a rare situation when observations are taken ϯϬϳ 

by well-trained experimentalists. A ߪఌଶ ൌ Ͷ represents a 4.6% chance to have a measurement ϯϬϴ 

error greater than 4 days. The result of the calibrations and evaluation may vary depending on ϯϬϵ 

the seasons and errors sampled in every combination of n and  ߪఌଶ. Hence, every situation was ϯϭϬ 

repeated 60 times to ensure that the results are independent from the sampling. ϯϭϭ 

We consider two model structures, so we had two different situations regarding the choice of ϯϭϮ 

the true (்݂௨) and the simulation (݂ௌ) model. The aim was to explore how the structure ϯϭϯ 

affected the learning curves. In the first situation (S1), we assume that the simulation model ϯϭϰ 

represents perfectly the mechanisms of the true system (i.e., ݂ௌ ൌ ்݂௨ ൌ  The second ϯϭϱ .(ܥܥ

situation (S2) assumes that the model is just an approximation (݂ௌ ് ்݂௨, being ݂ௌ ൌϯϭϲ ܵܤ ܽ݊݀ ்݂௨ ൌ  ϯϭϳ  .(ܥܥ

(Fig. 2) ϯϭϴ 

2.4. Model performance, number of measurements, noise and data requirements ϯϭϵ 

In statistics, it is known that the MSEP reacts to the size of the training dataset (n) following ϯϮϬ 

Eq. 21 for linear regressions models (Wallach et al., 2013). The magnitude of MSEP depends ϯϮϭ 

on model errors (ߪఌଶ) and the number of parameters being calibrated (). The theory is valid ϯϮϮ 

when (1) the linear regressions represent suitably the system and (2) the training and testing ϯϮϯ 

datasets belong to the same population. ϯϮϰ 

ܲܧܵܯ ൌ ఌଶߪ  ቀ  ͳቁ         (Eq. 21) ϯϮϱ 

Phenology models in climate impact assessments contradict both premises; (1) they are far ϯϮϲ 

from linear and (2) the baseline (training datasets) and future climate flowering dates (testing ϯϮϳ 

dataset) represent different populations. Instead of Eq. 21, the relationship will be expressed ϯϮϴ 

according to the power law (Eq. 22). In Eq. 22, a and b represent the learning rate and learning ϯϮϵ 
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limit, respectively. The learning rate (a) represent the portions of the MSEP that is reducible ϯϯϬ 

with larger training datasets (n). Conversely, the learning limit (b) constitutes the unreducible ϯϯϭ 

part of MSEP. Eq. 22 is a more general form of Eq. 21 since a and b can adopt the values ܽ ൌϯϯϮ ߪఌଶ and ܾ ൌ  ఌଶ.  ϯϯϯߪ 

ெ݂ௌாሺ݊ሻ ൌ    ܾ         (Eq. 22) ϯϯϰ 

Based on Eq. 22, we explore the model data requirements by estimating the smallest calibration ϯϯϱ 

dataset that does not trigger significant improvement in the prediction errors under future ϯϯϲ 

climate, i.e. the lower value of n that makes οܲܧܵܯ ൌ  ெ݂ௌாሺ݊ሻ െ ெ݂ௌாሺ݊  ͳሻ crossing a ϯϯϳ 

threshold. We will consider that οܲܧܵܯ is trivial when the error is reduced less than 1 day in ϯϯϴ 

one of the 30 seasons under climate change (t = 12/30 ≈ 0.03). The use of οܲܧܵܯ to determine ϯϯϵ 

the data requirements focuses on the role of the size of the dataset rather than any other factor ϯϰϬ 

affecting the MSEP. ϯϰϭ 

3. Results ϯϰϮ 

3.1. “Perfect model” calibration, training and testing datasets ϯϰϯ 

The calibration of the “perfect model” yielded good representation of the observed average ϯϰϰ 

flowering date under baseline climate (Table 1 and Fig. 3). The 30-year means of the annual ϯϰϱ 

flowering date simulated by the Continuous Curvilinear (CC) model were nearly equal the ϯϰϲ 

actual averages (Table 1). The simulations carried out with the “perfect model” under climate ϯϰϳ 

change conditions (Fig. 3) led to earlier flowering dates. Flowering dates with the CC model ϯϰϴ 

occurred between 6-17 days earlier than in the baseline. Russia was the only location where ϯϰϵ 

the model predicted a later flowering (3 days). ϯϱϬ 

(Fig. 3) ϯϱϭ 

3.2. Size of the training dataset, measurement error and model performance – S1: ϯϱϮ 

model structures are correct (ࢋ࢛࢘ࢀࢌ ൌ  ϯϱϯ (ࡿࢌ

Several calibrations and evaluations of the CC model were carried out following the algorithm ϯϱϰ 

described above. The calibration dataset was changed with respect to the number of seasons ϯϱϱ 

(n) and levels of noise (ߪఌଶ) and the model performance was tested in terms of mean squared ϯϱϲ 

errors (MSE and MSEP). The squared errors of the CC models can be seen in Figs. 4-5. In ϯϱϳ 

general, Fig. 4 shows an increase of MSE and a decrease of MSEP with greater sizes of the ϯϱϴ 
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calibration dataset (n). The MSE and MSEP tend to the variance of noise, i.e. 0.25, 1, 2.25, and ϯϱϵ 

4 days2, without reaching it for the range of n explored. It should be noted that the graphs differ ϯϲϬ 

in the range of squared errors displayed on the y-axis for visualization purposes. Results show ϯϲϭ 

that prediction performance (MSEP) worsens proportionally with the level of measurement ϯϲϮ 

error in both calibration and evaluation (R2=0.99) (Fig. 5a). ϯϲϯ 

We adjusted Eq. 22 by estimating the learning rate (a) and learning limit (b) that fitted best the ϯϲϰ 

median MSEs and MSEPs among locations (solid lines in Fig. 4). The learning rate is negative ϯϲϱ 

when the trajectory ascends (MSE) and positive otherwise (MSEP). The curves represented ϯϲϲ 

well the increase of the MSE with the number of observations. The variability of the MSE ϯϲϳ 

explained by the power law varied between 0.95 and 0.99 for the CC model (Fig. 4). Curves ϯϲϴ 

represented slightly worse the results of the MSEPs: The coefficients of determination dropped ϯϲϵ 

from 0.95-0.99 for the MSEs to 0.93-0.97 for the MSEPs of the CC model. Fig. 4 shows how ϯϳϬ 

the MSEPs spread out compared to the MSEs, as the errors varied considerably between ϯϳϭ 

locations. ϯϳϮ 

(Fig. 4) ϯϳϯ 

(Fig. 5) ϯϳϰ 

We further explored the relationship between our results and theory (Eq. 21). Given the ϯϳϱ 

proportionality between MSEPs and ߪఌଶ (Fig. 6a), we computed their ratio (ܲܧܵܯ ఌଶΤߪ ൌϯϳϲ ܲܧܵܯᇱ) to remove the differences among MSEPs caused by noise. According to theory, ϯϳϳ ܲܧܵܯᇱ should follow   ݊Τ  ͳ. We adjusted Eq. 22 to represent the ܲܧܵܯᇱ. Based on Eq. 21, ϯϳϴ ܽ should be equal to  and ܾ equal to 1 (in this case, ܽ ൌ ͵ and ܾ ൌ ͳ). Our results approached ϯϳϵ 

reasonably well to theory (Fig. 7a); the model was significant ( െ ݁ݑ݈ܽݒ ൌ ͵ǤͶ ή ͳͲି) and ϯϴϬ 

represented well the variations of ܲܧܵܯᇱ (R2 = 0.86). Additionally, the estimated model ϯϴϭ 

coefficient remained close to the theoretical values with ොܽ ൌ ͵ǤͻʹሺേͲǤͶሻ and ܾ ൌϯϴϮ ͳǤͶሺേͲǤͲͶሻ. ϯϴϯ 

(Fig. 6) ϯϴϰ 

A larger n and higher ߪఌଶ  had positive and negative impacts, respectively, on the prediction ϯϴϱ 

performance (Fig. 4-5a). To investigate the compensations between n and ߪఌଶ we rearranged ϯϴϲ 

Eq. 21-22 to calculate the n required to reach a specific MSEP (݊ ൌ ොܽ ሺܲܧܵܯ ఌଶΤߪ ሻΤ െ ܾ). ϯϴϳ 

Combined sequences of MSEP and ߪఌଶ were fed into the equation to build the response surfaces ϯϴϴ 
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seen in Fig. 7a. The graph shows the n (z-axis) depending on the MSEP (x-axis) and the ߪఌଶ (y-ϯϴϵ 

axis). The non-equidistant contour lines in Fig. 8a depict the non-linearities between MSEP ϯϵϬ 

and n captured in Eq. 21 and 22. The straightness of the contour lines reflects the linear ϯϵϭ 

relationship between MSEP and ߪఌଶ represented in Eq. 21. We inspected whether larger but less ϯϵϮ 

precise datasets could lead lower MSEPs than smaller but more precise datasets. The dashed ϯϵϯ 

black line in Fig. 7a shows one case where the MSEP is reduced from 5 day2 to 4 day2 (in steps ϯϵϰ 

of 0.25 day2) by using training datasets with size n equal to 4, 6, 9, 13 and 30 and noise levels ϯϵϱ 

equal to 2.22, 2.25, 2.37, 2.41 and 2.51 days2, respectively. Eqs. 22-23 and Fig. 7a confirm that ϯϵϲ 

it is possible in theory to compensate the lack of precision in the measurements with more ϯϵϳ 

seasons observed. However, the equations and the results in Fig. 7a highlight two major ϯϵϴ 

limitations for this type of compensations; (1) the noise imposes a minimum limit of the MSEP ϯϵϵ 

( lim՜ஶ ܲܧܵܯ ൌ ఌଶ (nߪ ఌଶ) and (2) n changes very quickly with MSEP andߪ ൌ a ሺܲܧܵܯ െ ܾሻΤ ), ϰϬϬ 

becoming rapidly very large and practically unfeasible. ϰϬϭ 

(Fig. 7) ϰϬϮ 

Data required to reach the threshold ∆MSEP < 0.03 was calculated using Eqs. 21-22. The ϰϬϯ 

improvements in model performance were not significant when the size of training dataset ϰϬϰ 

reached the number of observations appearing in Table 3 (column Situation S1). For instance, ϰϬϱ 

models showed no meaningful improvement in prediction skills with training datasets larger ϰϬϲ 

than 11(±1) measurements when noise was ߪఌଶ = 1. The data required increased with growing ϰϬϳ 

levels of noise. ϰϬϴ 

(Table 3) ϰϬϵ 

Every square dot in Fig. 4 represents the squared error (MSE/MSEP) of a particular location. ϰϭϬ 

The dispersion of the MSEP values reveals that the variation between locations is large. To ϰϭϭ 

explore the reasons behind these differences, Eq. 22 was adjusted independently for the results ϰϭϮ 

of each location. We inspected whether the variance of the training population (flowering dates ϰϭϯ 

1980-2010) might be behind the differences in the location-specific learning rates (a) and limits ϰϭϰ 

(b) of the MSEPs. Fig. 8 displays the a and b obtained from the MSEPs for each location and ϰϭϱ 

noise level on the x-axis. On the y-axis, the graph shows the a’ and b’ obtained from a ϰϭϲ 

regression based on noise (ߪఌଶ) and the variance of the training dataset (ߪଶ்). We found that the ϰϭϳ 

variance of the training dataset and the variance of noise in the measurements explained most ϰϭϴ 

of the variability in the learning rates (Fig. 8a). The regression of a’ based on ߪఌଶ and ߪଶ் shows ϰϭϵ 
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a good fit between the actual and the estimated learning rates (R2=0.85). The variance of ϰϮϬ 

training dataset and its product with the variance of noise (ߪଶ்∙ߪఌଶ) were highly significant (p < ϰϮϭ 

0.01) to explain the variations in learning rates. The variability in b’ (Fig. 8b) was only ϰϮϮ 

significantly explained (p < 0.01) by the noise (R2=0.98).  ϰϮϯ 

(Fig. 8) ϰϮϰ 

3.3. Size of the training dataset, measurement error and model performance – S2: ϰϮϱ 

model structures are approximations (ࢋ࢛࢘ࢀࢌ ്  ϰϮϲ (ࡿࢌ

The entire process was repeated, but this time the true model and the simulation model were ϰϮϳ 

different. In Fig. 9, the CC model represents the true mechanism (்݂௨ ൌ  and the BS ϰϮϴ ,(ܥܥ

model is used as an approximation (݂ௌ ൌ  Curves with the shape of Eq. 22 were adjusted ϰϮϵ .(ܵܤ

to the results of the MSE and MSEP (Fig. 9). MSEs and MSEPs evolved asymptotically with ϰϯϬ 

the size of the training dataset as in S1. Eq. 22 represented well the variations of the MSEs ϰϯϭ 

(grey dots in Fig. 9); R2 ranged between 0.96 and 0.99 for the BS model simulations (black ϰϯϮ 

lines in Fig. 9) and dropped to 54-90% for the MSEPs with the BS model (red lines in Fig. 9). ϰϯϯ 

The results show that the prediction error increased linearly with the noise (R2 =0.99) (Fig. 5b). ϰϯϰ 

The values of MSEs and MSEPs were well represented by a linear regression with an intercept ϰϯϱ 

(݇) greater than zero. This intercept shows the average cost of an approximated model structure, ϰϯϲ 

which was 1.10 and 3.68 days2 for the MSE and MSEP, respectively. The influence of model ϰϯϳ 

structure is also illustrated by a wider spread of MSEPs among locations in S2 than in S1 (red ϰϯϴ 

dots in Fig. 9). Structural model errors worsened prediction performance to a greater or lesser ϰϯϵ 

extent depending on the location. For instance, the MSEPs were high and roughly decreased ϰϰϬ 

with the size of training dataset (n) when applying the BS model in Turkey (outliers in Fig. 9). ϰϰϭ 

The flat evolution of the error represents the need of structural model improvements. ϰϰϮ 

 (Fig. 9) ϰϰϯ 

The impact of structural error on MSEP was removed by subtracting the location-specific ϰϰϰ 

minimum prediction error obtained with zero noise training datasets (݇). As in S1, the ϰϰϱ 

differences among MSEPs caused by noise were eliminated by dividing MSEP by ߪఌଶ ϰϰϲ 

ᇱܲܧܵܯ) ൌ ሺܲܧܵܯ െ ݇ሻ ఌଶΤߪ )). We adjusted Eq. 22 to ܲܧܵܯᇱ by calibrating a and b (Fig. ϰϰϳ 

6b). The model was significant ( െ ݁ݑ݈ܽݒ ൌ ǤͷͶ ή ͳͲି) and explained a high portion of the ϰϰϴ 

variability in ܲܧܵܯᇱ (R2 = 0.84). The estimated values of the coefficients ොܽ and ܾ were ϰϰϵ 

4.46(±0.56) and 1.25(±0.05), so ොܽ was slightly greater than the value in S1 and ܾ was similar ϰϱϬ 
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to S1 and its theoretical value. Therefore, the model structure hampered the parameter ϰϱϭ 

estimation, since ොܽ is the portion of MSEP attributed to parameter estimation error.  ϰϱϮ 

We estimated the n (contour lines in Fig. 7b) based on a given MSEPs and ߪఌଶ . The specific ϰϱϯ 

version of Eq. 21-22 to S2 was rearranged (݊ ൌ ොܽ ሺሺܲܧܵܯ െ ݇ሻ ఌଶΤߪ ሻΤ െ ܾ). Compared to ϰϱϰ 

S1, contour lines in S2 are offset to the lower right corner of the graph. This indicates that the ϰϱϱ 

number of observations needed to reach a prediction performance in S2 is larger than in S1. ϰϱϲ 

The contours lines are more horizontal than in S1, representing a lower response of n to the ϰϱϳ 

noise in the training dataset. Results suggest (black dots in Fig. 7b) that the training datasets of ϰϱϴ 

n equal to 5, 7, 12 and 32 can reduce the prediction error from 5 days2 to 4.25 days2 (in steps ϰϱϵ 

of 0.25 day2) with increasing noises (1.06, 1.07, 1.09 and 1.10 days2). ϰϲϬ 

Data requirements were estimated by finding the smallest n that surpassed the threshold with ϰϲϭ 

the learning rates and limits specific to each location. The models stopped significantly ϰϲϮ 

improving model predictions at the n’s specified in Table 3 under the column for Situation S2. ϰϲϯ 

There is an increase in data requirements when the model structure changed from perfect to ϰϲϰ 

approximate (Table 3). ϰϲϱ 

As in S1, Eq. 22 was fitted independently to the results from each location, extracting the values ϰϲϲ 

of a and b. To understand the differences between locations, we explored the relationship ϰϲϳ 

between the learning rate and limits with the training population variance (ߪଶ்) and level of ϰϲϴ 

noise (ߪఌଶ). Fig. 10 is similar to Fig. 8, but with the results from S2. The results showed a worse ϰϲϵ 

approximation between actual and estimated learning rates (a vs. a’) (R2 = 0.69) and learning ϰϳϬ 

limits (b vs. b’) (R2 = 0.60) than in S1 (Fig. 10). The terms  ߪଶ் and (ߪଶ்∙ߪఌଶ) were highly ϰϳϭ 

significant (p < 0.01) for explaining the variations of the learning rates among locations. The ϰϳϮ 

variation of the learning limit among locations was significantly explained by the terms ߪఌଶ and ϰϳϯ ߪଶ். Fig. 10b shows that ߪఌଶ and  ߪଶ் alone did not represent well the learning limits in locations ϰϳϰ 

such as Turkey (green squares). The shift of the points towards the right while remaining ϰϳϱ 

parallel to the 1:1 line indicates existence of an additional locations-specific constant term ϰϳϲ 

explaining the learning limit. ϰϳϳ 

(Fig. 10) ϰϳϴ 

4. Discussion ϰϳϵ 
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As in other disciplines (e.g., Figueroa et al., 2012), the learning curves have proved to be useful ϰϴϬ 

for assessing crop phenology models in terms of elucidating the relationship between datasets ϰϴϭ 

and prediction performance and defining the suitable size of the calibration datasets given a ϰϴϮ 

prediction error target. ϰϴϯ 

We explored the interaction between the number of measurements in the calibration dataset ϰϴϰ 

and the prediction skills of two phenology models. The results show a nonlinear relationship ϰϴϱ 

between prediction error and the size of the calibration dataset. The system developed by ϰϴϲ 

Kersebaum et al. (2015) scores the quality of modelling datasets in a linear fashion with the ϰϴϳ 

number of seasons observed. The existing statistical theory and our results suggest that a ϰϴϴ 

nonlinear power-law scoring system would be more representative. According to the effect of ϰϴϵ 

noise on model squared error, we observed that prediction performance improves ϰϵϬ 

proportionally with reductions in measurement error. The relationships between size, noise of ϰϵϭ 

datasets and model skills (Eq. 21-22) indicate that it could be possible to improve the ϰϵϮ 

predictions skills using less precise but more abundant datasets (݊ ൌ ܽ ሺܲܧܵܯ ఌଶΤߪ ሻ െ ܾΤ ሻ). ϰϵϯ 

Therefore, satellite images, for instance, could help observing ground-based phenology ϰϵϰ 

(Sakamoto et al., 2005) to improve climate change impact assessments. Their spatial and ϰϵϱ 

temporal coverage (large n) may compensate the errors arising from calibration and ϰϵϲ 

atmospheric disturbances (high ߪఌଶ) (Studer et al., 2007). However, compensations between ϰϵϳ 

noise and size of datasets might be limited by the non-linear growth in size needed to ϰϵϴ 

compensate for measurement error. Further assessments investigating these synergies are ϰϵϵ 

needed. ϱϬϬ 

We estimated that 5-7 observations of flowering dates were enough to conduct impact ϱϬϭ 

assessments under 2050’s climate change conditions. These results correspond to 0.25 day2 ϱϬϮ 

measurement error and perfect model structures. However, model structures are known to be ϱϬϯ 

imperfect representations of the agricultural systems (Rötter et al., 2011). Therefore, S2 is more ϱϬϰ 

realistic representation of the situation in crop modelling. In our experiment, structural ϱϬϱ 

approximations (S2) translated into an increase of prediction error. The error increase was ϱϬϲ 

specific to each model and location. Structural errors also interfered with parameter estimation, ϱϬϳ 

increasing the data requirements. Therefore, moving from S1 to S2 caused an increase of data ϱϬϴ 

requirements to 7-9 with 0.25 day2 of measurement error. The number of field measurements ϱϬϵ 

(years) usually available to compare observations and simulation ranges from 5 to 10 before ϱϭϬ 

the cultivar becomes obsolete. This number of measurements is around the recommended ϱϭϭ 

minimum number estimated in our analysis. However, noise in field observations is likely ϱϭϮ 
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larger than 0.25 days2. To get more measurements in the same time period, multi-ϱϭϯ 

environmental trials or experiments with multiple sowing dates have to be conducted, which ϱϭϰ 

goes in line with recommendations by He et al. (2017). Strictly, neither structures can be ϱϭϱ 

considered correct, nor are parameter values true. For these reasons, the results obtained with ϱϭϲ 

this kind of assessment are merely theoretical and advisory. These recommendations can vary ϱϭϳ 

among locations: the data required depends on the learning rate and results show that it varies ϱϭϴ 

with the inter-annual flowering variability of the training population (Fig. 8 and 10). Therefore, ϱϭϵ 

the suitable size of the dataset could be larger in places where there is greater variability among ϱϮϬ 

seasons. ϱϮϭ 

The estimates of data requirements made in this assessment concern phenology models used ϱϮϮ 

on their own for climate change impact assessments for 2050’s under the RCP8.5 scenario. ϱϮϯ 

Results cannot be extended to phenology models embedded in crop models, even when ϱϮϰ 

phenology parameters are independently calibrated as the initial process of model calibration ϱϮϱ 

(e.g., Angulo et al., 2013). Generally, the number of parameters being calibrated is greater than ϱϮϲ 

3 (p in Eq. 21) since more than one phase of the development is involved (e.g. flowering and ϱϮϳ 

maturity). A greater number of parameters may raise the learning rate (a in Eq. 22), therefore ϱϮϴ 

increasing the n (number of observations) needed to surpass the threshold. Additionally, the ϱϮϵ 

information available to calibrate the models involves observations of multiple phases, ϱϯϬ 

meaning more information to calibrate the model. These aspects may change the shape of the ϱϯϭ 

learning curves and the suitable number of measurements required for calibration. Another ϱϯϮ 

factor influencing the learning rate is the inter-annual variability of the flowering time at the ϱϯϯ 

time being projected (ߪଶ்). This variability of the flowering time may change over time in some ϱϯϰ 

locations, for instance due to more variable temperatures in the future (Craufurd and Wheeler, ϱϯϱ 

2009). Therefore, data requirements would vary depending on the time horizon being projected. ϱϯϲ 

Future work needs to include more phases and locations and time horizons in the learning curve ϱϯϳ 

approach and the upscaling of the learning curves to whole crop models. ϱϯϴ 

5. Conclusions ϱϯϵ 

To our knowledge, there is no study to date giving statistical evidence about the effects of the ϱϰϬ 

size and measurement error of the datasets on crop modelling for climate impact assessment. ϱϰϭ 

Here we applied the learning curve approach to crop modelling, using phenology models ϱϰϮ 

varying the dataset features in a progressive manner. Learning curves might be promising tools ϱϰϯ 



ϭϵ 
 

to explore the balance between the size of the dataset, measurement error and model ϱϰϰ 

performance to provide practical guidance. ϱϰϱ 

Prediction skill reacted non-linearly to the size of the training dataset according to power-law. ϱϰϲ 

Approximate phenology models required at least 7-9 observations to reach negligible ϱϰϳ 

improvements with larger datasets to predict the flowering time for the 2050’s under the ϱϰϴ 

RCP8.5 scenario. The analysis based on learning curves also suggested that improvements in ϱϰϵ 

predictions can be achieved with less precise but more abundant datasets. Based on the theory, ϱϱϬ 

these compensations follow ݊ ൌ ܽ ሺሺܲܧܵܯ ఌଶΤߪ ሻ െ ܾሻΤ . Therefore, new satellite-based ϱϱϭ 

monitoring techniques could potentially improve simulations despite their errors. The extent of ϱϱϮ 

improvement will depend on the noise and number of seasons used as a training set and more ϱϱϯ 

studies are needed. ϱϱϰ 

The estimates made in this study concern the phenology models used independently for impact ϱϱϱ 

studies of flowering in 2050’s under RCP8.5. We encourage further efforts to adapt the learning ϱϱϲ 

curve approach to complete crop models and explore the requirements for projecting different ϱϱϳ 

time horizons. ϱϱϴ 
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Figures ϲϱϴ 

 ϲϱϵ 

Fig. 1: Normalized responses of crop development to vernalization (A), photoperiod (B) ϲϲϬ 

and temperatures (C) simulated by the Broken-Sticks Model (solid line) and the ϲϲϭ 

Continuous Curvilinear Model (dashed line)  ϲϲϮ 
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Fig. 2: Outline of the process to obtain the learning curves.  ϲϲϰ 

Steps to obtain the learning curves: 

a. Sample ݊ measurement errors ߝ from  ܰሺͲǡ  ఌଶሻߪ

b. Select ݊ measurements randomly from 1980-2010  

c. Build the calibration dataset ݈ܾܿܽ݅ݐ݁ݏܽݐܽ݀ ݊݅ݐܽݎ ൌ  ሼݕଵି௧ெ௦௨ǡ ǥ ǡ ି௧ெ௦௨ሽݕ ൌ ൌ ሼݕଵି௧்௨  ଵǡߝ ǥ ǡ ି௧்௨ݕ  ሽߝ ൌ ൌ ሼ்݂௨ሺ்ߠ௨ǡ ଵି௧ݔ ሻ  ଵǡߝ ǥ ǡ ்݂௨ሺ்ߠ௨ ǡ ି௧ሻݔ   ሽ  (Eq.16)ߝ

d. Calibrate the model by OLS using ݈ܾܿܽ݅ߠ ݐ݁ݏܽݐܽ݀ ݊݅ݐܽݎ א ݊݅݉݃ݎܽ ቄσ ି௧ெ௦௨ݕൣ െ ݂ௌሺߠǡ ି௧ሻ൧ଶୀଵݔ ቅ   (Eq. 17) 

e. Compute MSE of the model for those ܧܵܯ ݏܾ ൌ  ଵ σ ቀݕெ௦௨ െ ݂ௌ൫ߠǡ ൯ቁଶୀଵݔ      (Eq.18) 

f. Build the testing dataset testing ൌ  ሼyଵି୲ୣୱୣୟୱ୳୰ୣǡ ǥ ǡ yଷି୲ୣୱ୲ୣୟୱ୳୰ୣሽ ൌ ሼyଵି୲ୣୱ୲୰୳ୣ  ɂଵǡ ǥ ǡ y୬ି୲ୣୱ୲୰୳ୣ  ɂ୬ሽ ൌ ൌ ሼf ୰୳ୣሺɅ୰୳ୣǡ xଵି୲ୣୱ୲ሻ  ɂଵǡ ǥ ǡ f ୰୳ୣሺɅ୰୳ୣǡ xଷି୲ୣୱ ሻ  ɂଷሽ   (Eq.19) 

g. Estimate the MSEP of the model under climate change ܲܧܵܯ ൌ  ଵଷ σ ቀݕெ௦௨ െ ݂ௌ൫ߠǡ ൯ቁଶଷୀଵݔ     (Eq.20) 

h. Repeat b-g 60 times 

i. Repeat b-g increasing ݊ from 5 to 30 in steps of 2 

j. Repeat a-b increasing ߪఌ from 0 to 2 in steps of 2. 
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Fig. 3: Actual (࢟ഥࢇ࢛࢚ࢉࢇ) and simulated flowering dates by the “perfect model” (ࢋ࢛࢘ࢀࢇ࢚࢘ି࢟  ϲϲϲ 

and ࢋ࢛࢘ࢀ࢚࢙ࢋ࢚ି࢟ ). The green dots represent the actual average flowering dates in 1980-2010 for ϲϲϳ 

winter wheat. Black crosses show the annual flowering time simulated by the Continuous ϲϲϴ 

Curvilinear (CC) models during baseline (1980-2010). Red circles show the annual flowering ϲϲϵ 

Julian days for 30 years in the decade 2050 under RCP8.5 and GCM GDFL-CM3. ϲϳϬ 
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 ϲϳϮ 

Fig. 4: Learning curves of the Continuous Curvilinear model at different levels of ϲϳϯ 

measurement error (ࢿ࣌) and locations in Situation 1. The CC model is an accurate ϲϳϰ 

representation of the real system (ࡱࢁࡾࢀࢌ ൌ ࡿࢌ ൌ  Figures from the top-left to the ϲϳϱ .(

bottom-right show the results for increasing levels of measurement error. Mean Square Errors ϲϳϲ 

for each location at calibration are represented by the empty grey-squared dots (MSE). Mean ϲϳϳ 

Square Errors for each location at 2050’s RCP8.5 climate change Predictions are represented ϲϳϴ 

by the empty red-squared dots (MSEP). Filled dots show the median among locations. Lines ϲϳϵ 

summarize the behaviour for all locations according to the power-law (Eq. 22). The coefficients ϲϴϬ 

of determination of these lines are shown in black and red for the MSE and MSEP, respectively. ϲϴϭ 
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Fig. 5: Squared error of simulation (MSE/MSEP) depending on measurement error (ࢿ࣌). ϲϴϯ 

The boxes show the range of MSEs (grey scale) and MSEPs (red scale) obtained with different ϲϴϰ 

sizes of datasets (n). The solid black and red lines represent the linear response of MSE and ϲϴϱ 

MSEP, respectively, to measurement error. Graph A and B show the results for the Situation ϲϴϲ 

S1 (்݂ோா ൌ ݂ௌ ൌ ܥܥ) and Situation S2 (ܥܥ ൌ ்݂ோா ് ݂ௌ ൌ  respectively. ϲϴϳ ,(ܵܤ
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Fig. 6: Transformed squared error of simulation (MSEP’) depending on the size of the ϲϴϵ 

training dataset (n). The boxes show the range of MSEPs obtained in both situations. The ϲϵϬ 

solid red line is the power-law curve representing the response of MSEP to n. Graph A and B ϲϵϭ 

show the results for the Situation S1 (்݂ோா ൌ ݂ௌ ൌ ܥܥ) and Situation S2 (ܥܥ ൌ ்݂ோா ്ϲϵϮ ݂ௌ ൌ  respectively.  ϲϵϯ ,(ܵܤ
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Fig. 7: Response surface of the number of observations required (n) to reach a specific ϲϵϱ 

Mean Square Error of Prediction (MSEP, x-axis) with noise (ࢿ࣌, y-axis) in S1(A) and S2 ϲϵϲ 

(B). Contour lines show changes in n for every 5 observations, from n = 5 to n = 30. The red ϲϵϳ 

thick line is the minimum limit of MSEP that can be achieved with a specific noise level ϲϵϴ 

(minሺܲܧܵܯሻ ൌ  ఌଶ). The black dots represent the paths to improve the prediction skills of the ϲϵϵߪ

models (decreasing MSEP) by using less precise (i.e., higher ߪఌଶ) but larger datasets (i.e., ϳϬϬ 

greater n).  ϳϬϭ 
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Fig. 8: Exploring the location-specific learning curves and their dependence on the ϳϬϯ 

variance of the target population in Situation S1. The graph on the left (A) and the right (B) ϳϬϰ 

show the learning rates (a) and the learning limits (b) for all location and noise levels. The x-ϳϬϱ 

axis represents the actual values derived from fitting Eq. 22 to the results in Fig. 4 for each ϳϬϲ 

location. The y-axis shows the estimated coefficients from the equations; ܽԢ ൌ ͲǤͲ͵ߪఌଶ ϳϬϳ ͲǤͳͳߪଶ்  ͲǤͳሺߪఌଶ ή ܾ ଶ்ሻ ĂŶĚߪ Ԣ ൌ ͳǤͳߪఌଶ  ͲǤͲͲ͵ߪଶ்  ͲǤͲͲͳሺߪఌଶ ή  ଶ்ሻ͘ Locations are represented by ϳϬϴߪ

different colours. ϳϬϵ 
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 ϳϭϬ 

Fig. 9: Learning curves of the Broken-Stick model at different levels of measurement ϳϭϭ 

error (ࢿ࣌) and locations in Situation S2. The model BS is an approximate representation ϳϭϮ 

of the real system (ࢋ࢛࢘ࢀࢌ ൌ ࡿࢌ Ǣ ൌ  Figures from the top-left to the bottom-right ϳϭϯ .(ࡿ

show the results for increasing levels of measurement error. Mean Square Errors for each ϳϭϰ 

location at calibration are represented by the empty grey-squared dots (MSE). Mean Square ϳϭϱ 

Errors for each location at 2050’s RCP8.5 climate change predictions are represented by the ϳϭϲ 

empty red-squared dots (MSEP). Filled squares show the median among locations. Lines ϳϭϳ 

summarize the behaviour for all locations according to the power-law (Eq. 22). The coefficients ϳϭϴ 

of determination of these lines are shown in black and red for the MSE and MSEP, respectively. ϳϭϵ 
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 ϳϮϬ 

Fig. 10: Exploring the location-specific learning curves and their dependence on the ϳϮϭ 

variance of the target population in Situation S2. The graph on the left (A) and right (B) ϳϮϮ 

show the learning rates (a) and the learning limits (b) for all location and noise levels. The x-ϳϮϯ 

axis represents the actual values derived from fitting Eq. 22 to the results in Fig. 9 for each ϳϮϰ 

location. The y-axis show the estimated coefficients from the equations: aԢ ൌ െͲǤͷ͵ߪఌଶ ϳϮϱ ͲǤͳͺߪଶ் െ ͲǤͳ͵ሺߪఌଶ ή ଶ்ሻ ܽ݊݀ ܾԢߪ ൌ ʹǤͶͷߪఌଶ  ͲǤͳʹߪଶ் െ ͲǤͲ͵ሺߪఌଶ ή  ଶ்ሻ͘ Locations are represented by ϳϮϲߪ

different colours.   ϳϮϳ 
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Tables ϳϮϴ 

Table 1: Details of the locations used in the analysis. Dates of sowing and anthesis are ϳϮϵ 

shown as Julian Days (JD).  ݕതௌȀ௧௨   and ߪ௬ത  represent the average anthesis dates between ϳϯϬ 

1980 and 2100 and their standard deviations simulated by the BS and CC perfect models. ϳϯϭ οࢀ is the projected increase in local temperature from baseline (1980-2010) to projected ϳϯϮ 

climate change (2050’s). ϳϯϯ 

  ϳϯϰ 

Location Country Latitude 
(º) 

Sowing 
(JD) 

Anthesis 
(JD) 

തௌ௧௨ݕ  
(JD) 

௬തߪ  
(JD) 

ത௧௨ݕ  
(JD) 

௬തߪ  
(JD) 

οT 
(ºC) 

Wageningen Netherlands 51.97 309 176 176 4.25 176 6.09 2.83 

Balcarce Argentina -37.75 217 329 328 2.21 329 3.17 1.66 

Manhattan USA 43.03 274 135 136 5.1 135 6.38 4.58 

Nanjing China (A) 32.03 278 125 125 3.76 125 4.70 3.24 

Luancheng China (B) 37.53 278 125 126 3.91 125 4.47 3.46 

Krasnodar Russia 45.02 258 140 140 2.36 140 2.80 -0.76 

Izmir Turkey 38.60 319 121 122 4.49 121 6.06 2.82 

Lethbridge Canada 49.70 253 161 161 6.33 161 8.15 4.44 



ϯϱ 
 

Table 2: List of all the datasets generated with the perfect model. The level of noise or ϳϯϱ 

measurement error is represented by ࢿ࣌. The maximum number of observations in the dataset ϳϯϲ 

is represented by ࢞ࢇ. ϳϯϳ 

Purpose Period Perfect model Noise - ࢿ࣌ ࢞ࢇ 
Training 1980-2010 CC 0.00 30 
Training 1980-2010 CC 0.25 30 
Training 1980-2010 CC 1.00 30 
Training 1980-2010 CC 2.25 30 
Training 1980-2010 CC 4.00 30 
Testing 2050's - RCP8.5 CC 0.00 30 
Testing 2050's - RCP8.5 CC 0.25 30 
Testing 2050's - RCP8.5 CC 1.00 30 
Testing 2050's - RCP8.5 CC 2.25 30 
Testing 2050's - RCP8.5 CC 4.00 30 

  ϳϯϴ 
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Table 3: Data required (n) for both the CC and the BS model under situations S1 and S2 ϳϯϵ 

to reach the point where additional data did not imply relevant improvements of the ϳϰϬ 

prediction skills ϳϰϭ 

Level of noise (ߪఌଶ) Situation 1 Situation 2 
0.25 6(±1) 8(±1) 
1.00 11(±1) 16(±2) 
2.25 17(±2) 23(±4)  
4.00 23(±3) 31(±5)  

 ϳϰϮ 


