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Abstract: Monitoring of rotor temperature in permanent magnet synchronous machines (PMSM) is of great importance as high
temperature could cause partial or even irreversible demagnetisation of the permanent magnets (PMs). Rotor temperature
measurement unfortunately is particularly difficult in practice, since it is difficult to access temperature sensors on a rotating
shaft. Nevertheless, rotor temperature can be obtained indirectly with the information of rotor magnet flux linkage, as PM
remanence decreases with rotor temperature. Here, a simple and relatively accurate method for online estimation of PM flux
linkage is presented, based on the measurement of current response to the standard space-vector pulse width modulation (SV-
PWM). This method uses the already-existing PWM voltage as the excitation signal in order to avoid any form of signal injection
which produces undesirable disturbance to the system. Knowledge of machine parameters, such as inductances which may
vary due to saturation, is not required. The proposed methodology has been verified in real-time simulation.

1Introduction
Permanent magnet synchronous machines (PMSMs) are widely
popular in servo and traction applications due to their high torque
and power density. Their use in applications where high reliability
must be guaranteed requires careful online condition monitoring of
the motor [1]. Thermal monitoring of the machine is particularly
important, since temperature is typically the main environmental
stressor causing state-of-health degradation and ultimately failure.
In terms of motor stators, several direct and indirect temperature
monitoring techniques are well established. Temperature sensors
such as thermistors and thermocouples can be relatively easily
embedded into machine stators during the manufacturing process.
However, the requirement for additional sensors may increase
costs. Rotor temperature monitoring is of equal importance as high
temperature increases the risk of partial, or even total irreversible
demagnetisation of rotor magnets [2]. Rotor temperatures are
difficult to measure in practice, as the rotating part can only be
accessed through slip rings, infrared or other wireless sensors,
making direct measurement unrealistic in some applications. Hence
model-based methods, have been investigated in recent years.

One of the most contemporary approaches is thermal-
modelling, which is usually based on a lumped parameter
equivalent thermal network (LPTN). It can inform a thermal
‘observer’, which combined with loss models, is capable of
providing accurate temperature estimation during real-time
operation. Low-order LPTNs [1, 3, 4] in particular have aroused
more attention, as the detailed knowledge of the motor internal
topology, materials and dimensions is not required. Accurate
temperature estimation can be achieved using a measurement-
based parameter identification procedure, which continuously
updates the values of the thermal parameters based on the
minimisation of a specified cost function.

Furthermore, it is also possible to determine motor temperatures
via temperature-dependent machine parameters. The use of rotor
flux linkage model-based observer is proposed in [2–5] using the
fact that (NeFeB) PM loses 0.11–0.12% remanence per one degree
Celsius temperature rise. Nevertheless, this method is difficult to
apply practically, because of the necessity of a precise modelling
for motor and inverter — the model-related errors otherwise will
be misinterpreted as temperature changes.

PM temperature can also be potentially acquired indirectly from
estimation of the rotor magnet flux linkage. Few estimation
methods of PM flux linkage have been presented in publications.
[6] proposes an online method to estimate stator resistance and

rotor PM flux linkage under constant load torque with two sets of
dq-axis voltage equations corresponding to idௗ=ௗ0 and the injection
of a id ≠ 0 test signal. Likewise, by utilising a zero-voltage
injection scheme, flux linkage is directly determined with the
measurement of the average value of the voltage commands which
are the output of current loop PI controllers of the standard field-
oriented control at different rotor speed [7]. In both methods, the
dq-axis inductance terms are cancelled during the derivation of the
methods, resulting in a parameter-independent estimation.
However, signal injection-related methods are not desirable
because the additional signal disturbs the motor performance by
producing additional current and thus additional torque ripples and
additional losses.

Here, a relatively simple and accurate method is presented for
online flux linkage estimation, which only involves in the
measurements of voltage references and current in response to the
standard SV-PWM. Similarly to [6, 7], knowledge of inductances is
not required for the estimation. Furthermore, this method does not
need signal injection as the excitation signal is intrinsic in the
PWM voltage.

After introducing the basics of the method in Section 2, a
comprehensive validation is conducted on an interior PMSM
(IPMSM) model in real-time, using the hardware-in-the-loop (HIL)
technique. The estimation errors in different operating conditions
are evaluated and shown to be relatively small.

2Fundamental theory
The voltage equations of a PMSM represented in rotating dq-
reference frame are expressed as:

vd = Rsid + Ld
d
dt

id − ωrLqiq (1)

vq = Rsiq + Lq
d
dt

iq − ωr(Ldid + ψm) (2)

where vd, vq, id, iq are the dq-axis voltages and currents,
respectively; Ld, Lq, Rs are the dq-axis inductances as well as the
stator resistance, Ȧr is the rotor speed, and ȥm is the rotor PM flux
linkage.

It is obvious that, rearranging the q-axis (2) it is possible to
calculate the rotor flux ȥm. This would require the measurement of
qௗ−ௗaxis voltage, stator currents as well as a knowledge of machine
parameters Rs, Ld, Lq. Voltage measurements unfortunately are
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unavailable in most drive systems as voltage sensors are not
commonly installed in motor drives. However, with SV-PWM
technique, voltage information can be obtained via the voltage
reference vector, the location of which in relation to the active
voltage vectors on state vector diagram determines the generation
of the PWM switching period [8].

Fig. 1 shows an example of a single PWM switching period
with a duration of tswitchingௗ=ௗ1/fsw, where fsw denotes the switching
frequency, PWM1,..,3 being the gate signals controlling the turn-on
of the top three devices in a standard two-level voltage-source
inverter. t1⋯t8 are the time instants at which a different voltage
vector is applied. The q-axis (2) can be discretised with a sampling
time. Ts ≪ tswitching . The resultant relationships between two
adjacent sampling points, assuming the d-axis current to be
controlled to zero, are given as:

vq(t1 ∼ (t1 + Ts)) = Rsiq(t1 ∼ (t1 + Ts)) + Lq
d
dt

iq(t1 ∼ (t1 + Ts)) + ωrψm (3)

vq((t1 + Ts) ∼ (t1 + 2Ts)) = Rsiq((t1 + Ts) ∼ (t1 + 2Ts))

+Lq
d
dt

iq((t1 + Ts) ∼ (t1 + 2Ts)) + ωrψm

(4)

vq((t1 + (n − 2)Ts) ∼ t8) = Rsiq((t1 + (n − 2)Ts) ∼ t8)

+Lq
d
dt

iq((t1 + (n − 2)Ts) ∼ t8) + ωrψm

(5)

where Ts is the sampling time, t1 is the starting point of the PWM
period in Fig. 1, and n is the total number of the sampling points in
the period, which must be an integer to guarantee an integer
number of equations. The speed Ȧr is assumed to be constant
during the switching period. 

The derivative term diq/dt can be approximated by
iq(t1 + (k + 1)Ts) − iq(t1 + kTs)/Ts, with kௗ=ௗ0,1⋯nௗ−ௗ2. It is noted that the
last sampling point in the period is t8ௗ=ௗt1ௗ+ௗ(nௗ−ௗ1)Ts. When the
motor operates at steady-state, the current loop controller only
responds to the currents measured at the beginning of the non-zero
active voltage vectors, which are iq(t2)andiq(t5) and ensures that on
average they remain constant. This means iq(t2) = iq(t5), iq(t4) = iq(t7)

and also iq(t1) = iq(t8) . Multiplying the nௗ−ௗ1 equations by dt, which is
the sampling time Ts gives:

Tsvq(t1 ∼ (t1 + Ts)) = TsRsiq(t1 ∼ (t1 + Ts))

+Lq(iq(t1 + Ts) − iq(t1)) + Tsωrψm

(6)

Tsvq((t1 + Ts) ∼ (t1 + 2Ts)) = TsRsiq((t1 + Ts) ∼ (t1 + 2Ts))

+Lq(iq(t1 + 2Ts) iq(t1 + Ts)) + Tsωrψm

(7)

Tsvq((t1 + (n − 2)Ts) ∼ t8) = TsRsiq((t1 + (n − 2)Ts) ∼ t8)

+Lq(iq(t8) − iq(t1 + (n − 2)Ts)) + Tsωrψm

(8)

Now adding each equation to the next, it yields:

Ts∑
1

n − 1
vq( j) = TsRs∑

1

n − 1
iq( j) + tswitchingωrψm (9)

where j is the jth equation. It can be noticed that the inductance-
related terms are eliminated.

With regard to the voltage terms, it is evident that the sum
∑1

n − 1
vq( j) measured between two adjacent sampling points is

always equivalent to the PWM output voltage:

∑
1

n − 1

vq( j) = (t3 − t2)vq(t3 − t2) + (t4 − t3)vq(t4 − t3)

+(t6 − t5)vq(t6 − t5) + (t7 − t6)vq(t7 − t6)

It can be easily verified that:

(t3 − t2)vq(t3 − t2) = (t7 − t6)vq(t7 − t6)

(t4 − t3)vq(t4 − t3) = (t6 − t5)vq(t6 − t5)

as the switching period consists of two symmetrical switching
combinations. Therefore, (9) now becomes:

2 (t3 − t2)vq(t3 − t2) + (t4 − t3)vq(t4 − t3) = TsRs ∑
1

n − 1

iq( j)

+ tswitchingωrψm

(10)

Also, the time differences (t3ௗ−ௗt2) and (t4ௗ−ௗt3) can be pre-
calculated at the beginning of the SVPWM based on the location of
the rotating voltage reference vector on the space vector diagram,
and vq(t3 − t2)andvq(t4 − t3) are the results of the switching vectors being
transformed from Įȕ-reference frame to dq-reference frame. In
conclusion, the rotor flux can be calculated as:

ψm =
f sw

ωr
2 (t3 − t2)vq(t3 − t2) + (t4 − t3)vq(t4 − t3)

−
f sw

ωr
TsRs ∑

1

n − 1

iq( j)

(11)

3Real-time simulation
The proposed methodology has been validated in real-time
simulation on a PMSM model with the parameter listed in Table 1.
The HIL technique is adopted, which can precisely replicate the
dynamics of the physical equipment with computer models running
on real-time platforms and, therefore, is an excellent replacement
to the expensive conventional testing. Fig. 2 describes the HIL
implementation, in which machine and power converter are
simulated on the National Instrument (NI) myRIO-1900 data
acquisition and control platform. The real-time modelling has been
validated in [9]. A standard field-oriented motor control with SV-
PWM along with the proposed flux estimation is implemented in
the OPAL-RT 5600 platform. 

3.1 Steady-state test

The theory upon which the presented method is based is tested in
real-time simulation. Fig. 3 shows the measured q-axis current
variation and the three PWM signals from the SV-PWM. It can be
seen that in steady-state conditions, the currents at the beginning of
the non-zero voltage periods are always identical, due to PI
controller regulating the average q-axis current. 

Fig. 4 depicts the estimated flux linkage when the machine
operates at the rated torque and a relatively high speed (1000rpm)
at room temperature. It can be observed that the estimated flux
linkage is ∼0.1096Wb, corresponding toௗ−ௗ2.23% estimation error
with respect to the reference value. 

Fig. 5 shows the flux linkage estimation under the operating
conditions that the torque (current) and room temperature remain

Fig. 1 Gate signals PWM1, PWM3, PWM5 and the corresponding q-axis
current variation in a single switching period
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unchanged while a 800 and a 400rpm speeds are applied at tௗ=ௗ20s
and tௗ=ௗ40s, respectively. In comparison with the reference value,
the flux linkage exhibits a −1.52% andௗ+ௗ0.27% errors at these
speeds. Fig. 6 illustrates the result with two different values of load
torque (20Nm and 10Nm) being imposed at tௗ=ௗ20 and tௗ=ௗ40s, in
which a −1.34% and −0.62% deviations are observed. 

The slight difference in flux linkage estimation at different
conditions is mainly due to the fact that the calculation uses
reference voltages which are slightly different from the voltages
applied to the motor due to small inaccuracy in the real-time
emulations. Furthermore, a triggering signal is needed to define the
starting point of each switching period. Here, an additional PWM
with its duty cycle close to 0 is employed for this propose. By
triggering either the rising, or the falling edge of this PWM, the
absolutely starting point, as t1 in Fig. 1, can be roughly located. An

error in voltage always exists due to small delays in the triggering
of the current acquisition.

Furthermore, the current used for the flux linkage calculation is
acquired from the machine model and is acquired by the control
unit with a sampling time of 10ȝs, which is relatively large due to
the requirement of completing relatively complex calculations (11)
and the standard FOC algorithm within one sampling step. A
practical switching frequency of 5 kHz for SV-PWM is employed.
The usage of 10ȝs ensures the number of the sampling points, and
thus the number of the equations, in a switching period is integer.

With the relatively big 10ȝs sampling time, some error in the
ability to correctly capture variable voltages and currents is
inevitable. However, the effect on the precision of the method is
relatively modest.

3.2 Transient test

A three-node LPTN consisting of the stator iron, stator winding
and PM nodes, as illustrated in Fig. 7 has been used for thermal
evaluation in the real-time simulations. The thermal resistance RW
−Fes takes into consideration the heat conduction effect through
solid components of PMSM, and heat convection through ambient,
air gap, and cooling system is described by RPM−A, RPM−Fes, RPM

Table 1Parameters for the tested IPMSM [10]
Quantity Unit Value
peak torque Nm 70
rated torque Nm 35.5
base speed r/min 1350
max speed r/min 4500
peak power kW 9.9
rated power kW 5
DC link voltage V 120
peak current A 125
no. of pole-pairs — 3
no. of slots — 36
active stack length mm 118
stator outer diameter mm 150
rotor outer diameter mm 80
stator resistance ȍ 0.0545
d-axis Inductance mH 0.8258
q-axis Inductance mH 1.8711
PM flux linkage Wb 0.1121
 

Fig. 2 HIL implementation scheme
 

Fig. 3 PWM1, PWM3, PWM5 and the corresponding q-axis current
variation within one switching period in real-time simulation

 

Fig. 4 Flux linkage estimation at a specific operating condition
 

Fig. 5 Flux linkage estimations at 1000ࣛrpm, 800 and 400ࣛrpm machine
rotating speeds

 

Fig. 6 Flux linkage estimations at 35.5N.m, 20N.m and 10N.m machine
electromechanical torques
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−W as well as RFes−c, respectively. PWis the copper loss calculated
by Pwௗ=ௗI2R, while speed-dependent iron loss is approximated by
the sum of POC and PSC in (12) and (13) and is allocated into stator
iron and PM nodes according to the proportion of iron utilised in
stator and rotor [11].

POC = ah f + aJ f
2 + aex f

1.5 (12)

PSC = bh f + bJ f
2 + bex f

1.5 (13)

where POC and PSC are the losses for open-circuit and short-circuit
conditions, respectively. The iron loss is parted into hysteresis,
eddy current, and excess loss components, and the corresponding
coefficients can be calculated by finite element analyses (FEA) at
open-circuit and short-circuit operations, with a single random

frequency f applied. The flux linkage is assumed to be linearly
dependent on temperature as:

ψm(T) = ψm(Tref) 1 + αβr(T − Tref) (14)

where ȥm(T) and ȥm(Tref) are the flux linkages at the rotor and
reference temperatures (70°C); Įȕr is a temperature-dependent
coefficient, which for NeFeB magnet is ∼ௗ−ௗ0.12%/°C. 

A thermal transient case is considered where the machine is
controlled at the rated torque and at a speed of 500rpm. Excellent
result from the proposed method is shown in Fig. 8, accompanied
by the corresponding rotor temperature variation. An error of ∼ௗ+ௗ
0.3% in flux linkage andௗ−ௗ3°C in rotor temperature is
demonstrated in Fig. 9. 

In order to validate the proposed method in non-stationary
conditions, a simplified duty cycle with step variations in speed
and torque as plotted in Fig. 10 is considered.

Fig. 7 Schematic graph of the three-node LPTN
 

Fig. 8 Flux linkage (top) and rotor temperature (bottom) estimations at the rated torque and 500ࣛrpm rotating speed conditions according to the test driving
cycle used on the single-node thermal network

 

Fig. 9 Flux linkage (top) and rotor temperature (bottom) estimation errors
for the test in Fig. 8

 

Fig. 10 Load profile
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As it can be seen from Figs. 11 and 12, <ௗ±ௗ2% errors in flux
linkage estimation are obtained, and all estimated rotor
temperatures lie within an ∼ௗ±ௗ10°C band around their
corresponding reference values. Unfortunately, a very small error
in the flux linkage estimation is amplified in the estimation of
temperature due to the very small temperature coefficient Įȕr.
Nevertheless, the error in the temperature estimation is contained
withinௗ±ௗ9%. Some dependency on the operating conditions (speed,
current) is apparent. This is due to the relatively slow acquisition of

10ȝs, which creates small error in the timing and current/voltage
measurement that change with a variable modulation index. It is
expected that these effects can be minimised with a faster
acquisition unit. 

4Conclusion
This paper introduces a relatively simple and accurate method for
online flux linkage estimation of PMSMs, based on the current
response to the standard SV-PWM which is commonly employed
in most state-of-the-art power converter drive applications. This
method is simple to implement and does not require additional
hardware neither create additional disturbance to the machine as no
additional signal injection is required. The method is also
independent of machine inductances. A series of real-time
simulations have been presented to validate the presented
methodology on a typical IPMSM, utilising the HIL technique. The
experimental results demonstrate good accuracy in rotor flux
linkages and temperature estimation in a wide range of machine
operating conditions. Further experimental validations and
improvement to the signal acquisition and processing will be
explored in future research.
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