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Abstract: In this study, a three-dimensional model with multi-parameter order reduction is applied to the thermal modelling of
power electronics modules with complex geometries. Finite element or finite difference method can be used to establish
accurate mathematical models for thermal analyses. Unfortunately, the resulting computational complexity hinders the analysis
in parametric studies. This study proposes a parametric order reduction technique that can significantly increase simulation
efficiency without significant penalty in the prediction accuracy. The method, based on the block Arnoldi method, is illustrated
with reference to a multi-chip SiC power module mounted on a forced air-cooled finned heat sink with a variable mass flow rate.

1Introduction
The design of modern power electronic systems is increasingly
complex, requiring multi-domain optimisation encompassing the
interactions among the electrical, thermal and mechanical domains.
Nevertheless, due to the increasing demands for higher power
density, the thermal analysis and management of power electronics
systems is becoming more and more important. Reliability of a
power electronics converter is significantly affected by operating
temperature and temperature cycling. It is well known that
components' lifetime decreases exponentially with temperature and
that thermal and thermo-mechanical failure modes in devices and
packaging are accelerated by temperature cycling.

The thermal management of power converters is becoming
increasingly demanding because of its strong industrial drive for
smaller, more efficient power electronics systems [1, 2]. Heat
exchangers account for a significant portion of power converters'
mass. Increased converter efficiency and better thermal design can
contribute to significant reduction of heat exchangers’ mass and
therefore increased power densities. Therefore, accurate modelling
tools for thermal analyses can significantly aid the design
optimisation of power converters, helping the design engineer to
select the optimal system design with the required heat dissipation.
However, the extent to which the system design can be optimised
for size and weight is limited by the maximum rated components
temperature, which cannot be exceeded during normal operation
[3].

Additionally, the life expectancy of the power converter is
reduced due to thermal cycling, where the damage from multiple
heating and cooling events accumulates until the system failure
occurs [4]. As a result, temperature monitoring systems to protect
products and meet regulatory requirements are increasingly being
adopted in safety critical applications. Compact thermal models
can be used as an aid for the estimation and monitoring of the
temperature of components during real-time operation.

A vast literature on models for the thermal analysis of power
electronic systems has been published. The simplest methods use
compact thermal models typically based on empirically derived
lumped element models such as those based on Foster or Cauer
networks. Although computationally efficient, these lumped
parameter models typically require experimental calibration and
cannot be easily employed in parametric studies where geometries
or operating conditions change. More accurate and physically
representative methods for thermal modelling of power assemblies
including devices, packaging and heat exchangers rely on a number
of well-established numerical tools that discretise the distributed
partial differential equations (PDEs) that model the heat-transfer

problem using finite element method (FEM), finite difference
method (FDM) or compact thermal model based on an analytical or
empirical lumped parameter model (LPM). In addition, accurate
numerical modelling of heat exchangers with natural or forced
convection typically requires the use of computational fluid
dynamics (CFD) methods. Typically, CFD software tools can
simultaneously solve conductive and convective heat transfer
problems, providing the most accurate and detailed temperature
distribution for power electronic systems. Unfortunately, CFD
analyses are extremely demanding in terms of computing resources
and calculation time [5]. A number of model order reduction
(MOR) techniques have been proposed to alleviate the problems of
computational complexity arising from the simulation of complex
and distributed dynamical systems. MOR techniques applied to
thermal problems use the discretised version of the underlying
PDEs generated using either FEM or FDM to produce a reduced-
order model that significantly reduces computational complexity
while guaranteeing reasonably accurate results [6]. In this paper, an
FDM with MOR is selected to establish a mathematical model.

A number of MOR techniques have been proposed for
application in the thermal modelling problem. Among the most
effective strategies, Guyan reduction [7] and Krylov subspace
methods have been proposed. The thermal performance of a power
converter depends not only on the layout of components but also
on boundary conditions such as the coolant mass flow rate. It is
therefore important that the compact models used in thermal
analyses conserve the dependency on these design parameters and
operating conditions. Unfortunately, once MOR techniques are
applied to the original model formulation, the dependency on
parameters, e.g. the coolant mass flow rate, disappears. This results
in the need to repeat the MOR process for every different operating
condition, making parametric studies of system operation in
different operating conditions (e.g. different ambient temperature
or coolant mass flow rate) extremely tedious.

The paper presents a parametric MOR method that conserves
one or more parameters in the reduced-order model, making
analyses of the converter in different operating conditions
computationally efficient. The method, based on multi-moment
matching and block Arnoldi's orthogonalisation on standard Krylov
subspaces, is analytically derived. The method is illustrated, and its
benefits are demonstrated with reference to a power module
mounted on a forced air-cooled finned heat sink. Detailed
comparisons with commercial CDF software demonstrate the
accuracy and computational efficiency of the proposed method.
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2Parametric model order reduction
A geometry-based mathematical model is needed to construct the
thermal model of the power module and its cooling assembly. A
geometry-based method has the advantage that can be used as a
tool in the module design process by facilitating the optimisation of
components' placement, distances etc., since the topology is
directly taken into account.

2.1 Conventional model order reduction

In each thermal simulation, the temperature distribution is
computed on a discrete grid, and its size can produce millions of
ordinary differential equations, depending on the complexity of the
geometry [7]. If a complete model is used, system-level
simulations quickly become unmanageable. The three-dimensional
PDE describing the conductive heat transfer problem can be
discretised into a system of ordinary differential equations (ODEs)
as

CT˙ + KT = F ⋅ Q t y = E
T ⋅ T (1)

where C is the thermal specific heat matrix, K is the thermal
conductivity matrix, Q is the heat generation vector and T is the
vector of temperatures in all the n points of the discretised domain.
F ∈ Rn×m and E ∈ Rn×p are the input and the output matrices, and
m and p denote the number of inputs and outputs, respectively [7–
9]. As a result, transforming (1) into the frequency domain result in
a matrix-valued rational transfer function G: C ĺ Cp×m given by

G s = E
T ⋅ K + sC

−1 ⋅ F, s ∈ C (2)

Arnoldi-based reduction is a well-established MOR tool [7], whose
goal is to transform the equation system (1) into a system of lower
dimensionality but in the same form [7]:

Crż + Krz = Fr ⋅ Q t yr = Er
T ⋅ z (3)

where z ∈ Rr is obtained by projecting the original state T of
dimension n to a sub-space of dimension r ≪ n verifying

T = V ⋅ z + error (4)

The transformation is obtained by a projection process based on the
Padé-type approximation where the reduced-order system matrices
are obtained as follows [8, 9]: Crௗ=ௗVTCV, Krௗ=ௗVTKV, Frௗ=ௗVTF, Erௗ
=ௗVTE, and V is an output of the Arnoldi algorithm. Before the
block Arnoldi can be employed, the two matrices C and K have to
be reduced to a single matrix, denoted by A in the following. This
can be done by rewriting (2) as follows:

G s = E
T ⋅ sI − A

−1 ⋅ B (5)

where Aௗ=ௗ−K−1C, Bௗ=ௗ−K−1F. m columns of the matrix Bௗ=ௗ[ B1
B2ௗ...ௗBm] are the starting vectors of the so-called block Krylov-

subspace after building block Krylov subspaces. The matrix V is
composed from r -dimensional vectors that form a basis for the
right Krylov subspace of the dimension r:

K
R

A, B = B AB A
2
B … A

n − 1
B (6)

After building the block Krylov subspaces, Arnoldi's
orthogonalisation, which is shown in Table 1, is carried to extend
the classical Arnoldi algorithm to block Krylov subspaces. 

2.2 Multi-parameter model order reduction

In this section, a parameter-independent MOR method is proposed
based on multi-series expansion with respect to a set of heat
transfer coefficients.

As in the non-parametric case, ODEs of the form (1) and (2) are
considered. In this case, the convective boundary layer is assumed
to have a multi-parameter dependency on air mass flow rate. In an
air-cooled system, the temperature variation in the mass of air can
be neglected compared with the solid part of the power module
substrate and heat sink assembly and the interaction with the
cooling medium described by a convective boundary layer.
Consequently, the multi-parameter condition only happens in the
matrix of conductance. Then, the ODEs can be rewritten as

Cẋ + K0 + ∑
i

piKi x = F ⋅ Q (7)

where pi represent the parameters that are required to be kept in the
reduced model. The projection matrixV can be used to calculate the
reduced-order temperature vector z whose dynamics are described
as

V
T
C0Vż + V

T
K0Vz + ∑

i

piV
T
KiVz = V

T
F ⋅ Q (8)

Similar to the conventional MOR, the transfer function of the
system in (5) is formed as

H s = E sC + K0 + p1K1 + p2K2 + ⋯ + piKi
−1

F (9)

which can be written as

H s = E I − −
K0 + p1K1 + p2K2

+⋯ + piKi

−1

Cs

−1

⋅ K0 + p1K1 + p2K2 + ⋯ + piKi F

(10)

Many methods for multi-parametric order reduction have been
proposed. There are two main strategies based on MOR with or
without moment matching, such as [10–16] or reduction without
multi-moment matching [17, 18]. In this paper, reduction with
multi-moment matching is introduced. The process is based on the
Taylor-series expansion of the transfer function H(s) around a
certain point s0.The moments of the transfer function (10) are the
coefficients of its Taylor series expansion. It is worth noting that
only when there is a weak correlation between the parameters, the
mixing moment can be ignored without affecting the precision
[19]. This is typically the case for thermal problems [20, 21]. For
the problem under investigation, i.e. the thermal analysis of power
modules with cooling system, the parameters series p1 p2ௗ...ௗpiand
submatrix K1 K2ௗ...ௗKionly appear in the equations of the states on
boundary layer of the baseplate. The block Arnoldi's
orthogonalisation based on standard Krylov subspaces for multi-
moment matching needs to be applied [7–9]. The next step is to
make another expansion but this time in series of each parameter
pi, for each moment. For the first moment

Table 1Arnoldi's orthogonalisation
for iௗ=ௗ1,ௗ...ௗ, jmax Normalised Bi to ۅviۅௗ=ௗ1
viௗ=ௗ Bi/ۅ Biۅ Start computation of vi+1
for jௗ=ௗ1,ௗ...ௗ, jmax − 1 One matrix multiplication
tௗ=ௗAvi t is in the space Kj+1

hi j = vi
Tt hijviௗ=ௗprojection of t on vi

tௗ=ௗt−hijvi Subtract that projection
end t is orthogonal to v1,ௗ...ௗ, vj
hj+1,jௗ=ௗۅtۅ Compute the length of t
vj+1ௗ=ௗt/hj+1,j Normalise t to ۅvj+1ۅௗ=ௗ1
end v1,ௗ...ௗ, vjmax are orthonormal
 

2 J. Eng.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



m0 = E K0 + p1K1 + p2K2 + ⋯ + piKi
−1

F

m0 = E(I − ( − K0
−1(p1K1 + p2K2 + ⋯

+ piKi))
−1

K0
−1

F

(11)

For the second moment

m1 = − E K0 + p1K1 + p2K2 + ⋯ + piKi
−1

C(K0

+ p1K1 + p2K2 + ⋯ + piKi)
−1

F

m1 = − E K0 + p1K1 + p2K2 + ⋯ + piKi
−1

Cm0

m1 = − E(I − ( − K0
−1(p1K1 + p2K2 + ⋯

+ piKi)))
−1

K0
−1

Cm0

(12)

For the jth moment

mj = − ∑
ij = 0

∞

E −K0
−1

Ki

ij
K0

−1
Cp

ij⋯ mj − 1⋯ (13)

Order reduction with moment matching needs moment m0 to mj be
independent on parameter series p1 p2ௗ...ௗpi. Equation (13) shows
that the moments are combination of the matrices

( − K0
−1(K1 + K2 + ⋯ + Ki))

ijK0
−1

C( − K0
−1(K1

+K2 + ⋯ + Ki))
ij − 1K0

−1
C

⋯( − K0
−1(K1 + K2 + ⋯

+Ki))
i1K0

−1
C( − K0

−1(K1 + K2

+⋯ + Ki))
i0K0

−1
F⋯

(14)

which means that each moment lies in the subspace spanned by the
columns of the matrices in (10). These matrices are then taken to
construct the projection matrix V, which is located on the first r
columns of (14). This can be done by rewriting matrices A and B in
Section 2 as

A = − K0
−1(K1 + K2 + ⋯ + Ki)B = − K0

−1
F (15)

m columns of the matrix Bௗ=ௗ[ B1 B2ௗ…ௗBm] are the starting vectors
of the so-called block Krylov-subspace. The following calculation
is the same with Section 1. The details of this algorithm are shown
in Table 2. 

3Thermal model and simulation results
A simplified power module mounted on a parallel-plate finned heat
sink is considered, as shown in Fig. 1. The power module contains
six SiC MOSFETs and is assumed to be mounted on a direct
copper bonded ceramic substrate and attached to the heat sinks.
The boundary condition is complex due to the forced air cooling. A
simplified analytical model of the heat transfer coefficient varying
axially along the direction of the air flow has been established
based on [22, 23]. In this paper, a dimensionless fluid dynamic
entry length is introduced

Lh
+ = 0.0822ϵ(1 + ϵ)2 1 −

192ϵ

π
5 tanh

π

2ϵ

2

(16)

İ is the heat sink channel aspect ratio and
ϵ = fin thickness/channel space .

An analytical model for the Nusselt number Nu A  in [23] is
suitable for the heat sink model, as follows:

Table 2Multi-parameter Arnoldi reduction
Aௗ=ௗ−K0−1(sum(Ki)) Bௗ=ௗ−K0−1F. Block Krylov subspaces

for iௗ=ௗ1,ௗ...ௗ, jmax Normalised Bi to ۅviۅௗ=ௗ1
viௗ=ௗ Bi/ۅ Biۅ Start computation of vi+1
for jௗ=ௗ1,ௗ...ௗ, jmax − 1 One matrix multiplication
tௗ=ௗAvi t is in the space Kj+1

hi j = vi
Tt hijviௗ=ௗprojection of t on vi

tௗ=ௗt − hijvi Subtract that projection
end t is orthogonal to v1,ௗ...ௗ, vj
hjௗ+ௗ1,j = ۅtۅ Compute the length of t
vjௗ+ௗ1 = t/hjௗ+ௗ1,j Normalise t to ۅvj+1ۅௗ=ௗ1

end v1,ௗ...ௗ, vjmax are orthonormal
 

Fig. 1 Module components with heat sink (left) and steady-state thermal
response using CFD-ICEPAK
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Nu A =
(C4 f ( Pr )

Z*
)m +

({{C1(
f Re A

8 πϵγ
)}

5

+ {C2C3(
f Re A

Z*
)

(1/3)

}

5

)

(m/5)

1
m

(17)

where m is the model blending parameter provided in [22] and
other parameters of (17) are given in Table 3. The Nusselt number
decreases along the thermal entry length [23] and settles to a
constant value. It should be noted that 0.1 < Pr < ∞ is valid for
most heat exchanger applications. z* is the dimensionless thermal
axial position. The friction factor Reynolds product equation (18)
and (19) describes the effect of the boundary layer velocity profile
on the mass transfer [24]:

f Re A =
11.8336.V˙

Lnvair
+ f Re A, f d

2
1/2

(18)

f Re A, f d =
12

ϵ(1 + ϵ)[1 −
192ϵ

π
5 tanh(

π

2ϵ
)]

(19)

With this and with Nusselt number Nu A , the heat transfer
coefficient becomes

h =
hu Aλair

dh
with dh =

2sc

s + c
and s =

b − (n + 1)t
n

(20)

The resulting heat transfer coefficient as a function of the axial
distance from the inlet for the heat sink in Fig. 1 for three different
values of air mass flow is shown in Fig. 2. 

The proposed MOR is applied to the system. Figs. 3a–c
illustrate surface temperature responses of the three MOSFETs
identified in Fig. 1 calculated by reduced- and full-order simulation
and compared to results obtained with commercial FE software
ANSYS mechanical and the CFD tool ICEPAK. The ‘ANSYS
mechanical’ simulations are obtained by solving the conduction
heat transfer problem, removing the fins and setting the bottom
baseplate surface with a convective boundary condition with heat

transfer coefficient as in Fig. 2. As can be seen, the agreement
among the finite difference full order, the proposed reduced-order
method and the ANSYS FE method is excellent. However, some
discrepancies are present when compared with the CFD results.
This is due to the approximations resulting from the semi-
analytical model of the variable heat transfer coefficient. The
discretisation employed in the full-order model results in a system
with 5711 nodes, while the reduced order has 108 states
corresponding to 18 temperature nodes per MOSFET. On the same
computer and with the same mesh size, CFD takes over 300min,
the full-order simulation needs 20min, while the reduced-order
simulation only takes about 5s. 

4Conclusion
In this paper, a novel multi-parameter order reduction is developed
and applied to a power module with forced air- cooled systems.
The multi-moment matching technique is used to preserve in the
reduced order a number of parameters, making calculations in
variable operating conditions significantly more efficient. An
example of a power module cooling system with different mass air
flow rates is reported.

A high degree of accuracy compared to that of conventional FE
and CFD tools is shown. A significant increase in computational
efficiency is demonstrated resulting in faster calculation time and
memory requirements.
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Table 3Table of coefficients for general models
Boundary condition
(T) C1ௗ=ௗ3.01, C3ௗ=ௗ0.409

f ( Pr ) =
0.564

[1 + (1.664 Pr1/6 )
9/2

]
2/9

(H1) C1ௗ=ௗ3.66, C3ௗ=ௗ=0.501
f ( Pr ) =

0.886

[1 + (1.909 Pr1/6 )
9/2

]
2/9

Nusselt number type
local C2ௗ=ௗ3.01 C4ௗ=ௗ1
average C2ௗ=ௗ3/2 C4ௗ=ௗ1
shape parameter
upper bound Ȗௗ=ௗ1/10
lower bound Ȗௗ=ௗ−3/10

 

Fig. 2 Heat transfer coefficient along the axial direction of the air flow
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