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Abstract

Wedynamicallymodulate strong light–matter coupling in aGaAs/AlGaAsmicrocavity using intense

ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift

of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift

decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy

exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle

period, however, the Stark shift does not affect the strong coupling. The two regimes aremarked by

distinctly different line shapes in ultrafast reflectivitymeasurements—regardless of the Starkfield

intensity. The crossovermarks the transition from adiabatic to diabatic switching of strong light–

matter coupling.

The achievement of strong coupling between lightfields andmatter excitations hasmarked a cornerstone of

modern physics, both froma fundamental science viewpoint and for the implementation of new classical and

quantum technologies. On the one hand, the ability to engineer repeated cycles of energy exchange between

single atoms or atomic Bose–Einstein condensates (BEC) and photons confined in cavities, led to the

development of a new research branch of cavity quantum electrodynamics, which allowed for implementation

and testing of textbookGedanken experiments [1, 2]. This progress is closely related to the emerging field of

quantum information science, constituting the first test-bed for the implementation of secure quantum

communication [3], quantummetrology [4] and future quantum computers [5]. On the other hand, the need

for scalable platforms and room-temperature operation for technological applications inspired the investigation

of strong coupling between light and solid-state systems like semiconductor quantumdots [6, 7], semiconductor

quantumwells [8] and,more recently, organic [9] and two-dimensionalmaterials [10]. Such solid-state systems

also enable controlling the dynamics of strong coupling, which is challenging in atomic systems.

In semiconductormicrocavities, strong light–matter coupling leads to the formation of cavity exciton–

polaritons separated in frequency by twice the vacuumRabi frequency ,RW with unique optical [11] and

electronic properties [12]. Due to theirmixed light–matter character which equips themwith lowmasses and yet

strongmutual interactions, polaritons have enabled the observation of high-temperature BEC [13–15],

polariton lasing [16, 17], Bogoliubov excitations [18–20] and unconventional quantumfluidity [21–24]. Optical

parametric oscillation inmicrocavities [25] enables generation of entangled photons fromnanometer-scale

devices [26]. Tunneling [27], switching [28, 29] and spin devices [30, 31] have evidenced the technological

potential for high-frequency opto-electronic applications.

Dynamics of strongly coupled light–matter systems has attracted significant interest lately. A key factor for

quantum information processing is to preserve coherence by non-invasive, reversible switching of light–matter

coupling, as recently demonstrated using acoustic shockwaves [32], dc electricalmodulation [33] and

OPEN ACCESS

RECEIVED

24August 2017

REVISED

17November 2017

ACCEPTED FOR PUBLICATION

7December 2017

PUBLISHED

22 January 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

©2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa9fd0
mailto:alex.hayat@ee.technion.ac.il
https://doi.org/10.1088/1367-2630/aa9fd0
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa9fd0&domain=pdf&date_stamp=2018-01-22
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa9fd0&domain=pdf&date_stamp=2018-01-22
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


photodoping [34]. However, these techniques are inherently limited to timescales slower than the Rabi cycle, by

up tomany orders ofmagnitude. Thus far, accessing femtosecond time scales has necessitated destroying or

activating the strongly coupled state by, e.g., introducing charge carriers [35, 36]. Such invasive schemes alter the

components of the light–matter coupled system for the duration of the carrier lifetime. In comparison,

reversiblemodulation dynamics have thus far remained unexplored on time scales on the order of and shorter

than theRabi cycle time.

Here, we investigate noninvasively the ultrafast dynamics of cavity exciton–polaritons in a strongly coupled

GaAs/AlGaAsmicrocavity, reversibly disrupting light–matter coupling on a time scale of the Rabi cycle period,

t 2 .R Rp= W Wedemonstrate the crossover fromquasi-equilibrium to diabatic dynamics of polaritons exposed

to the ultrafast optical potential of a strong, red-detuned pumppulse of variable duration t ,p which

noninvasively induces an instantaneous blue shift of the polariton doublet during its presence, through the ac

Stark effect [37, 38]. Our approach enables ultrafastmodulation on the femtosecond time scale and opens up a

new regime of dynamics of strong coupling on timescales faster than the Rabi cycle of light–matter energy

exchange, while the time scale of the dynamics is limited only by the pulse duration.With this unique capability

we show two distinctly different regimes of noninvasivemodulation, slower or faster than the light–matter

energy exchange rate. For pumppulses shorter than t ,R we show that the cavity-exciton strong coupling is

interrupted for the duration of the pulse, resulting in dynamical line broadening and a temporally discontinuous

response observed in ultrafast reflectionmeasurements. On the contrary, for pulses t t ,p R> the Stark shift does

not affect light–matter coupling, and the spectral signature of the polariton doublet remains intact apart from an

adiabatic common-mode frequency shift. In both cases, these features are robust under variation of the pump

intensity overmore than one order ofmagnitude. In an intuitive picture, the two qualitatively different regimes

are characterized as follows: for t t ,p R< the Stark pulse induces a diabaticmodulation of light–matter coupling,

where the coupling strength ismodified faster than a single cavity-exciton energy exchange.Here, cavity-exciton

coupling does not govern the dynamics of light–matter interaction; instead, the Stark pulse couplesmainly to the

exciton leading to strong dynamical broadening, and the cavity passivelymodifies the spectral characteristics

observed in reflectance due to its photonic density of states. Conversely, for t t ,p R> exciton and lightfield

exchange excitationmore than once during t .p Since the Stark pulse does not interrupt cavity-exciton coupling,

polaritons remain the proper eigenstates of the system and retain their equilibrium linewidths during

interactionwith the pumpfield. Experimentally, the diabatic dynamics is very clearly observed on time scales of

one fourth of the vacuumRabi cycle (i.e., tP≈tR/4). In fact, our calculations show that already for Stark pulses

slightly shorter than tP≈tR/2 the diabatic condition is approached.

Ourmicrocavity structure, schematized infigure 1(a), consists of aλ/2-thick AlAs layer embedded between

twoGa0.8Al0.2/AlAs distributed Bragg reflectors (DBR), with a total of 20 and 16 pairs for bottom and top

reflector, respectively, resulting in a cavityQ-factor ofQ∼2400. At each of the three antinodes of the resulting

high-quality 3 2l microcavity, single 6.5-nm-thickGaAs quantumwells (QWs)were grown. The Bragg

structure is tapered along one in-plane axis, which allows for tuning the cavitymode atEcwith respect to the

equilibrium exciton energy E .x
0 Infigure 1(b), the equilibrium reflectivity at a temperature of 4 K is plotted as a

function of detuning for normal incidence, showing the expected anti-crossing behavior of cavitymode and

excitonic resonance.

At zero detuning, lower (LP) and upper polariton (UP) are separated in energy by 8 meV, corresponding to

t h E E2 1 ps,R UP LP= - @( ) where ELP and EUP denote the respective polariton energies.

In our experiment, wemeasure the ultrafastmodulation of the reflectivity R of the strongly coupled

structure after excitationwith pumppulses centered at 1.55 eV, red-detuned relative to Ex
0 by∼55 meV, using

femtosecondwhite-light supercontinuumpulses generated in a sapphire crystal (in a similar setup to that of

[37]). The reflectivity spectra are normalized to the spectrumof thewhite light probe pulse reflected from a

metallicmirrorwithout spectral features in the region of interest. The pumpbeam is kept at a power level at

which no significant carrier generation through, e.g.,multi-photon processes occurs. Both, pump and probe are

derived from a 250-kHz regenerative amplifier with transform-limited 225-fs pulses. The sample is kept at 4 K in

a cryostat at all times.

In thefirst set of experiments, wemodulated the exciton–polariton energy levels by the Stark pulse in an

adiabatic regime—with a pulse duration longer than the Rabi oscillation period, tp>tR. Pumppulses of 1500 fs

duration (ps-excitation)were obtained by stretching the 225-fs pulses of the laser source using a grating

stretcher. The peak intensity was kept at 3.2 GW cm−2, while various detunings E E Ec x
0D = - were selected.

The instantaneous absolute reflectivityR of ourmicrocavity, plotted infigure 2(a) forΔE=0 as a function of

energy and delay time τ between pump and probe pulses, demonstrates that the Stark shift adiabatically sets in

and persists for the duration of the pumppulse, without signatures of perturbed free induction decay [39].

Moreover, since the perturbation lasts longer than the Rabi cycle time, the reflectivity in the spectral range

between LP andUP remains unchanged, and their dynamics can be observed individually as a slight shift of the

respectiveminima of the reflectivity towards higher energies, with no spectral overlap between LP andUP.
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After time-zero, the reflectivity spectrum recovers completely, evidencing that no significant amount of

carriers are generated during excitation. Our theoretical analysis detailed further below fully supports this result

(figure 2(b)). The response remains qualitatively similar for detuningsΔE≠0 (figures 2(c) and (e)), yet,

changing the detuningΔE allows for tuning theHopfield coefficients for the two polariton branches, and thus

their composition.WhileΔE=0 yields that both polariton branches consist of equal fractions of excitonic and
lightfield components,ΔE<0 yields amore photonic LP and amore excitonic UP, and vice versa. In each case,

themore excitonic polariton exhibits the stronger response.

A fundamentally different behavior is observed by using ultrashort 225-fs pulses (fs-excitation) [37], where

peak pulse intensities equivalent to the ps-case were chosen to obtain an instantaneous ac Stark shift of the same

magnitude, for comparability. In this setting, a qualitatively different spectral shape is observed. Infigure 3, we

plot the corresponding reflectivity spectra analogously tofigure 2. Before time-zero, perturbed free induction

decay of the coherent polarization of the probe pulse leads to spectral and temporal oscillations of the

reflectivity, exhibiting interference between the two polariton branches. As time zero is approached, these

oscillations diverge inwavelength and finally transition into the doubly-dispersive signature caused by the ac

Stark shift of the polariton doublet [37]. In this setting of t t ,p R< the spectral width of this feature exceeds the
polaritonRabi splitting, and a continuous spectral line shape extending beyond both polariton branches results.

For zero detuning (figure 3(a)) both polariton branches completely collapse at τ=−200 fs, and a single,

broadband signature emerges, which represents the response of the uncoupled exciton.

These dynamics are strongest at slightly negative delay times owed to the delayed buildup of polarization in

the structure, leading tomaximum interaction between pump and probe pulses for probe pulses slightly

preceding the pumppulse. Our theoreticalmodel, detailed further below, fully reproduces the spectral

signatures including coherent oscillations aswell as the twinned polariton signature near time zero (figure 3),

and allows us to determine the polariton decoherence time ofT 1 ps.2 @
We show that similar to the ps case, the polariton branchwith the larger exciton fraction interactsmore

strongly with the pumppulse and hence, for fs excitation, displays strong spectral broadening, while the other

branch exhibits amore narrowband response—with good agreement to the calculated response (figure 3).

Next, in order to better understand the effect of the diabatic driving of the excitonic resonance wemeasure

the differential reflectivityΔR/R as a function of delay for fs (figure 4(a); theory: figure 4(b)) and ps excitation

(figure 4(c)), and compare it at a fixed delay slightly before time-zerowhere the largest signal is attained, for

different values of the detuningΔE (figures 4(d) and (e), solid lines). AtΔE=0, the separated (d) ormerged (e)

character of the polariton doublet, respectively, in these two regimes is clearly observed analogously tofigures 2

and 3. For ps excitation (d), the spectral widths of the signatures of LP andUP are almost identical even for

nonzero values ofΔE. In this case, the equilibrium linewidth remains the dominant contribution, and only little

additional broadening is introduced by the dynamic ac Stark shift. Note that the amplitude of each feature in

Figure 1. (a)Microcavity structure consisting of three quantumwells at the antinodes of themode of the cavity formed by highly
reflective Braggmirror stacks. A perpendicularly incident ultrashort white-light pulsemeasures the reflectivityR of the cavity.
Ultrafast excitation is enabled by grazing incidence of a pump beam. (b)Equilibrium reflectance as a function of energy and detuning,
showing anti-crossing of exciton resonance and cavitymode.Horizontal lines: detunings studied in the femtosecond experiments (cf.
Figure 3).
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ΔR/R varies according to its spectral distance from the cavity line. For fs excitation (e), however, the dynamical

broadening dominates. AtΔE=−6 meV, the specificHopfield coefficients render the LP strongly photon-like.

Since the cavity resonance is not affected by the Stark effect, the LP linewidth is thus close to the equilibrium

linewidth. In contrast, themore exciton-likeUP is fully affected by the ac Stark shift and exhibits a spectral shape

significantly broader than in the equilibrium situation. AsΔE=0 is approached, the excitonic fraction ismore

evenly distributed and the linewidths of LP andUPbecome comparable. Finally, forΔE>0, they cross over

such that at+5.5 meV,we observe a broadband LP and a narrowbandUP resonance.

In order to rule out nonlinear optical or carrier-related effects as the origin of the polariton broadening, we

systematically vary the pump intensity in both the fs and the ps case over approximately one order ofmagnitude,

as plotted infigures 5(a), (c), (e), (g) and (b), (d), (f), (h), respectively. For better comparability, we again chose

higher pumppowers in the ps case, resulting in similar instantaneous Stark shifts in the panel pairs (a), (d), and

(c), (h). Furthermore, we again restrict the pumppower to levels at which no significant carrier generation by

two-photon absorption (TPA) of the Stark pulse occurs. For our highest pump intensities of 9 GW cm−2 and

225 fs pulses (2.4 GW cm−2, 1500-fs pulses), we estimate by the TPA coefficient of GaAs of∼20 cm GW−1
[40]

that our strongest pulses inject a sheet carrier density of 4.8×1011 cm−2
(2.2×1011 cm−2

) perQW,which

should not result in strong carrier-related signatures inΔR/R. This estimate is confirmed by the small residual

differential reflectivity signal at positive delay times serving as an experimental probe for renormalization effects,

which are smaller than the Stark-induced signal near time-zero by approximately an order ofmagnitude or

more, in every case (e.g., panel (g) for τ=0.4 ps).Wefind that the spectro-temporal signature is independent of

pumppower up to a scale factor inΔR/Rwithin each power series, yet it fundamentally differs between ps and fs

Figure 2.Ultrafast reflectivity of themicrocavity structure as a function of delay time τ, and energy—measured (a), (c), (e) and
calculated (b), (d), (f), for adiabatic ps-excitationwith cavity-exciton detuningΔE=0 (a), (b),ΔE<0 (c), (d), andΔE>0 (e), (f).
The black arrows indicate the spectral position of the LP andUP.
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Figure 3.Measured (a), (c), (e) and calculated (b), (d), (f) time-dependent reflectivity spectra for fs excitationwithΔE=0 (a), (b),
ΔE<0 (c), (d), andΔE>0 (e), (f). The black arrows indicate the spectral position of the LP andUP.

Figure 4. (a) Spectrally resolved ultrafast differential reflectivityΔR/R of the strongly coupledmicrocavity forΔE=0, under
excitationwith red-detuned, 225 fs pulses. (b)Numerical simulations ofΔR/R. (c)Response for excitationwith 1500-fs pulses. (d),
(e)Measured (solid curves) and calculated (dashed curves)ΔR/R for different cavity-excitonic detuningsΔE for 1500-fs and 225-fs
excitation, respectively. The curves are shifted vertically for clarity.
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cases.We additionally point out that the grating configuration used to obtain the ps pumppulses leaves their

time-integrated spectral shape identical to the fs case. Hence, ruling out nonlinearities related to instantaneous

pump intensity and possible spectral effects, we conclude that the duration of the pumppulse alone is

responsible for the characteristic line shape ofΔR/R.

Our theoreticalmodeling of the observed dynamics is based on an input–output single-particlemean-field

approach [41, 42], incorporating the coupling of excitonic and photonicmodes xy and cy via the Rabi

frequency RW (taken equal to 8 meV for the calculations):
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Here, E tx ( ) is the exciton energy including the instantaneous ac Stark shift,modeledwith aGaussian

temporal profile of amplitude fp and durationσp chosen to represent Stark pulses with full width halfmaximum

of either 225 fs of 1500 fs, 4.25 meVxk = is the exciton non-radiative decay rate, and ck is the combined loss

rate constituting of the loss rates of the front and backDBR, 0.1 meV1k = and 0.16 meV.2k = The probe

pulse ismodeled by F(t)with aGaussian profile, amplitude fpb and durationσpb chosen for a pulse of FWHMof

250 fs.

Figure 5. (a), (c), (e), (g):ΔR/R for excitationwith increasing intensities of fs Stark pulses. (b), (d), (f), (h)Equivalent series for ps
excitation, at comparable instantaneous peak intensities (a), (d) and (c), (h). The black arrows indicate the spectral position of the LP
andUP.
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Our theory fully reproduces the spectro-temporal signature of the dynamic Stark shift, including the

perturbed free induction decay at negative delay timeswith interference features of both polariton branches (see

figures 2 and 3). Spectra extracted near time-zero are plotted infigures 4(d) and (e) as dashed lines along the

corresponding experimental data. Both, the spectral shape and the relative reflection amplitudes of the LP and

UP are rendered correctly under ps aswell as fs excitation. The theory confirms the plateau-shaped spectral

range of vanishingΔR/R signal between the individual Stark shift signatures of LP andUP shown infigure 4(d).

Likewise, themerged spectral signature of both polaritons under fs excitation is rendered (figure 4(e)). Our

calculations thus confirm the qualitatively different scenarios for tp<tR and tp>tR, corresponding to the large

spectral broadening of a polariton doublet with frozen exciton-cavity exchange, or adiabatic perturbation,

respectively (see supplementarymaterial available online at stacks.iop.org/NJP/20/013032/mmedia for

detailed calculation results).

In conclusion, we have demonstrated the crossover from adiabatic to diabatic perturbation of a strongly

coupled exciton–polaritonmicrocavity excitedwith red-detuned, intense pumppulses longer or shorter in

duration than the Rabi cycle, respectively. Strongly increased broadening exceeding the vacuumRabi splitting,

and ultrafast collapse and revival of the polariton doublet results for sub-Rabi-cycle excitation, demonstrating

that the limit of a frozen polariton is approached, where no exchange between exciton and lightfield takes place

during the perturbation. Adiabatic perturbation at identical pumppeak intensities, on the contrary, leads to a

collective shift of the polariton doublet. Tuning the cavity relative to the resonance enabled us to distribute the ac

Stark shift bymodifying the excitonic and photonic fraction of the polaritons. Our theory reproduces the line

shape quantitatively. The crossover between adiabatic and diabatic control of light–matter coupling

demonstrated here paves theway for fundamental research and practical applications in the study of strongly-

coupled systems and novel quantum technologies.
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