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Elastohydrodynamic lift at a soft wall
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We study experimentally the motion of non-deformable microbeads in a linear shear flow close to
a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we
demonstrate that the steady-state bead /surface distance increases with the flow strength. Moreover,
such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement
with theoretical predictions from elastohydrodynamics. This study thus provides the first experi-
mental evidence of “soft lubrication” at play at small scale, in a system relevant e.g. to the physics

of blood microcirculation.

Elastohydrodynamics (EHD) is a key concept in soft
matter physics [1-3]. The coupling between flow-induced
pressure fields and elasticity of immersed objects is at the
heart of topics ranging from the rheology of soft colloids
[4] to microfluidic particle sorting [5] and contact-free me-
chanical probe techniques [6]. EHD is also central to bio-
physical problems, such as swimming of micro-organisms
[7], lubrication in synovial joints and blood microcircu-
lation [8]. In the latter context, EHD governs the radial
migration of circulating blood cells, which underlies vas-
cular processes, such as margination [5, 9, 10]: leukocytes
and platelets flow preferentially close to the vessel walls,
while softer red blood cells (RBCs) migrate away from
them. This gives rise to a cell-free layer, a pm-thick
region forming near the vascular walls and depleted of
RBCs [11]. This has been characterized in vitro, through
flow experiments studying how RBCs [12] or model vesi-
cles [13] are repelled by a surface. The classical inter-
pretation for the formation of the cell-free layer is that
RBCs flowing near a surface deform under the fluid shear
stress and experience a non-inertial lift force that pushes
them away from the wall [14]. Reflecting this, most in
vitro studies, as well as numerical [15] and theoretical
[16] works, consider interactions between a rigid surface
and deformable cells, which adopt an asymmetric shape
under flow. Such an asymmetry of the flowing objects is
pinpointed as the origin of the lift force arising at the low
Reynolds numbers typically encountered in microcircula-
tion. In vivo, however, blood flow takes place in compli-
ant vessels. In particular, the endothelium (the luminal
side of blood vessels) is lined by a glycocalyx, a thin
(100-1000 nm) and soft (elastic modulus of 10-100 Pa)
layer of polysaccharides bound to the walls and directly
exposed to blood flow [17]. While the importance of the
glycocalyx on blood microrheology is recognized [17-19],
its quantitative influence on EHD interactions largely re-
mains to be established. More generally, the question
of how a thin deformable layer can contribute to “soft
lubrication” and induce lift forces has been addressed
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FIG. 1. (a) Flow chamber with bottom surface functionalized
with a HA brush via biotin/streptavidin binding. (b) A bead
traveling in a shear flow of velocity gradient 4. Dual color
RICM is used to monitor its distance h from the substrate
and its translation velocity V.

theoretically [20-23], but has received limited attention
from the experimental standpoint, with a single study
investigating at the macroscopic scale how EHD affects
the sliding dynamics of cylinders near a soft wall [24]. In
this Letter, we report the investigation of the lift experi-
enced by rigid spherical particles flowing in the vicinity
of a surface bearing a polymer brush that mimics the gly-
cocalyx. Using microfluidics and three-dimensional (3D)
tracking, we provide the first direct evidence that, under
conditions of flow strengths and object sizes relevant to
blood circulation, a thin deformable polymer brush gives
rise to a sizeable lift on circulating beads, which can be
quantitatively described by soft lubrication theory.
Experiments were performed at room temperature us-
ing a parallel-plate flow chamber (Glycotech, USA) com-
posed of a spacer defining a straight channel (Fig. 1a) of
rectangular cross-section (height H = 0.250 mm, width
W = 2.5 mm, length L = 20 mm), sandwiched between
an upper deck with fluid inlet/outlet and a bottom sur-
face consisting of a glass coverslip functionalized with a
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FIG. 2. (a) Left: interference patterns at A1 = 532 nm (scale
bar 5pum). Right: radial intensity profile (black dots) ex-
tracted from image, azimuthally averaged (magenta line), and
fitted with an optical model (cyan line) to determine Ameas,
from which we compute h = hmeas — hoft, With hog the offset
due to the contribution of the gold and streptavidin layers
(measured independently, see Supplemental Material). (b)
Same as (a) at A2 = 635 nm. (c) Time series for h (green: Ay,
magenta: Az) and V' (blue), for a bead flowing close to the
HA brush.

brush of hyaluronan (HA, the major component of the
glycocalyx, see Fig. la and details below). The in-
let reservoir contained spherical polystyrene beads of ra-
dius R = 12.5 ym (Kisker Biotech, Germany) suspended
in aqueous buffer (10 mM HEPES, pH 7.4, 150 mM
NaCl, 2mM CaCl,, viscosity n ~ 1073 Pa.s and den-
sity p ~ 1000 kg.m~3), while the outlet was connected
to a syringe pump (KDS Legato 110) imposing flow rates
in the range @ = 1 — 200 yL.min~'. Beads were pumped
into the channel and left to sediment under quiescent
conditions onto the bottom surface of the chamber, after
which their motion under imposed flow rate was moni-
tored optically. 3D tracking was performed by reflection
interference contrast microscopy (RICM) using a setup
allowing for simultaneous imaging at two wavelengths
(A1 = 532 nm, Ay = 635 nm, see Supplemental Mate-
rial and references [25, 26] for details). Under flow, the
fringe patterns due to interference between the light re-
flected from the substrate and the surface of the beads
were recorded (Fig. 2a and b) on a camera (ORCA-
Flash4.0 Hamamatsu) at rates of up to 200 frames per
second. Bead trajectories were analyzed offline, using
home-written Labview routines, in order to compute for
each @: (i) the steady-state vertical distance h between
the substrate and the beads, and (ii) the beads’ transla-
tion velocity V' (Fig. 1b and 2c¢). The absolute value of h
was determined unambiguously up to ~ 1.2 ym owing to
the two-color RICM scheme used [26], with an accuracy
of ~ 10 nm. The in-plane displacements of the beads,
from which V' was computed, were determined by image

correlation with an accuracy of ~50 nm.

The surface of the coverslip exposed to the flow was
functionalized with a layer of HA, as described in [27, 28].
A Ti/Au layer (respectively 0.5 and 5 nm in thickness)
was evaporated onto the glass surface. A monolayer of
end-biotinylated oligo(ethyleneglycol) thiols (b OEG-SH)
was grafted onto the gold film. A dense layer of strepta-
vidin was bound to the exposed biotin moieties, and fur-
ther functionalized by incubation with end-biotinylated
HA (Fig. la). Such a procedure yields HA films stably
bound to the substrate in a polymer brush conformation
[27]. To investigate the role of brush thickness and soft-
ness, we have studied three different HA surfaces made of
chains of well-defined molecular weight (Hyalose, USA):
two substrates obtained by incubating chains of 840+60
kDa for two different times, yielding high (HA840-h) and
low (HA840-1) grafting density samples, and a third one
(HA58) bearing a brush made of chains of 5843 kDa.
Without flow, we measure equilibrium bead heights of
respectively h = 405, 285 and 110 +5 nm on the HA840-
h, HA840-1 and HA58 layers. The gravitational force
exerted by a bead sedimented on a brush reads:

A7 R3
Fg=——gAp (1)

With g = 9.81 m.s~2 and a density difference of Ap = 40
kg.m™3 between the beads and the fluid [29], we com-
pute Fy = 3.2 pN. This corresponds to an interaction
energy per unit area Fy/R ~ 2.5 X 107 N.m~! at which
we anticipate the brushes to be essentially uncompressed
[27]. Compared to Fy, van der Waals forces between the
beads and the glass substrate are negligible at distances
h > 10 nm [30], and repulsive forces of electrostatic ori-
gin are screened at the ionic strength used (Debye length
< 1 nm) [31]. Therefore, as done previously with similar
systems [30], we neglect surface forces and assume that
quiescent beads sit at an equilibrium distance from the
coverslip that reflects the unperturbed brush height Hy.
From Hj, we compute (see Supplemental Material) the
average distance between the tethered ends of the HA
chains (Fig. 1b), £ =74+17, 130+ 30 and 10+ 3 nm re-
spectively for the HA840-h, HA840-1 and HA58 brushes.
As a control surface, a plain gold-coated coverslip was
used, passivated by a layer of bovine serum albumin to
minimize non-specific adhesive bead /surface interactions.

An example time series for h and V of a single bead
traveling across the field of view is shown in Fig. 2c.
Single bead data were time-averaged, and measurements
over 20 to 50 beads were performed under identical flow
conditions to obtain the ensemble-averaged values of V'
and h shown respectively in Fig. 3a and 3b as a function
of wall shear rate 4 = 6Q/(W H?).

On the control surface, we observe that V increases
linearly with 7, while h remains small and constant at
15410 nm over the range of 4 explored (Fig. 3, triangles).
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FIG. 3. (a) V(¥) measured on control surface (A), HA840-
h (M), HA840-1 (¢), and HA58 (®) brushes. The solid line
is the GCB prediction for non-deformable surfaces separated
by 20 nm. (b) Experimentally measured h(7) (symbols as in
(a)). Solid line indicates the constant value of z = 20 nm used
in GCB theory. Error bars accounting for standard error and
uncertainty on h and V' are about the size of the symbols.

When beads are flowing past the HA840-h brush, their
velocity increases linearly with 4 and h remains close to
Hj at shear rates below ~20-30 s~!. However, for ¥ >30
s~1, V grows more than linearly with 4 while h steadily
increases and reaches up to 900 nm at the largest shear
rate (Fig. 3, squares). Such a trend is further amplified
with the HA840-1 brush (Fig. 3, diamonds). With the
HAB5S brush, we observe that V' grows quasi-linearly with
4, while h increases by only 40 nm above Hj at the largest
4 (Fig. 3b, and magnified in Fig. 4a). Thus, there is a
lift of the beads away from the brushes, with a magnitude
depending on the shear rate and the type of brush. We
now discuss the possible origins of such a phenomenon.

Given the low Reynolds number in our experiments
(Re < 1072), we first compare the results from the con-
trol experiment with the theory of Goldman, Cox and
Brenner (GCB) for a rigid bead in a shear flow past a
non-deformable surface [32]. For bead/surface distances
z < R, GCB computed the following bead translation
(V) and angular (£2) velocities (Fig. 1b) [33]:

V4R (1+z/R)

- 2
0.7625 — 0.25621n(z/R) @)

r'y
Q= 3
1.6167 — 0.44741n(z/R) ®)

Using Eq. (2), we obtain excellent agreement between
GCB theory and our data on the control surface when
setting z = 20 nm (solid lines in Fig. 3), consistent
with the measured h. The results of our control experi-
ment therefore match very well the predictions for a rigid
sphere flowing in quasi-contact with a rigid plane.

To address the lift from the HA surfaces, we first con-
sider inertial forces. Even at low Re, it has been shown
that an inertial lift force can act on a bead moving close
to a wall in a linear shear flow [34, 35]. Cherukat and

McLaughlin have computed an expression for this iner-
tial lift force, valid in the limit z < R [35]:

Fin = pRZV;"QI(AG’ K) (4)

where V,, = V — 4(R + z) is the difference between the
bead velocity and the fluid velocity at the location of the
bead center of mass, and I(Ag, x) is given by

I =[1.7669 + 0.2885x — 0.9025x% + 0.507625x%]  (5)
— [3.2415/k + 2.6729 + 0.8373k — 0.4683k%|A¢
+ [1.8065 + 0.89934k — 1.961x% + 1.02161x°]AZ

with A¢ = ¥(R + 2)/V, and kK = R/(R + z). Taking
V =900 um.s™!, k ~ 1, and ¥ = 128 s™!, we estimate
the maximum inertial lift force Fj, ~ 1.9 pN, which is
lower than Fy. Therefore, inertial effects alone cannot
induce lift in the range of shear rates explored here, in
agreement with our control experiment.

With electrokinetic effects [36] being negligible at the
ionic strength used here (see Supplemental Material and
references [37, 38]), the only other mechanism that can
lead to lift is due to EHD: in the presence of a thin and
soft surface layer, elastic deformations induced by the
pressure field in the lubricating fluid are predicted to give
rise to a lift force (Fgpp) on a rigid sphere [20-22]. To
test whether this accounts for our observations, we start
from the expression derived by Urzay et al. [22] for Frup:

P _ WQRQHO‘/SQ 48771' N
FHD 125 ' 25(14+w) R

4m(19 + 14w) 6
0 (194 1) ) (6)

with 7 the fluid dynamic viscosity, Hy the layer thickness,
M its longitudinal elastic modulus [39], § the bead/layer
distance (see Fig. 1b), Vs =V — QR, and w = —QR/V.

At a given shear rate, the steady-state value of § is set
by the balance of vertical forces on a bead:

Fgup + Fin = Fy (7)

Eq. (6) was derived for an impermeable elastic layer with
a no-slip boundary condition at its surface, but holds
for a poroelastic layer, under conditions on M discussed
below [21, 40]. Moreover, a polymer brush in a shear flow
is expected to be penetrated by the flow over a distance of
order &, the inter-chain spacing [41-43]. We account for
this by assuming the no-slip plane to lie at a distance &
below the top of the layer (Fig. 4a inset). In the spirit of
previous works on hydrodynamic interactions with finite
slip length [44-48], we then replace 6 by 0 + & and Hy by
Hy — ¢ (the thickness of the layer not penetrated by the
flow [49]) in Eq. (6). Similarly, we set z = § + ¢ in Egs.
2—5, and use GCB results to compute V,.(¥, ), Vs(¥, 9),
and w(¥, ) (the above assumptions are further discussed
in Supplemental Material). The theoretical values for the
lift can then be determined as a function of 4 by solving
Eq. (7) for ¢, knowing R, p, Ap, n, £ and Hy.
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FIG. 4. (a) h(¥) — Ho data on HA brushes (symbols as in Fig. 3, vertical scale according to arrows), and theoretical predictions
for §(%) with M =5 Pa (dashed line), 57 Pa (solid line), and 15000 Pa (dotted line). The shaded area around the theoretical
curves is defined by the predictions obtained when ¢ is varied from lower to upper bound for each brush. Inset: sketch showing
the location of the no-slip plane at £ below the brush surface. (b) Theoretical (Vin) vs experimental (Vexp) velocities (symbols
as in (a)). The solid line corresponds to Vin = Vexp and the dashed line to Vi, = 1.2Vexp. Variations of V4, due to changes in
& and error bars on Veyxp are about the symbol size. Inset: measured (symbols) and predicted (lines) deviation from linearity,
AV = V(¥) — S¥, with S the slope in the limit of small shear rates. (c) Best fit values (M), measured reference (®) and

predictions (solid line) for M as a function of £. Error bars correspond to the uncertainty on &.

The resulting predictions for § are compared with the
data for h — Hy in Fig. 4a. Keeping only M as an ad-
justable parameter, we obtain a very good agreement be-
tween the measured and computed lift, with M = 15000,
57 and 5 Pa respectively for the HA58, HA840-h and
HAS840-1 brushes, with a marginal effect due to the un-
certainty on . As observed experimentally, the model
predicts forces that are too low to induce lift below
4 ~ 10 — 30 s~1[50], while for larger shear rates the lift
gradually increases, an effect that is augmented with de-
creasing brush modulus. Eliminating the inertial term
in the force balance to account only for EHD demon-
strates that inertial effects become significant for 4 > 50
s~1, and that EHD alone accounts for about 75% of the
lift observed at the highest shear rate (see Supplemental
Material). Besides, the velocities predicted at the cor-
responding y and § agree to within 20% or better with
the experimental data (Fig. 4b), and the non-linearity of
the V(4) curves is quantitatively captured by the model
(Fig. 4b inset).

Furthermore, the values of M required to reproduce
the data are in agreement with previous findings on the
mechanical properties of HA brushes. As for polymer
gels [51], the modulus of a brush scales as M ~ 1/£3 (see
Supplemental Material). From previous measurements
of the mechanical response of HA brushes [27, 52], we
determine Mo ~ 100 Pa for a brush of &.f = 57 nm (see
Supplemental Material and references [53, 54]). We can
thus compute the expected moduli of the brushes from
M = Mot/ (€/&et)?, and compare them to the above best
fit values. As shown in Fig. 4c, we obtain a good agree-
ment between the moduli, strengthening the fact that

EHD does govern the observed behaviors. Now, M,et
comes from quasi-static measurements and corresponds
to the “drained” value of the modulus, determined un-
der conditions where water is free to flow in the brush
and does not contribute to the stiffness. Evaluating the
poroelastic time of the brushes, 7, ~ nHZ/(ME?), and
the experimental time scale Tex, ~ VOR/V [21], we find
that Texp > 7p, irrespective of the brush or flow condi-
tions. Following the argument given in [21], this confirms
that the drained moduli should indeed be used in Eq. (6).

In summary, our work shows how a compliant
biomimetic layer affects the near-wall motion of mi-
croparticles. Our observations are quantitatively sup-
ported by theoretical predictions based on EHD, thus
providing direct evidence of soft lubrication at play at
small scales. This is likely to have significant influence
on the behavior of red blood cells in blood circulation.
Indeed, a RBC (R ~ 3 um) flowing in plasma (n ~ 1.5
mPa.s) under a physiological shear rate ¥ ~ 100 s=% | at
a distance d ~ 0.5 ym from a pm-thick glycocalyx, would
experience a force Fgup ~ 0.15 pN due to glycocalyx
softness (which dominates over that of adjacent tissues,
see Supplemental Material and reference [55]). From a
recent study of the drift velocity v, of RBCs under shear
[12], we compute v, = B7/(R + §)? ~ 3um.s~! at the
same 6 and ¥, with 8 ~ 0.36 um® determined experi-
mentally [12]. This translates into a lift force due to cell
deformation Fie ~ 6mnRv, ~ 0.25 pN. It thus appears
that the contributions of cell and wall deformations to lu-
brication forces are of comparable magnitude at sub-pm
distances from the wall. In conclusion, the present study
underlines the important, yet often overlooked, mechan-



ical role that the soft endothelial glycocalyx is likely to
play in regulating cell/wall interactions in blood flow.
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I. RICM SETUP AND DATA ANALYSIS

RICM images were acquired on a modified inverted microscope (IX71 Olympus, Japan). Custom-built illumination
incorporated an incoherent white-light source (HPLS345, Thorlabs), a green/red dual-band interference filter (FF01-
534/635-25, Semrock, USA) and a calibrated aperture diaphragm (Thorlabs). Illumination light was reflected on a
broadband polarizing beamsplitter cube (Thorlabs), passed through a precision broadband quarter-waveplate (Fichou,
France) and was focused onto the sample using a super-apochromatic objective (UPLSApo 60X0O, Olympus, Japan).
Reflected light was collected through the same objective, passed a second time through the quarter-waveplate and
was then transmitted through the polarizing cube, allowing separation from the incoming light. The RICM signal was
then imaged on a sSCMOS camera (ORCA-Flash 4.0 V2, Hamamatsu, Japan) using relay lenses (ITL200, Thorlabs)
and dichroic beamsplitters and filters to separate the green and red images (FF560-FDi01-25x36, FF01-531/46-25 and
FF01-629/56-25, Semrock, USA). In order to accommodate for fast displacement of the beads at high shear rates,
both images were acquired simultaneously on different regions of the camera.

Analysis of the RICM pattern was performed as follows: the radially symmetrical pattern was azimuthally averaged
to obtain an intensity curve as a function of the distance r to the bead lowest point. This curve can then be fitted
with the following function:
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A
where A;, wy, A2 and wy account for the amplitude of the signal and the fringes, and their empirical decrease due
to spatial and temporal decoherence and reflection on the top surface of the bead [1]. npufrer is the refractive index
of the liquid medium, and dh(r) accounts for the change in optical distance between the bead and the coverslip as a
function of the radial coordinate, with dh(r = 0) = 0.

Finally, hmeas incorporates both the optical distance between the lowest point of the bead and the top of the
gold layer, and the phase shifts of the effective reflection and transmission coefficients of the gold layer resulting
from multiple reflections at its boundaries, affecting both the effective reflection of the gold layer and that of the bead
(multiple reflections at the surface of the bead are negligible due to the small value of the reflection coefficient (< 1%)).
Being highly sensitive to the exact gold layer thickness, such shifts are difficult to evaluate precisely. However, because
the different phase terms add linearly, the resulting phase offset can be determined experimentally from the difference
between Apeas values measured in the presence and in the absence of the HA brush. To this aim, beads were added
to a surface functionalized with the streptavidin monolayer prior to the addition of end-biotinylated HA, and RICM
patterns were analyzed for ~ 20 beads to obtain a reference value hog. This reference was subsequently subtracted
from Apeas Obtained in the presence of the HA brush to compute the height of the bead with respect to the bottom
of the HA brush. The optical contribution of the brush was neglected in this calculation due to its very low density,
corresponding to refractive index changes of ~ 1074 [2].

From equation (S1), it appears that the RICM pattern is identical for all heights hpeas separated by A/(2npufrer) =
200 nm. In order to determine the correct height of the bead, two illumination wavelengths Ay and A, are used, thereby
limiting the ambiguity to height values separated by A1 Aa/(2npuffer(A2 — A1)). Here A; = 532 nm and Ay = 635 nm,
and hence A1 Aa/(2npuster(A2 — A1)) & 1.2um [3]. Below this height, dual-colour RICM patterns can be analyzed
unambiguously.

Only beads separated by about 10 radii or more from their closest neighbors were analyzed in our study, in order
to avoid hydrodynamic coupling between beads and collective effects.

(Pmeas + R (r))) (S1)
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II. ESTIMATION OF INTER-CHAIN AVERAGE DISTANCE ¢

In a previous study [4], we have shown that force/distance curves measured by colloidal-probe AFM on HA brushes
at sufficiently high ionic strength could be quantitatively described by self consistent field theory (SCFT) of neutral
polymer brushes (by treating the screened electrostatic interactions as an enhanced effective excluded volume), from
which the molecular parameters of the brushes could be retrieved. We use the same framework here in order to deduce
¢ from the brush height Hy. According to SCFT, the relationship between these two quantities reads [4]:

1/3 1/3
NONON

where [, is the contour length of the chains, b = 1.0 nm is the size of the monomer, v is the excluded volume, and p
is a non-dimensional chain stiffness parameter.

The contour length of the chains are deduced from their molecular weight M,,, with My = 378 g.mol~! the monomer
molar mass: [, = bM,,/My. This yields [, ~ 2220 + 160 nm for HA840, and [, ~ 155 + 8 nm for the HA58 sample.
Using the previous determination of (pv/b)'/3 ~ 3.454 0.2 nm?/3 [4], we then compute ¢ from Hy with Eq. (S2) and
obtain the values reported in the main text, with the uncertainty on £ associated with the error bars on the above
parameters.

III. MAGNITUDE OF ELECTROVISCOUS EFFECTS

It is known that electrokinetic effects may give rise to repulsive interaction forces under flow when two electrically
charged surfaces are moving past each other in an electrolyte solution [5]. In order to ensure that such a phenomenon
is negligible in our study, we use a recently developed theory to compute the expected electroviscous lift forces under
our experimental conditions. Tabatabaei et al. [6] have derived the following expression for the electroviscous lift
force F,, acting between a charged planar surface and a charged bead translating and rotating at a small distance
from the wall :

-2
Fo = %R%ka&P& (;) (G + SHy + Gy + SHW)?(1 — w)? — a[(Gy + SH,)? — (G + SHu)?)(1 — )]

(S3)
with R the bead radius, ¢ the bead/surface distance, ¢, the bulk number density of ions, kT the thermal energy, £
the ratio of the Debye length to the bead radius, S = D;/Ds the ratio of the diffusion coefficients of the counterions
(D1, positive species for a negatively charged surface) and the co-ions (D), and the coefficient o & —1.667. The
Peclet number is defined as Pe = RV/ D, with V the bead translational velocity. As in the main text, w = —RQ/V,
with Q the rotation speed. The quantities G; and H; are defined as:

1 —1i /2 1 i /2
Gi:m%, Hizln% (S4)

where i = (w, p) stands for wall and particle. The reduced surface potentials 1; are such that 1; = ¢;kT/(ze), with
e the elementary charge, z the ion valence, and 1; the surface potentials.

We take D; = 1.33 x 1072 m%2.s7! and Dy =2 x 107 m%.s™?! for the Nat and Cl~ ions, respectively [7].

From the effective surface charge density of HA brushes computed in reference [4], we can estimate the polymer
layers studied here to carry a negative charge density in the range ¢ = 6 x 107 — 8 x 107% C.m~2. At a NaCl
concentration of 150 mM, hence a Debye length of A\p = 0.8 nm, this translates into a brush surface potential of
thy >~ 0Ap/(€r€) between -0.07 and -1 mV. Besides, we assume a typical value of ¥, = —50 mV for the polystyrene
beads.

Using the expressions derived by Goldmann, Cox and Brenner to compute V' and ) as a function of 6 and the
imposed shear rate (see main text) [8], we write the vertical force balance on a bead, F,, = F, (with F, the gravity
force), and solve for § in order to estimate the magnitude of the electroviscous effects alone. As can be seen on
Fig. Sla, the electrokinetically-induced lift of a bead is, at the high ionic strength used here, typically two orders of
magnitude below what we observe experimentally. This is further demonstrated on Fig. S1b, where it can be seen
that the total lift predicted from a force balance incorporating all possible lift mechanisms is indistiguishable from
that computed by ignoring Fe, in the force balance.



S3

: T 700 . . .
(a) - °00r () '
1F ] 1 500+ 1
400+ 1
300+ 1
L] 200+ 1
" 100} 1

8y, (NM)
d (nm)

0,01 " . . .
1 10 100 1 10 100
v (sT) v (s7)

FIG. S1. (a) Predicted lift due to electrokinetic effects only (dev), as a function of 4. Results obtained for ¢, = —0.07 and
-1 mV cannot be distinguished. (b) Comparison of the lift predicted by accounting (dashed line) or not (red solid line) for
electrokinetic effects in the total force balance.

IV. MODELING ASSUMPTIONS AND BRUSH DEFORMATION

As mentioned in the main text, the HA brushes placed in a shear flow are expected to be penetrated by the flow over
a thickness of order £. A full EHD modeling of our experimental results would therefore require a theory describing
the motion of a bead driven by a linear shear flow in the vicinity of a poroelastic layer. In the absence of such a
theory, we rely on a set of simplifying assumptions in order to adapt the existing EHD framework to the situation of
interest here:

(i) We consider that the expression derived by Urzay et al. [9] for the lift force Fgup, reproduced below, holds for
a poroelastic layer, as discussed qualitatively in references [10, 11].

(S5)

2 R2H, V2 (487r 47(19 + 14w) 5)
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(ii) We assume that the layer thickness is Hy — £. This implies, as done in previous studies [12], that the hydrody-
namic thickness of the polymer layer is the relevant one.

(iii) Consistently with (ii), we assume that the relevant bead/surface distance in Fgpp is § + £. We thus treat the
penetration length £ as an effective slip length, as done in a previous theoretical analysis of squeeze flow with polymer
brushes [13], and make the simple hypothesis that the lubrication force between the surfaces in the presence of slip
can be computed from the no-slip case by merely shifting the sphere/wall distance by £. Such an approximation has
been used in several earlier works [14-16], and has been found to hold even for small sphere/wall distances [16]. We
note that the hydrodynamic brush thickness, Hy — &, is always smaller than \/2R(6 + &) for the three brushes studied

(the ratio (Hy — &)/+/2R(d + &) is found to lie in the range 0.04-0.25 for the various brushes/flow strengths). Such a
condition corresponds to the thin film limit for which Eq. (S5) has been derived, which validates our use of Eq. (S5)
to analyze our data.

(iv) We rely on Goldman-Cox-Brenner (GCB) theory in order to compute the bead translation (V') and rotation
(Q) velocities as a function of the imposed shear rate 4. As in (iii), we further assume that the relevant bead/wall
distance is § + &. Using numerical results obtained by Damiano et al. [17], who computed V and {2 for a bead flowing
past a porous layer of permeability ¢2, we have checked that our assumption is indeed consistent with their results.
Assumption (iv) accounts only for a finite slip length, but does not take into consideration any effect of the layer
deformability on velocities. However, based on a recent theoretical work addressing the role of an elastic layer on the
drag and rotation of a sliding cylinder [18], we expect corrections to V and € due to elasticity to be of order A% ~ 5%
(with A ~ nyHoR>/?/(M&°/?)), i.e. to remain small compared to the case of rigid bodies treated by GCB.

This set of assumptions allows us to capture quantitatively the observed variations of § with 4. The model is robust
and only weakly sensitive to the exact value of £, which can be varied between its upper and lower bounds without
compromising the agreement between experimental data and predictions.

Furthermore, as mentioned in the main text, we show in Fig. S2 that the inertial term retained in the force balance
becomes significant at shear rates above ~ 50 s~! only, and that EHD alone accounts for most of the observed lift
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FIG. S2. (A) 6 vs 4 measured on HA840-h brush (M), predicted with M = 57 Pa and £ = 74 nm (solid line), M = 57 Pa and
& = 0 (dash-dotted line), M = 120 Pa and { = 0 (dashed line), M = 57 Pa and { = 74 nm without inertial force (blue dotted
line). (B) data for HA840-1 brush (¢), prediction for M =5 Pa and £ = 130 nm (solid line), M =5 Pa and £ = 0 (dash-dotted
line), M = 12 Pa and £ = 0 (dashed line). (C) data for HA58 brush (®), prediction for M = 15000 Pa and £ = 10 nm (solid
line), M = 15000 Pa and £ = 0 (dash-dotted line), M = 30000 Pa and £ = 0 (dashed line).
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FIG. S3. Brush strain S vs 4 computed for the HA840-h (M), HA840-1 (¢), and HA58 (®) brushes.

even at the largest shear rates.

For the sake of completeness, we also illustrate in Fig. S2 the effect of setting the slip length to zero in the model
(i.e. assuming an elastic and impermeable layer with a no-slip condition at its surface). It can be seen that, keeping
the elastic modulus constant, the predicted values of J lie, as expected, above those obtained with a slip length of
&. We can however predict the correct trend and magnitude for the lift at large shear rates by using a modulus
approximately twice as large as the one needed with finite slip. Still, we observe that the no-slip assumption does not
capture the low shear rate regime, where the model overestimates the lift. Overall, we expect the no-slip case and the
simple slip-length model to represent respectively an upper and lower limit of the predictions that a full poroelastic
treatment would yield.

Finally, we estimate the maximum brush strain, S, induced by EHD. Following reference [9], this strain, defined as
the maximum deflection of the surface divided by the thickness of the unperturbed layer, is given by:

B an/QV(l +w)

e (S6)

It can be seen on Fig. S3, where we plot S(¥), that the typical strain of the brush due to EHD is below 1, 10 and
30% for the HA58, HA840-h and HA840-1 respectively. As shown in the next section, the mechanical response of HA
brushes can be described with a constant elastic modulus up to strains of ~ 30%, suggesting that non-linear elasticity
can be neglected for the three samples studied, including the softest one.

Interestingly, we note on Fig. S3 that, for a given brush, & depends very weakly on the imposed wall shear rate.
This can be understood from the following simple argument. At steady state, the vertical force balance is Fgap ~ Fj,
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with Fragp ~ n?R?HyV2/(M§?). Combining these two relationships with Eq. S6, we can rewrite the strain as
S ~ \/Fg/(MRH,), which thus appears to be constant and independant of V5, hence of 4. Furthermore, using the
same simplified analysis, we note that the lift can be expressed as 6% ~ n?V2S2R/M?. This shows that, as the flow
strength is increased, the lift increases due to its dependence on Vs, while S is essentially constant.

V. ESTIMATION OF THE LONGITUDINAL ELASTIC MODULI OF THE BRUSHES

We first come back on the analysis of the force/distance curves (F'(h), see Fig. S4a) of HA brushes reported in
reference [4]. We note that the contact mechanics situation involved in the colloidal-probe AFM-RICM experiments
reported in [4] corresponds to that described by Johnson as the “elastic foundation model”, for which the relationship
between force (F) and indentation of the layer (Hy — h) is predicted to be [19]:

2
o TM(Ho — bR -
Hy

with R the bead radius and M the longitudinal modulus of the elastic layer [20].

In Fig. S4b, we have plotted F(Hy — h) from a dataset taken from [4], measured on a HA brush of &..s = 57 nm
and Hyp = 590 nm immersed in a 150mM NaCl solution. It can be seen on the double-logarithmic scale of the figure
that, for (Hp — h) < 200 nm, the experimental curve exhibits a regime where F increases as (Hy — h)?. Fitting this
quadratic regime with Eq. (S7) yields M, ~ 100 Pa, in excellent agreement with the outcome of a slightly different
analysis proposed previously for these HA brushes [21].
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FIG. S4. (a) Sketch of brush of unperturbed thickness Ho compressed to a thickness h upon application of a force F on
the bead. (b) Experimental data F'(Ho — h) (B), fit of the quadratic regime (red solid line) using Eq. (S7), and predictions
according to Eq. (S8) with Ho = 590 nm and £ = 57 nm (green dashed line).

We now derive the expected scaling for M as a function of £. Within the Alexander-deGennes model of polymer
brushes, which describes the mechanical response of our systems reasonably well (Fig. S4b), we expect F'(h) to be

given by [4]:
Hy\ B\ T/
(Y (1) "

Equating expressions (S7) and (S8), we obtain for the elastic modulus, in the limit of small deformations h/Hy — 1,
and dropping numerical prefactors:

HokT
53

F~R

kT
Mo~ (S9)

which is the same scaling obeyed by polymer gels [22].



S6
VI. EFFECT OF SUBSTRATE ELASTIC PROPERTIES

We have shown in section IV and V above that our experiments on HA brushes need to be analyzed within the
thin film limit, for which Eqgs. (S5) and (S7) have been derived, in order to account for the finite brush thickness and
the geometrical constraint due to its grafting on the underlying substrate. Now, in order to determine to what extent
the mechanical properties of the substrate underlying the HA brush could also affect the EHD interactions, we use
the criterion derived by Leroy and Charlaix in their theoretical analysis of non-contact probing of thin elastic films
[23]. They have shown that, for a film of thickness Hy and elastic modulus E placed on a substrate of modulus E,
the substrate contributes to less than 1% of the lubrication forces provided that:

B\ 1/3
Hy > 2 <E> VRS (S10)

S

Taking R = 12.5 um and E; ~ 60 GPa for the glass substrate, we compute the right-hand-side of Eq. (S10) to be
at most 2-10 nm for the three HA brushes, showing that the contribution of the glass substrate is negligible in our
experiments.

If we now estimate the same criterion for a blood cell of R ~ 3 um flowing at a distance of 500 nm from a 50 Pa
glycocalyx bound to an endothelium of modulus E; of about 10 kPa, we find that the glycocalyx properties make the
dominant contribution to EHD interactions for Hy 2 500 nm. This suggests that, even under the in vivo conditions
of blood microcirculation, EHD interactions due to wall compliance are entirely controlled by the softness of the
pm-thick glycocalyx.
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