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Abstract

Recent advances in social science surveys include collection of biological sam-

ples. Although biomarkers offer a large potential for social science and eco-

nomic research, they impose a number of statistical challenges, often being

distributed asymmetrically with heavy tails. Using data from the UK House-

hold Panel Survey, we illustrate the comparative performance of a set of flexi-

ble parametric distributions, which allow for a wide range of skewness and

kurtosis: the four‐parameter generalized beta of the second kind (GB2), the

three‐parameter generalized gamma, and their three‐, two‐, or one‐parameter

nested and limiting cases. Commonly used blood‐based biomarkers for inflam-

mation, diabetes, cholesterol, and stress‐related hormones are modelled.

Although some of the three‐parameter distributions nested within the GB2 out-

perform the latter for most of the biomarkers considered, the GB2 can be used

as a guide for choosing among competing parametric distributions for bio-

markers. Going “beyond the mean” to estimate tail probabilities, we find that

GB2 performs fairly well with some disparities at the very high levels of

glycated hemoglobin and fibrinogen. Commonly used linear models are shown

to perform worse than almost all the flexible distributions.
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1 | INTRODUCTION

Recent developments in social surveys include the integration of biomarkers and self‐reported health measures. Bio-

markers are objectively measured indicators of normal biological or pathogenic processes and, as such, offer at least

two key advances over self‐report health. First, biomarkers are not subject to reporting bias; given evidence for socio‐

economic‐related reporting bias in health, biomarkers offer a significant advantage in socioeconomic inequalities

research (Bago d'Uva, O'Donnell, & van Doorslaer, 2008; Carrieri & Jones, 2017). Second, biomarkers can contribute

to our understanding of the underlying biological factors through which socioeconomic conditions get “under the skin”

(e.g., thought stress‐related physiological responses) and the role of socioeconomic exposures at earlier pre‐symptomatic

health states (Davillas, Benzeval, & Kumari, 2017; Jürges, Kruk, & Reinhold, 2013).
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A growing literature analyses the effect of socioeconomic position on the conditional mean of biomarkers

(e.g., Davillas et al., 2017, Jürges et al., 2013). However, biomarkers create several statistical modeling challenges as they

often have skewed distributions with heavy tails (Jones, 2017). Furthermore, errors are likely to be heteroskedastic and

responses to covariates may be nonlinear. Existing studies have estimated linear regression models using ordinary least

squares (OLS) on raw or log‐transformed biomarkers (Jürges et al., 2013) and alternative inherently nonlinear specifi-

cations, such as the generalized linear models (Davillas et al., 2017). Although OLS on log rather than on levels might

improve performance by reducing skewness, re‐transformation to the raw scale—as health policymakers require—is

highly challenging, requiring knowledge of the degree and form of heteroscedasticity (Jones, Lomas, & Rice, 2014).

Although the generalized linear model family deals with heteroskedasticity, it fails to explicitly account for skewness

and kurtosis, imposing potential bias and efficiency losses (Jones et al., 2014).

Our paper contributes to the literature on modeling biomarkers by comparing the performance of a set of more flex-

ible parametric distributions, the generalized beta of the second kind (GB2), the generalized gamma (GG), and their

nine nested and limiting cases; we use nationally representative UK data on commonly used blood‐based biomarkers

for inflammation, diabetes, cholesterol, and stress‐related hormones (Carrieri & Jones, 2017). The GG and GB2 allow

for a wide range of skewness and kurtosis to better accommodate the biomarker data generation processes; these distri-

butions have been proposed for fitting heavily skewed outcomes (e.g., health care costs; Jones et al., 2014), to which bio-

markers share similar distributional features. For comparison purposes, linear regression models using OLS are also

estimated. Given that different biomarkers exhibit different distributions, identifying GB2 as a discriminatory tool

among competing distributions might be useful for health researchers. Going “beyond the mean”, we also explore to

what extent the GB2 and its nested cases that exerted the best goodness of fit (for each biomarker) regarding the whole

distribution also perform well to predict tail probabilities.

2 | METHODS

The three‐parameter GG distribution has been introduced as robust alternative to common estimation techniques for

asymmetric data (Manning, Basu, & Mullahy, 2005). More recently, Jones, Lomas, and Rice (2014) have suggested

adding further flexibility based on the four‐parameter GB2 distribution. GB2 allows for a wider range of skewness

and kurtosis, choosing among its several special or nested cases, whereas GB2's extra flexibility may also enhance per-

formance (Jones et al., 2014).

The GG distribution has a density function and conditional expectation that take the form:
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where γ = |κ|−2, z = sign (κ){ln(y) − μ}, u = γ exp (|κ|z), μ = x′β, and Γ(.) is the gamma function. Parameters κ and σ are

the shape parameters (Manning et al., 2005). The GG nests the gamma (κ = σ), Weibull (κ = 1), exponential

(κ = 1,σ = 1), and lognormal (κ = 0) distributions.

The four‐parameter GB2 distribution adds further flexibility and has a probability density function and conditional

mean of

f y; a; b; p; qð Þ ¼ ayap−1

bapB p; qð Þ 1þ y
b
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where b = exp (x′β) and B(.) and Γ(.) are the beta and gamma functions (Jones et al., 2014). Parameter a influences

kurtosis and p and q the skewness of the distribution. We also estimate the nested and limiting cases of GB2: the

three‐parameter beta of the second kind (B2) [a = 1], Singh–Maddala (SM) [p = 1], and Dagum [q = 1]; the two‐param-

eter Fisk [p = q = 1], and Lomax [p = a = 1]. GG itself is also a limiting case of the GB2, where b = q1/aβ and q → ∞

(Jones et al., 2014). We also estimate linear regression models using OLS.

The restrictions imposed by each of the special and limiting cases within the GG and GB2 are evaluated using Wald

and likelihood ratio (LR) tests. To assess the comparative performance of beta‐ with gamma‐family distributions (being

limited cases and not a linear restriction of a parameter), we compare Akaike (AIC) and Bayesian (BIC) information

criteria across all models (Jones et al., 2014).

3 | DATA

The UK Household Panel Study (UKHLS) is a large, nationally representative UK study. At UKHLS Wave 2, partici-

pants from its predecessor, the British Household Panel Survey, were also incorporated. Non‐fasted blood samples were

collected, after the UKHLS Wave 2 interview for the original UKHLS respondents and, at Wave 3, for the British House-

hold Panel Survey sample. Pooling biomarker data from UKHLS Waves 2 and 3 (2010–2013) resulted in a potential sam-

ple of 13,107 respondents.

Four biomarkers are used. Fibrinogen is an inflammatory biomarker, with higher values linked to cardiovascular

morbidity and all‐cause mortality risks (Davillas et al., 2017). Glycated hemoglobin (HbA1c) is a diagnostic biomarker

for diabetes. The ratio of total cholesterol to high‐density lipoprotein cholesterol is used as a marker for fatty substances

in the blood. Dehydroepiandrosterone sulfate (DHEAS) is a steroid hormone and one of the mechanisms through which

psychosocial stressors might affect health (Vie, Hufthammer, Holmen, Meland, & Breidablik, 2014). Given our focus on

the comparative performance of parametric distributions regarding goodness of fit, rather than explore potential effects

FIGURE 1 Distribution of biomarkers and quantile‐normal (Q‐N) plots. DHEAS: dehydroepiandrosterone sulfate; HbA1c: glycated

hemoglobin [Colour figure can be viewed at wileyonlinelibrary.com]
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from covariates, a parsimonious set of covariates is used: polynomials of age (cubic or quartic depending on the bio-

marker used), gender, and their interactions to allow for flexible gender effects (Figure A1).1

4 | RESULTS

Figure 1 presents the distribution of biomarkers (descriptive statistics in Table A1). Fibrinogen has a symmetric distri-

bution but with fat tails (Figure 1). HbA1c is much more skewed (skewness statistic of 4.2 compared with zero for nor-

mal data) with long right‐hand tails and excess kurtosis (31.15 vs. 3 for normal data; Table A1). The cholesterol ratio and

DHEAS also exhibit long right‐hand tails and high kurtosis.

Table 1 contains restriction tests for the nested and limiting cases within the GG and GB2. Across all biomarkers, we

find no evidence in support of any of the special cases within the GG distribution. For fibrinogen, we are unable to reject

the null hypothesis of the restriction being valid for the SM model. Our results for HbA1c do not support any of the

nested distributions. For the cholesterol ratio, both the LR and Wald tests favor the B2 distribution. Although the Wald

1The limited number of covariates may also alleviate concerns that, for less parsimonious specifications, the best specification for each model need to

be compared rather than using the same covariates (Jones et al., 2014). However, the relative performance of our models (Table 2) remained the same

in the case of no covariates.

TABLE 1 LR and Wald tests (p‐values) for special cases of the GB2 and GG

Fibrinogen HbA1c Cholesterol ratio DHEAS

LR Wald LR Wald LR Wald LR Wald

GB2 versus …

B2 0.000 0.000 0.000 0.000 0.247 0.193 0.000 0.000

SM 0.208 0.236 0.000 0.000 0.000 0.188 0.703 0.710

Dagum 0.004 0.013 0.000 0.000 0.000 0.020 0.000 0.000

Fisk 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lomax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GG versus …

Gamma 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.000

Lognormal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Weibull 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exponential 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note. B2: beta of the second kind; DHEAS: dehydroepiandrosterone sulfate; LR: likelihood ratio; GB2: generalized beta of the second kind; GG: generalized

gamma; HbA1c: glycated hemoglobin; SM: Singh–Maddala. For each biomarker, bold p‐values highlight those models that we are not able to reject the null

hypothesis of restrictions being valid, according to both the LR and Wald tests, compared to the GB2 or GG models.

TABLE 2 AIC and BIC for each model

Fibrinogen Hba1c Cholesterol ratio DHEAS

AIC BIC AIC BIC AIC BIC AIC BIC

GB2 20,866 20,948 72,138 72,219 39,175 39,257 53,800 53,889

B2 21,221 21,296 76,134 76,371 39,173 39,249 53,897 53,979

SM 20,865 20,939 72,329 72,404 39,432 39,506 53,798 53,880

Dagum 20,872 20,947 72,927 73,001 39,315 39,390 53,855 53,937

Fisk 20,883 20,950 73,563 73,629 39,482 39,549 54,149 54,223

Lomax 51,843 51,910 112,182 112,249 59,542 59,624 61,959 62,040

GG 21,204 21,278 74,986 75,060 39,180 39,270 53,927 54,016

Lognormal 21,502 21,569 77,305 77,372 39,306 39,373 54,407 54,482

Gamma 21,219 21,287 79,049 79,116 39,867 39,934 53,942 54,016

Weibull 22,804 22,871 88,676 88,743 42,443 42,518 54,640 54,715

Exponential 51,841 51,900 112,180 112,239 59,540 59,615 61,957 62,031

OLS 21,500 21,558 84,119 84,178 42,875 42,950 58,371 58,446

Note. AIC: Akaike information criteria; BIC: Bayesian information criteria; B2: beta of the second kind; DHEAS: dehydroepiandrosterone sulfate; GB2: gener-

alized beta of the second kind; GG: generalized gamma; HbA1c: glycated hemoglobin; OLS: ordinary least squares; SM: Singh–Maddala. For each biomarker,

bold values highlight those models that exhibit the best performance according to AIC and BIC.
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FIGURE 2 Actual versus fitted tail probabilities. DHEAS: dehydroepiandrosterone sulfate; HbA1c: glycated hemoglobin [Colour figure

can be viewed at wileyonlinelibrary.com]
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test also fails to reject the null hypothesis for SM, this is not confirmed by the LR test; this disparity reflects the wide

confidence intervals for GB2's p parameter (which include both 1, satisfying the SM restriction, and 0; Table A2).

Our results for DHEAS favor the SM distribution.

Table 2 shows that AIC and BIC results are in accordance with the tests of Table 1. For all biomarkers, linear regres-

sions estimated by OLS perform worse than each of the four‐ and three‐parameter and most of the more parsimonious

distributions. For fibrinogen, GB2 and SM perform best according to AIC and BIC criteria, with the latter showing the

best performance. GB2 outperforms all the competing distributions regarding HbA1c. Although the B2 and SM distri-

butions exhibit the best performance for the cholesterol ratio and DHEAS, GB2 is ranked the second best.

Figure 2 presents the conditional tail probabilities (at k equal to 10th, 25th, 50th, 75th, and 90th quantile) and spike

plots of the actual‐fitted difference (bias) for the GB2 distribution, and its nested cases exerted the best performance for

each biomarker (Table 2). Specifically, 20‐quantiles of the fitted values from these models are used to split the sample to

calculate within‐quantiles means of actual [P(y > k)] and predicted [P(y > k|X)] probabilities.

There are limited differences in the predictive ability of the more parsimonious distributions compared with GB2,

confirming previous evidence that a flexible distribution is not a substitute for finding the correct distribution (Jones

et al., 2014). GB2 performs reasonably well at predicting tail probabilities, although there are some disparities at the very

high fibrinogen levels (90th quantile) and HbA1c above the pre‐diabetes threshold (HbA1c ≥ 42).

5 | CONCLUSION

We illustrate the comparative performance of a set of more flexible parametric distributions: the GB2, GG, and their

nested and limiting cases for a set of biomarkers. Although some of the three‐parameter distributions nested within

the GB2 (mainly the B2 and SM) outperform the latter in most of the biomarkers considered, GB2 can be used as a guide

for choosing among competing distributions; a potentially useful message for applied researchers given that different

biomarkers follow different distributions. The linear models estimated by OLS are dominated by almost all the compet-

itive models. GB2 performs well at predicting biomarkers' tail probabilities, although with some disparities at the very

high levels of fibrinogen and HbA1c.
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APPENDIX

TABLE A1 Descriptive statistics

Biomarker Mean Median Standard deviation Skewness Kurtosis Minimum Maximum Sample size

Fibrinogen (g/L) 2.79 2.70 0.59 0.47 3.82 0.40 5.50 12,811

HbA1c (mmol/mol) 37.25 36.00 8.19 4.17 31.15 12 133.0 12,153

Cholesterol ratio 3.74 3.46 1.36 1.42 6.43 1.16 13.67 12,865

DHEAS (μmol/L) 4.62 3.80 3.24 1.29 5.11 0.20 25.30 12,809

Note. DHEAS: dehydroepiandrosterone sulfate; HbA1c: glycated hemoglobin.

FIGURE A1 Quantile–quantile plots of the biomarkers by gender [Colour figure can be viewed at wileyonlinelibrary.com]

DAVILLAS AND JONES 7



TABLE A2 Estimated parameters from the GB2 and the GG models

Biomarker GB2 GG

α p q κ Ln(σ)

Fibrinogen 7.892 [7.017, 8.767] 1.104 [0.933, 1.275] 1.299 [1.063, 1.535] 0.267 [0.209, 0.326] −1.606 [−1.621, −1.592]

HbA1c 42.986 [36.674, 49.298] 0.348 [0.287, 0.410] 0.198 [0.167, 0.230] −0.461 [−0.555, −0.368] −1.970 [−2.017, −1.924]

Cholesterol ratio 1.442 [0.777, 2.108] 23.345 [−9.920, 56.612] 6.611 [1.761, 11.463] −0.246 [−0.290, −0.200] −1.169 [−1.183, −1.157]

DHEAS 2.538 [2.202, 2.873] 1.036 [0.846, 1.225] 2.316 [1.717, 2.915] 0.446 [0.396, 0.495] −0.615 [−0.631, −0.599]

Note. DHEAS: dehydroepiandrosterone sulfate; GB2: generalized beta of the second kind; GG: generalized gamma; HbA1c: glycated hemoglobin.
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