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ABSTRACT: Flexible pavements may fail due to excessive rutting as a result of accumulative plastic deformation; otherwise, if the 
load is small enough, pavements may deform plastically in the first number of load cycles and then reach a stable state which is 
termed as ‘shakedown’. Recently some lower-bound and upper-bound solutions have been developed to directly determine the load 
limit (i.e. shakedown limit) below which an elastic-plastic half space can shake down. However, the actual responses of an elastic-
plastic half-space subjected to repeated moving loads were not well revealed. In the present study, repeated moving surface loads are 
applied to a three-dimensional finite element model established in ABAQUS to research on the development of stresses and strains in 
a Tresca half-space. Also, a numerical shakedown limit can be determined according to the yield condition of structure under a static 
load following a number of load passes. It is found the development of residual stresses induced by plastic strains plays a key role in 
helping the half-space to reach the shakedown state. Good agreements are also observed between numerical and theoretical solutions 
for both shakedown limit and residual stress fields. 

RÉSUMÉ: Les chaussées souples peuvent rompre à cause d’un orniérage excessif résultant de l’accumulation de déformations 
plastiques; mais si le chargement est assez petit, les chaussées peuvent se déformer de façon plastique au cours du premier nombre de 
cycles de chargement puis atteindre un état stable appelé ‘état limite’. Récemment des solutions de limite inférieure et limite 
supérieure ont été développées pour déterminer directement le chargement limite (i.e état limite) sous lequel un demi-espace élasto-
plastique peut s’établir. Cependant les réponses réelles d’un demi-espace élasto-plastique soumis à des chargements en mouvement 
répétés n’ont pas été correctement reproduites. Dans la présente étude, des chargements de surface en mouvement répétés sont 
appliqués à un modèle aux éléments finis tridimensionnel établi dans ABAQUS pour des recherches sur le développement de 
contraintes et déformations dans un demi-espace de Tresca. Une frontière numérique d’état limite peut être déterminée selon la 
condition de rupture de structure sous un chargement statique après un certain nombre de passages de chargement. Il a été montré que 
le développement de contraintes résiduelles induites par les déformations plastiques jouait un rôle clé favorisant le demi-espace à 
atteindre un état limite. Une bonne concordance entre les solutions numérique et théorique a été observée pour la frontière de l’état 
limite et les champs de contrainte résiduelle. 

KEYWORDS: Shakedown; residual stresses; Tresca half-space; three-dimensional solutions  

 
1  INTRODUCTION. 

Shakedown theory can distinguish different long-term 
behaviours of elastic-plastic structures subjected to repeated or 
cyclic loads. According to Yu (2006), when the applied cyclic 
load is above the yield limit but lower than a critical load limit, 
termed as ‘shakedown limit’, the structure may exhibit some 
initial plastic deformation; however, after a number of load 
cycles, the structure may deform purely elastically without any 
further plastic deformation. This phenomenon is called 
‘shakedown’. Otherwise, if the load is higher than the 
shakedown limit, the structure will continue to exhibit plastic 
strains (known as ratchetting) for however long the load cycles 
are applied. In the field of pavement engineering, shakedown 
limit of a layered pavement system can be considered as a 
design load against unlimited increasing permanent deformation 
(excesssive rutting) under repaeated moving traffic load (Sharp 
and Booker 1984). 

In the past few decades, theoretical solutions for shakedown 
limits of pavements were developed mainly based on two 
fundamental shakedown theorems (i.e. Melan’s static 

shakedown theorem and Koiter’s kinematic shakedown 
theorem). These two methods provide lower bound and upper 
bound to the true shakedown limit, respectively. This is because 
the static shakedown theorem satisfies the internal equilibrium 
equations and the stress boundary conditions, while the 
kinematic shakedown theorem satisfies the compatibility 
condition for plastic strain rate and boundary conditions for 
velocity. Upper bound shakedown solutions based on Koiter’s 
kinematic shakedown theorem have been applied to two-
dimensional (2D) and three-dimensional (3D) pavement 
problems (Collins and Cliffe 1987; Collins et al. 1993a,b; 
Ponter et al. 1985; Collins and Boulbibane 2000; Ponter and 
Engelhardt 2000; Boulbibane and Ponter 2005; Ponter et al. 
2006; Li and Yu 2006). Besides, different methods based on 
Melan’s static shakedown theorem were developed for Tresca 
or Mohr-Coulomb materials subjected to 2D and 3D repeated 
moving surface loads (e.g. Johnson 1962; Sharp and Booker 
1984; Yu and Hossain 1998; Shiau and Yu 2000; Yu 2005; 
Krabbenhøft et al. 2007; Zhao et al. 2008; Wang 2011; Yu and 
Wang 2012; Wang and Yu 2013a,b, 2014; Liu et al. 2014, 
2016). Yu and Wang (2012) solved the 3D lower bound 
shakedown solutions by introducing a critical self-equilibrated 
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residual stress field. However, the real repsonses of pavements 
to moving loads still needs to be researched.  

In recent years, the development of computer technology has 
made it possible to conduct step-by-step numerical analyses. 
Wang and Yu (2013a) developed a numerical step-by-step 
approach to investigate the development of residual stress field 
in a cohesive-frictional half-space under two-dimensional 
repeated moving surface loads. Shakedown limit of such a 
structure can be determined according to the yield condition of 
structure under a static load following a number of load passes. 
In the present study, the numerical approach is extended to a 3D 
Tresca half-space to research on the development of stresses 
and strains after each load cycle in the 3D half-space. Also, 
comparisons are given between the numerical shakedown 
solutions and the theoretical shakedown solutions (Yu and 
Wang 2012). 

2  PROBLEM DEFINITION 

A 3D surface contact load limited within a circle of radius ‘a’ is 
considered, as shown in Figure 1. The pressure p on the contact 
surface is formulated as: 

               
)yx(
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3 222
3

 a
a

P
p

               (1) 
where P is the total normal load in the z-direction (i.e. the 
vertical direction). This load distribution is also known as the 
3D Hertz load distribution. It has a maximum pressure p0 = 
3P/2ʌa2 at the centre of the contact area.  
 

 
Figure 1. 3D Hertz pressure distribution. 

3  NUMERICAL APPROACH 

A semi-infinite body subjected to a quarter-spheral Hertz p
ressure is considered in the present work to curtail the wo
rking effort (Figure 2). Applictaion of the moving load is 
controlled by a user subroutine ‘DLOAD’. The load is first 
applied gradually at the start point (A) and then moves 
incrementally on the pavement surface from A to B; this is to 
ensure the static equilibrium condition is fulfilled at each time 
increment during the entire loading history. Two-loading areas 
are located at the two sides of the model to eliminate the effects 
of boundary conditions. At the end of each load pass, the 
applied load is removed thoroughly to investigate stresses 
remaining in the pavement (i.e. residual stress). After a few load 
passes, a static load with same magnitude of the moving load is 
applied in the middle on the pavement surface. If no yielding 
point can be found in the pavement (i.e. the total stress state of 
each point in the pavement does not violate the yield criterion), 
a steady state (termed as ‘shakedown state’) is achieved. In 
contrast, any yielding point would indicate that the applied load 
is above the shakedown limit of the pavement and the whole 
structure is in a non-shakedown state.  Several numerical 
simulations with different load magnitudes are performed to 
determine the shakedown limit.  

 
Figure 2. 3D model sketch and FE model. 

4  MODEL DESCRIPTION AND VERIFICATION 

A 3D model was established in the finite element software 
ABAQUS as shown in Figure 2.The dimension of the 3D model 
is smaller than the one used in 2D numerical shakedown 
analyses (Liu et al. 2016) because of the relatively small 
affected area. Symmetric boundary conditions are applied on 
the plane of y = 0. Both vertical (i.e. z direction) movement and 
horizontal movement in the x direction are constrained on the 
cambered surface. Constraints on horizontal movements of the 
two sides are also applied. The element type is selected as 
C3D20R, which stands for Continuum, 3D, 20 noded reduced 
integrated elements. Table 1 shows different mesh densities 
used for sensitivity study and the corresponding results. The 
shakedown limits decrease with increasing mesh density. In the 
following study, the mesh with 7695 elements is used (Figure 
3). It can be found that its 3D numerical shakedown limits are 
close to the theoretical solution of Yu and Wang (2012). 
 
Table 1. Influence of mesh density on 3D numerical shakedown limits. 
 

Model 
Number 

of 
Elements 

Theoretical 
shakedown 
limit (Ref) 

Numerical 
shakedown 

limit 

Average elapsed 
time per load 

pass (hr) 
1 1920 

4.68c 
5.3c 0.05 

2 4320 4.5c 0.78 
3 7695 4.5c 2.21 

5  SOLUTIONS AND DISCUSSIONS  

Tresca material is considered in the present study. By using the 
numerical approach, some yielding areas are observed under a 
static load following four load passes (p0 = 4.6c) (Figure 3). It is 
also demonstrated that the yielding area initiate on the plane y = 
0, which is consistent with the theoretical findings of Yu and 
Wang (2012). 

Wang and Yu (2013a) indicated that the residual stresses in 
2D half-space under moving surface load barely change after 
several load passes. In the present study, this phenomnon is also 
observed for the 3D problem after three load passes. As 
everywhere along the load moving direction experiences the 
same loading history, the residual stresses should be 
independent of the travel dirction. Figure 4 shows an example 
for the fully-developed horizontal residual stress (xx

r) in the 
central plane.  

As mentioned by Wang and Yu (2013a), xx
r and yy

r exist 
in 2D problems; however, all six residual stress components 
could exist in 3D problems. On any x-z plane, zz

r, xy
r, xz

r 



Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 2017 

and yz
r are very small compared with xx

r and yy
r (Figure 5). 

This agrees with Kulkarni et al. (1990) and Jiang et al. (2002)’s 
findings, in which the stress analyses were carried out on 3D 
rolling contact problems with Von-Mises materials. Figure 5 
also indicates that xx

r and yy
r on all the planes normal to the 

y-axis attain their peak values at a depth of z = 0.4a. This 
agrees with Wang (2001)’s theoretical finding of z = 0.36a. The 
residual stress field is almost zero when z   1.2a. In addition, 
the values of xx

r and yy
r are largest at the plane of y = 0. 

Figure 6 also demonstrates that yy
r can be treated as the 

intermediate residual stress on the plane of y = 0.  
 

 
Figure 3. Location of yielding areas in a 3D model. 

 

z

x

y
o

 

Figure 4. Distributions of the residual stresses after four load passes. 
 
According to Yu and Wang (2012), the real residual stress 

should be contained by two crtical resiudal stress fields. 
Comparisons are made between the horizontal residual stresses 
obtained by the numerical approach and the critical residual 
stresses calculated by the their theoretical approach (Figure 7). 
When p0 = 4.6c, the FE calculated residual stress field deviates 
from the critical residual stresses at around z = 0.4a (refer to 
Figure 7), which means the load applied is larger than the 
numerical shakedown limit. When the applied load is decreased 
to 4.5c (i.e. the numerical shakedown limit), the FE calculated 
residual stresses are bracketed by the critical residual stress 
fields. 

All the six components of strain are non-zero for the 3D 

analysis. The locations of the most critical depths of normal 

plastic strain are consistent with those of the normal stress, i.e. z 

= 0.45a. yy
p is higher than xx

p due to less constraints in the y 

direction. Since every point in the horizontal direction 

experiences the same loading history, the generation of the 

plastic strains in the horizontal direction is also related to the 

shear strains in x-z planes and x-y planes. In terms of the plastic 

normal strain yy
p, it was zero in the 2D analysis as the plane 

strain assumption was made, but becomes tensile in the 3D 

analysis. The most significant normal strain is observed in the 

vertical direction, and the integration of the vertical strain over 

the depth indicates the vertical deformation on the surface, i.e. 

rutting. From Figure 8, shear strains xz
p are more significant 

than yz
p and xy

p. The negative and positive values of xz
p 

demonstrate forward and backward shear flows respectively at 

different depths in the pavement. The shear strains xy
p are 

related to different amounts of shear flows at the same depth in 

the transverse direction. The shear strains yz
p are attributed to 

different vertical deformations at the same depth in the 

transverse direction. 

In summary, the response of pavement foundation under 

repeated moving traffic load can be observed through the 

numerical step-by-step approach. A new pavement design load 

against excessive rutting (i.e. shakedown limit) can also be 

obtained by examining the yield condition of the structure under 

a static load after a few number of load passes. It is worth 

noting that the numerical step-by-step approach can be easily 

implemented to more realistic problems. For instance, the 

pavement structure can be considered as a layered system and 

the material plastic responses can be described by more 

complicated constitutive models. Furthermore, this approach 

can also be used to simulate the roller compaction process on 

the pavement foundation; thereby predicting the required 

number of load passes when a certain magnitude of moving 

load is applied. 
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Figure 5. Residual stresses after four load passes.  
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Figure 6. Residual stress fields after four load passes when p0 = 4.5c 
when y = 0. 
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Figure 7. Development of horizontal residual stress xx
r under 

successive load passes.  
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Figure 8. Plastic strain fields at y = 0 after four load passes when p0 = 
4.5c.  

6  CONCLUSIONS 

In this paper, a numerical step-by-step approach was applied to 
a 3D Tresca half-space to obtain the shakedown limit and 
investige the distributions of residual stresses and plastic 
strains. It is found that the plane of y = 0 is the most critical 
plane; this is consistent with the theoretical findings of Yu and 
Wang (2012). Good agreements are also shown between the 
numerical and theoretical 3D shakedown limits. The fully-
developed residual stress field obtained from the numarical 
approach is bounded by two critical residual stress fields when 
the structure is in shakedown state. Further study will be carried 
out by considering the Mohr-Coulomb materials. 
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