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Abstract 22 

Obesity is associated with greater areal BMD (aBMD) and considered protective against hip 23 

and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal 24 

humerus fracture in obesity. We aimed to determine if there are site-specific differences in 25 

BMD, bone structure or strength between obese and normal weight adults. We studied 100 26 

individually-matched pairs of normal (BMI 18.5-24.9 kg/m2) and obese (BMI>30 kg/m2) 27 

men and women, aged 25-40 or 55-75 years. We assessed aBMD at the whole body (WB), 28 

hip (TH) and lumbar spine (LS) with DXA, LS Tb.vBMD by QCT and vBMD, and 29 

microarchitecture and strength at the distal radius and tibia with HR-pQCT and micro-finite 30 

element analysis. Serum PINP and ȕCTX were measured by automated ECLIA. Obese adults 31 

had greater WB, LS and TH aBMD than normal adults. The effect of obesity on LS and WB 32 

aBMD was greater in older than younger adults (p<0.01). Obese adults had greater vBMD 33 

than normal adults at the tibia (p<0.001 both ages) and radius (p<0.001 older group), thicker 34 

cortices, higher cortical BMD and tissue mineral density, lower cortical porosity, higher 35 

trabecular BMD and greater trabecular number than normal adults. There was no difference 36 

in bone size between obese and normal adults. Obese adults had greater estimated failure load 37 

at the radius (p<0.05) and tibia (p<0.01). Differences in HR-pQCT measurements between 38 

obese and normal adults were seen more consistently in the older than the younger group. 39 

Bone turnover markers were lower in obese than normal adults. Greater BMD in obesity is 40 

not an artefact of DXA measurement. Obese adults have higher BMD, thicker and denser 41 

cortices and higher trabecular number than normal adults. Greater differences between obese 42 

and normal adults in the older group suggest obesity may protect against age-related bone 43 

loss, and also increase peak bone mass.  44 

 45 
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Introduction  49 

Most of the available evidence supports a lower overall risk of fracture and lower risk of 50 

proximal femur and vertebral fracture in obese adults, compared to adults with a normal body 51 

mass index (BMI) (1-8). However, fracture risk in obesity is not lower at all skeletal sites; the 52 

risk of some non-spine fractures including proximal humerus, upper leg and ankle fracture is 53 

higher than in non-obese adults (3, 4, 7, 9). Protection against fracture in obesity may be partly 54 

explained by the positive association between BMI and BMD (8, 10-12), while differences in fall 55 

characteristics and soft tissue padding at the hip have also been proposed as mechanisms to 56 

explain differences in fracture risk between normal BMI and obese adults (7, 8, 13). The greater 57 

risk of lower limb fractures with obesity could result from differences in bone 58 

microarchitecture, bone quality or factors unrelated to bone strength such as greater impact 59 

during a fall. 60 

 61 

The association of high BMD with obesity may be an artifact of the method used for 62 

measuring BMD. Dual energy X-ray absorptiometry (DXA) is affected by soft tissue 63 

overlying bone.  Soft tissue thickness may cause a projection error affecting measurements of 64 

bone area and thus BMC (14-16). The assumptions made about fat and lean tissue in a two-65 

compartment model may be inaccurate in obesity, introducing further error. BMD by DXA 66 

may not be the best choice when comparing groups of different body weight. However, most 67 

previous studies have assessed areal BMD in obesity by DXA. 68 

 69 

Quantitative computed tomography (QCT) allows the study of cortical bone and trabecular 70 

bone separately. Such technology allows us to understand whether higher bone density in 71 

obesity is a result of alterations in cortical bone and/or trabecular bone. Measurements of 72 
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bone density by QCT are less affected by overlying soft tissue than measurements by DXA 73 

(14). 74 

 75 

Bone density is not the sole determinant of bone strength. Additional factors include bone 76 

geometry and bone microarchitecture. High resolution peripheral quantitative computed 77 

tomography (HR-pQCT) allows study of architectural properties of bone such as cortical 78 

thickness and trabecular number, and these measurements are less likely to suffer artefact due 79 

to variation in body composition. The composite effects of bone size, geometry, density and 80 

microarchitecture on bone strength can be evaluated by finite element models generated from 81 

HR-pQCT images. Few studies have investigated associations between obesity and measures 82 

of vBMD. Whether adiposity affects BMD and bone microstructure in men and women in 83 

younger and older adulthood in a consistent manner is unclear.  84 

 85 

So far only one study has been designed to look at bone microarchitecture in obese 86 

individuals and that was restricted to older women (12). It is not known whether associations 87 

between obesity and bone microarchitecture were the same in men and women, or whether 88 

differences between obese and normal weight groups are present in younger adults at peak 89 

bone mass. The results of a population-based study comprising men and women of a wide 90 

age span, suggested that there may indeed be differences in the associations between 91 

adiposity and bone density and microstructure by age, gender and menopausal status (17). 92 

 93 

The aims of this study were to evaluate using DXA, QCT and HR-pQCT the effect of obesity 94 

on 1) cortical and trabecular bone density of the spine, distal radius and distal tibia and 2) 95 

bone structure and strength of the distal radius and distal tibia, in healthy younger and older 96 
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men and women. We also sought to characterise bone turnover in obese adults compared to 97 

adults with a normal BMI. 98 

 99 

Materials and Methods 100 

Study design and participants: We conducted a cross-sectional case-control study of 200 101 

community-dwelling men and women from South Yorkshire, UK, aged 25 to 40 years (n=80) 102 

or 55 to 75 years (n=120). Participants were recruited through general practitioners, 103 

university and hospital staff and students, and poster advertisements. Cases were obese 104 

individuals (BMI≥30 kg/m²) and controls were normal weight individuals (BMI 18.5 to 24.9 105 

kg/m²) based on the WHO BMI classifications. Controls were recruited to be individually 106 

matched to an obese participant by sex, age (±3years), height (±5 cm), smoking status 107 

(current smoker or non-smoker) and postcode.  108 

 109 

All women aged 25 to 40 years were pre-menopausal, and those aged 55 to 75 years were at 110 

least five years post-menopausal. Participants were excluded if they had pre-diagnosed 111 

conditions (including diabetes) or were taking medications known to affect bone metabolism 112 

(including hormonal contraceptives and hormone replacement therapy), had fractured or 113 

undergone orthopaedic surgery within the last 12 months, were highly physically active (≥7 114 

hours per week), consumed above 21 units of alcohol per week or were actively trying to lose 115 

weight. All participants provided written informed consent. Ethical approval was obtained 116 

from Sheffield Research Ethics Committee. 117 

 118 

Height (cm) and weight (kg) were measured using a wall mounted stadiometer (Seca 242, 119 

Seca, Birmingham, UK) and electronic balance scale (Seca, Birmingham, UK). BMI was 120 
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calculated using Quetelet's index ((weight kg/(height m)2). Dietary calcium was determined 121 

from weekly milk, cheese and yoghurt intake reported in a questionnaire. 122 

 123 

DXA 124 

Bone density (g/cm2) at the whole body, lumbar spine (LS) and total hip (TH) was measured 125 

by DXA (Hologic Discovery A, Bedford, MA, USA). Whole body fat mass (FM) was 126 

determined by DXA. 127 

 128 

QCT (55 to 75 age group only) 129 

QCT of the lumbar spine (L1-3) was obtained using the LightSpeed VCT XT device (GE 130 

Healthcare, Milwaukee, WI, USA). We obtained data for L1, L2 and L3 and then the total 131 

region L1-L3. Scans were performed in the axial plane, with a helical rotation and rotation 132 

time of 0.8 seconds and a table height of 155. The scan pitch was 0.969 for each scan. All 133 

scans had a noise index of 30 and a slice thickness of 0.625mm. The modulated Ma was at a 134 

maximum 140, minimum 80, with a mean assumed tube current of 120mA and a tube voltage 135 

of 80 kilovolt peak. Scans were attained from 5mm above the superior end plate of L1 136 

(inclusive of the T12-L1 joint space) to 5mm below the end plate of L3 (inclusive of the L3-4 137 

joint space). QCT scans were analysed using the QCTPro software (Version 5.0.3, Mindways 138 

Software Inc. Austin, TX, USA). 139 

 140 

HR-pQCT 141 

HR-pQCT images of the distal radius and distal tibia (non-dominant, non-fractured limb) 142 

were obtained using the XtremeCT device (Scanco Medical AG, Zurich, Switzerland) with 143 

standard protocols. HR-pQCT images were analysed with standard software and extended 144 

cortical measures software provided by Scanco Medical AG (version 6) (9,10).  This software 145 
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identifies the periosteal and endosteal boundaries, enabling assessment of cortical micro-146 

structural bone properties, including apparent cortical thickness (Ct.Th, mm), cortical tissue 147 

mineral density (TMD, mgHA/cm3) and cortical porosity (Ct.Po, %).  148 

 149 

Radial images from one pair of women were excluded from analysis due to movement. 150 

Extended cortical measures outcomes from one pair of men were excluded due the obese 151 

participant exhibiting outlying results (Ct.Po = 0.737, Ct.Po.Dm = 2.388µm). Tibial images 152 

from two pairs of women were excluded from analysis due to subject movement and data 153 

loss. 154 

 155 

Micro-finite element analysis (version 1.13, Scanco Medical AG, Zurich, Switzerland) was 156 

applied to the HR-pQCT images to obtain measures of stiffness and ultimate failure load. The 157 

model parameters were set as: material properties isotropic and elastic, cortical bone Young’s 158 

modulus 20 GPa, trabecular bone Young’s modulus 17 GPa, Poisson’s ratio 0.3. The 159 

proximal end of the section was fixed and a compression strain of 1% was applied to the 160 

distal surface of the section. 161 

 162 

Bone Turnover Markers 163 

Blood samples were collected from all participants between 08:00 and 10:00, following an 164 

overnight fast. Serum was stored frozen at -80°C. Bone turnover markers (BTMs) serum 165 

collagen type 1 C-telopeptide (CTX) and type 1 procollagen N-terminal peptide (PINP) were 166 

measured using the Cobas e411 automated electrochemiluminescence immunoassay (Roche 167 

Diagnostics, Germany). The inter-assay coefficients of variation (CVs) were <5%. 168 

 169 

Statistical Analysis:  170 
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Power calculation: We used data sets from a previous study of healthy women in Sheffield to 171 

estimate the difference and variability of the difference in hip BMD between normal weight 172 

and obese pairs. The standardised difference was 1.125 g/cm2 and the standard deviation of 173 

the paired differences was 0.16. We set the effect size at 0.09 g/cm2 as this is likely to 174 

represent a clinically significant difference. A sample size of 200 has 80% power to detect a 175 

0.09 g/cm2 difference at p <0.05 based on a paired sample t-test. 176 

As frequency distributions of CTX and PINP were non-normal, a log transformation was 177 

applied prior to analysis. Standard deviation scores for PINP and CTX were calculated by 178 

subtracting the mean of the normal BMI, age and gender matched group from each individual 179 

result and dividing by the standard deviation of the normal BMI age and gender matched 180 

group. Uncoupling index was calculated to assess the relative balance of bone formation and 181 

resorption, as described by Eastell et al. (18) as the difference in the standard deviation scores 182 

for PINP and CTX (ZPINP − ZCTX), where ZPINP = (observed PINP − mean PINP)/SD and ZCTX 183 

= (observed CTX − mean CTX)/SD. Uncoupling index has previously been shown to be 184 

correlated with postmenopausal BMD bone loss (19). 185 

 186 

Paired samples t-tests were used to determine significant differences between normal BMI 187 

and obese adults. Paired samples t-tests were performed for men and women combined, as 188 

after considering the results both by gender and in combination, the direction and categorised 189 

degree of significance remained the same for all outcomes. Standard deviation scores were 190 

calculated by standardising the mean difference between normal BMI and obese groups for 191 

each variable against the standard deviation of the normal weight, gender and age matched 192 

group. Univariate general linear models (GLM) were used to identify whether age group, 193 

gender and BMI had an effect on bone outcomes and GLM interaction terms were used to 194 

determine any interaction of age or gender with the relationship between obesity and bone 195 
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outcomes. Analysis was performed using IBM SPSS Statistics for Windows (Version 21.0. 196 

Armonk, NY: IBM Corp.). Significance was accepted when p<0.05. 197 

 198 

Results 199 

The total sample consisted of 200 individuals. The 25 to 40 years group consisted of 18 male 200 

and 22 female pairs and the 55 to 75 years group of 30 male and 30 female pairs. 201 

Characteristics of the study population are shown in Table 1. Obese and normal BMI 202 

individuals were well matched for age and height (Table 1). The obese group had 203 

significantly greater whole body fat mass than the normal group (Table 1). 204 

 205 

Areal bone density by DXA: 206 

Obese individuals had significantly greater mean aBMD than normal BMI individuals at the 207 

total hip (p<0.001 both age groups) and lumbar spine (p=0.019 younger, p<0.001 older). 208 

Whole body aBMD was also significantly greater in the obese older adults (p<0.001), but not 209 

in the obese younger adults (p=0.158). 210 

 211 

There was an interaction between age group and the effect of obesity on aBMD at the lumbar 212 

spine (p=0.001) and whole body (p=0.008), but not at the total hip (p=0.071), with a greater 213 

effect of obesity on aBMD in the older adults than the younger adults. In the younger adults, 214 

aBMD was 0 to 1 SD scores greater in the obese group than in the normal weight group 215 

(Figure 1). In the older adults, aBMD was 1 to 2 SD scores greater in the obese group than in 216 

the normal weight group (Figure 1).  217 

 218 

There was no interaction between gender and the effect of obesity on aBMD at the total hip, 219 

lumbar spine or whole body, in either age group. 220 
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 221 

HR-pQCT: 222 

Volumetric bone density (vBMD) was significantly greater in obese adults compared to 223 

adults with a normal BMI at the distal tibia in both age groups (p<0.001) (Figure 2) and at the 224 

distal radius in the older adults (p<0.001) (Figure 3). There was an interaction between age 225 

group and the effect of obesity on vBMD at the distal radius (p=0.005) with a greater effect 226 

of obesity on vBMD in the older adults. There was no interaction between age group and the 227 

effect of obesity on vBMD at the distal tibia (p=0.222).There was no interaction between 228 

gender and the effect of obesity on vBMD at the distal radius or distal tibia  in either age 229 

group. 230 

 231 

Microstructure measurements showed that the higher vBMD in obesity was due to greater 232 

trabecular density in younger adults (p=0.021 radius, p<0.001 tibia) and greater trabecular 233 

and cortical density in older adults (all p<0.001) (Figure 2, Figure 3). The higher trabecular 234 

density in the obese adults was due to greater trabecular number (Tb.N) (p<0.001 all ages, all 235 

sites) and lower trabecular separation (Tb.Sp) (p<0.001 all ages, all sites) with no difference 236 

in trabecular thickness (Tb.Th) at the radius (p=0.696 younger, p=0.056 older) and tibia 237 

(p=0.357 younger, p=0.205 older) (Figure 2, Figure 3).  238 

 239 

Cortical thickness was significantly greater in obese groups at the tibia (p=0.001 younger, 240 

p<0.001 older) (Figure 2) and at the radius in the older adults (p<0.001) (Figure 3). The 241 

higher cortical density in the older obese adults was due to higher cortical tissue mineral 242 

density (Ct.TMD) (p=0.027 radius, p<0.001 tibia) and lower cortical porosity (p=0.017 243 

tibia).No differences between normal BMI and obese groups were observed in these cortical 244 

parameters in the younger adults (Figure 2, Figure 3).  245 
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 246 

The difference between normal BMI and obese adults in Ct.vBMD (p=0.048 radius, p=0.008 247 

tibia) and Ct.TMD (p=0.040 radius, p=0.003 tibia) was greater in women than in men. At the 248 

tibia, the difference in Ct.Th (p=0.017) and cortical area (p=0.012) was also greater in older 249 

women than older men. In the younger adults, differences in cortical or trabecular properties 250 

between normal BMI and obese adults were similar in men and women. 251 

  252 

No difference was observed in bone size between normal BMI and obese adults, as assessed 253 

by total area or cortical perimeter (Figure 2, Figure 3).  254 

 255 

Whilst patterns of bone microarchitecture were consistent between the distal radius and distal 256 

tibia in the older population, the differences between obese and normal BMI adults in the 257 

younger group were seen at the tibia, but less consistently at the radius. 258 

 259 

QCT: 260 

Lumbar spine Tb.vBMD was significantly greater in obese women compared to women with 261 

normal BMI (p=0.003). There was no difference in lumbar spine Tb.vBMD between normal 262 

BMI and obese groups in men (p=0.166). There was an interaction between gender and the 263 

effect of obesity on Tb.vBMD at the lumbar spine, with a greater effect of obesity on 264 

Tb.vBMD in women than in men (p=0.001). 265 

 266 

Bone Strength:  267 

Bone stiffness was greater in obese adults at the distal tibia in both age groups (p=0.001 268 

younger, p<0.001 older) (Figure 2) and at the distal radius in the older adults (p<0.001) 269 

(Figure 2). In both age groups, obesity was associated with greater estimated failure load at 270 
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the distal radius (p=0.048 younger, p<0.001 older) and distal tibia (p=0.001 younger, p<0.001 271 

older) (Figure 2, Figure 3).  272 

 273 

Therefore, although in the younger group the differences in bone density and 274 

microarchitectural outcomes between obese and normal BMI adults were less pronounced, 275 

the differences appear to contribute to an overall increase in bone strength. There was no 276 

interaction between age group and the effect of obesity on stiffness or failure load at either 277 

site.  278 

 279 

There was no interaction between gender and the effect of obesity on bone stiffness or 280 

estimated failure load at the distal radius or distal tibia, in either age group. 281 

 282 

Bone Turnover Markers: 283 

CTX was lower in the obese adults in both age groups (p=0.024 younger, p<0.001 older) and 284 

PINP was lower in obese older adults (p=0.084 younger, p=0.008 older) (Figure 4). GLM 285 

revealed no interaction between gender or age group and the effect of obesity on CTX or 286 

PINP. CTX and PINP were highly correlated (r=0.779, p<0.001). Obese adults had an 287 

uncoupling index on average 0.24 SD scores greater than normal BMI adults (p=0.009). The 288 

ratio of PINP to CTX was higher in young adults than older adults (p=0.022). Young obese 289 

adults had an uncoupling index on average 0.16 SD scores greater than normal BMI young 290 

adults (p=0.342). Older obese adults had an uncoupling index on average 0.29 SD scores 291 

higher than normal BMI older adults (p=0.007). 292 

 293 

There was no effect of gender on uncoupling index. 294 

 295 
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Multiple linear regression adjusting for age and gender showed that CTX was a significant 296 

negative predictor of aBMD and vBMD (whole body aBMD p=0.002, TH aBMD p<0.001, 297 

LS aBMD p=0.002, radius vBMD p=0.010, tibia vBMD p=0.038, LS Tb.vBMD p=0.157). 298 

PINP was not a significant predictor of aBMD or vBMD. 299 

 300 

Discussion 301 

Obese adults had greater BMD at all sites measured and favourable bone microarchitecture 302 

and greater bone strength at the distal radius and distal tibia, compared to normal adults. 303 

Greater differences in BMD and HR-pQCT measurements between obese and normal adults 304 

were observed in the older adults than the younger adults and suggest that obesity may 305 

protect against age-related bone loss, and also increase peak bone mass.  306 

 307 

Our results are consistent with the existing literature that shows greater aBMD in obesity. 308 

High BMI has previously been positively associated with bone mass in adults (8, 11, 12, 20-28) 309 

and older adults (29, 30) of both sexes. Body weight and BMI have been positively associated 310 

with aBMD of the lumbar spine (12, 22, 23, 25, 28), femoral neck (22, 23, 28), distal radius (12), 311 

proximal femur and leg (8, 22, 25, 26, 28, 30). Low body weight is associated with osteoporosis at 312 

the lumbar spine, proximal femur, total hip, femoral neck and trochanter (22).  313 

 314 

This is the first study to address relationships between obesity, bone microarchitecture and 315 

micro finite element derived bone strength in an individually-matched case control study of 316 

younger and older men and women.  317 

 318 

Sornay-Rendu et al. (2013) previously reported an assessment of bone microarchitecture in 319 

obese postmenopausal women, compared with a non-obese control group (12). In agreement 320 
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with our findings, the authors reported greater vBMD at the distal radius and distal tibia in 321 

obesity. This greater vBMD resulted from greater cortical thickness, greater Tb.BMD (due to 322 

greater Tb.N and lower Tb.Sp), and greater Ct.BMD (due to lower Ct.Po). Also in agreement 323 

with our results, the authors reported no difference in total area or trabecular area in obesity 324 

(12). Greater percentage differences in microarchitectural parameters were observed at the 325 

distal tibia compared to the distal radius in the obese group versus the non-obese group (12).  326 

 327 

Similarly, in a study of young obese men, BMI was positively associated with Tb.N and 328 

inversely associated with Tb.Sp (31). Using pQCT, BMI was also positively associated with 329 

tibial Tb.BMD in both pre- and postmenopausal women (28). 330 

 331 

A recent study examined the effect of fat mass and lean mass on HR-pQCT derived bone 332 

microarchitecture in obese individuals with metabolic syndrome (32). The study reported 333 

positive associations between lean mass and Tb.N and Tb.Sp at the radius, and vBMD, 334 

Tb.vBMD, BV/TV, Tb.N, Tb.Sp and Ct.Th at the distal tibia (32). No significant associations 335 

between fat mass and microarchitectural outcomes were observed (32). However, because 336 

there was no control group, and metabolic syndrome may have effects on bone metabolism, it 337 

is difficult to compare these findings directly with our results. 338 

 339 

It was perhaps surprising that there was no difference in bone size between normal and obese 340 

adults. We speculate that this indicates a minimal effect of habitual loading on bone structure 341 

in obesity, and that the differences observed reflect alterations in the hormonal milieu 342 

associated with greater adiposity. The observation of no difference in bone size might be the 343 

result of inhibition of periosteal apposition due to greater circulating oestrogen in obesity, 344 

associated with increased aromatisation of androgens (33).  345 
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 346 

Obese adults have lower bone turnover than individuals with a normal BMI, with lower CTX 347 

and PINP. By calculating an uncoupling index, as described by Eastell et al. (18), we were able 348 

to demonstrate a positive balance of bone formation to bone resorption in obese adults. These 349 

findings are consistent with the existing literature which shows lower makers of resorption 350 

and formation with high BMI in premenopausal women (34), through the menopausal 351 

transition (35) and in  postmenopausal women (12, 34, 36-38). Studies in obese men are lacking, 352 

although a recent study of young men and women by Viljakainen et al. showed lower PINP, 353 

CTX, TRAP, total OC and carboxylated OC in obese adults compared to non-obese age and 354 

gender matched controls (39). In further agreement with our results Viljakainen et al. found no 355 

difference in uncoupling index between young obese and non-obese men and women (39). 356 

Despite bone turnover typically increasing with age, we found  no effect of age on bone 357 

resorption in the present study. This may be explained by the age stratification of our young 358 

adults, as bone turnover markers remain elevated until age 35 years (40). Younger adults had 359 

higher bone formation than older adults, possibly associated with the period of consolidation 360 

in early adulthood. 361 

 362 

Fat distribution may affect associations between adiposity and bone microarchitecture (17, 31, 363 

41, 42). Premenopausal women with greater central adiposity have been shown to have lower 364 

trabecular bone volume, bone stiffness and bone formation on bone biopsy (41). The inverse 365 

relationship between trunk fat and trabecular bone volume remained significant after 366 

controlling for age and BMI (41) . Ng et al. reported differences in the association between 367 

subcutaneous and visceral adipose compartments and bone density and microstructural 368 

parameters, differences which were also age and gender dependent (17). A key limitation of 369 

the present study is the lack of assessment of body fat compartments, which should be 370 

addressed in future work. 371 
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 372 

Sornay-Rendu et al suggested that the greater BMD observed in obesity does not appear to be 373 

proportional to the greater body weight, so that adaptation of bone in obesity may not be 374 

sufficient to withstand the greater falls force (12). Fractures often occur in obese individuals 375 

despite normal or high aBMD (9, 10). In particular, tibial vBMD and estimated failure load are 376 

greater in obese people, so lower bone density is not the cause of the increased risk of lower 377 

limb or ankle fracture observed in obesity (2, 6, 8, 43). Simple linear scaling may not be 378 

sophisticated enough to fully determine appropriate bone strength for body size. Further 379 

development of finite element models that account for body weight in the forces acting may 380 

provide a better understanding of fracture risk in obesity. Bone is more likely to adapt to 381 

daily forces and loads, which differ from forces acting in a fall impact. Therefore it may not 382 

be surprising that obese individuals continue to fracture at some sites despite greater BMD 383 

than normal weight individuals.   384 

 385 

Whilst the greater BMD at the hip and lumbar spine may explain obesity being protective 386 

against hip and vertebral fracture, non-skeletal factors, such as greater soft tissue thickness at 387 

the greater trochanter may also contribute to fracture risk in obesity (44). Obese individuals 388 

may be at greater risk of falls due to impaired muscular function, sarcopenic obesity, and/or 389 

fat infiltration of skeletal muscle (45-47). Different fall direction and fall forces in obesity could 390 

also contribute to the greater risk of lower limb and proximal humerus fractures. 391 

 392 

The cross-sectional design of this study must be acknowledged as a limitation. BMI may be 393 

considered too crude a measure of obesity, as body fat distribution could be a determinant of 394 

bone density and microarchitecture, but our obese group did have significantly higher fat 395 

mass than the normal weight group. Whilst the most likely confounding differences between 396 
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obese and normal weight individuals (age, body size, smoking, exercise and socioeconomic 397 

status) were controlled for as much as possible, any remaining differences may have affected 398 

the results.  399 

 400 

CT density measurements may be affected by the soft tissue thickness effects of increasing 401 

BMI measures, for example beam hardening due to greater adiposity. While bone density 402 

measurements might be affected in obesity, it is less likely that microarchitectural outcomes 403 

would be affected. 404 

 405 

Our finding of greater bone strength in young obese adults despite less pronounced 406 

differences in bone density and microarchitecture between normal and obese groups could be 407 

due to unmeasured factors rather that the cumulative effect of non-significant differences in 408 

bone structure. It is possible that the absence of an interaction between age and the effect of 409 

obesity on failure load could exist when there is no effect in young adults, a small effect in 410 

older adults, and insufficient power to detect a difference.  411 

 412 

The HR-pQCT finite element analysis model used in this study does not take into account 413 

individual loads upon falling and this approach would increase the sophistication of the 414 

model. The current model simulates a direct compression force on the distal tibia which may 415 

not be the most suitable strength test for the prediction of ankle fracture which is affected by 416 

torsion forces and contribution of ligaments. 417 

 418 

In conclusion, obese individuals had greater bone density than their normal weight 419 

counterparts, at all sites measured. The greater density in trabecular bone was due to greater 420 

trabecular number, but trabecular thickness did not differ between obese and normal weight 421 
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people. Cortical thickness and cortical tissue mineral density were also higher in obese 422 

people, and cortical porosity was lower. Bone size at the radius and tibia did not differ 423 

between obese and normal weight people. The magnitude of the difference in bone density 424 

observed between obese and normal weight individuals using DXA was comparable to that 425 

observed using HR-pQCT suggesting that greater bone density in obesity is not solely an 426 

artefact resulting from greater soft tissue thickness. 427 

 428 

The differences in bone turnover and BMD between obese and normal weight groups 429 

manifest by young adulthood, suggesting that obesity has positive effects on peak bone mass 430 

acquisition. The greater differences between obese and normal groups in the older adults 431 

suggest obesity may also be protective against age-related bone loss. 432 

 433 

The identification of mechanisms responsible for greater bone density in obesity will improve 434 

our understanding of the pathophysiology of osteoporosis and could lead to new therapeutic 435 

targets. Understanding why some fractures are increased in obesity may require more 436 

sophisticated models for the assessment of bone strength, which may lead to further insights 437 

into the site-specific mechanisms of fractures. 438 
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Table Legend: 589 

Table 1: Study population characteristics by age and gender group (Mean (SD)). 590 

 591 

Figure Legends: 592 

Figure 1: Mean standard deviation score (95% CI) of obese groups calculated against normal 593 

weight groups for aBMD at the total hip, lumbar spine and whole body, by age and 594 

gender.  595 

Zero line indicates the mean of the age and gender matched normal group. 596 

Y=Younger adults, O=Older adults. The p-value refers to the comparison between 597 

obese and normal BMI groups, where *p<0.05, **p<0.01, ***p<0.001  598 

 599 

Figure 2: Mean standard deviation score (95% CI) of obese groups calculated against normal 600 

groups for total and cortical parameters at the distal tibia, by age and gender. Zero 601 

line indicates the mean of the age and gender matched normal group. Y= Younger 602 

adults, O= Older adults. The p-value refers to the comparison between obese and 603 

normal BMI groups, where *p<0.05, **p<0.01, ***p<0.001. 604 

 605 

Figure 3: Mean standard deviation score (95% CI) of obese groups calculated against normal 606 

groups for microarchitectural parameters at the distal radius, by age and gender. 607 

Zero line indicates the mean of the age and gender matched normal group. Y= 608 

Younger adults, O=Older adults. The p-value refers to the comparison between 609 

obese and normal BMI groups, where *p<0.05, **p<0.01, ***p<0.001  610 

 611 

Figure 4: Box and whisker plots for serum CTX and PINP in obese and normal, younger and 612 

older adults.  613 


