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Quasimonotone Graphs

Martin Dyer1 and Haiko Müller1⋆

School of Computing, University of Leeds, Leeds LS2 9JT, UK
{M.E.Dyer|H.Muller}@leeds.ac.uk

Abstract. For any class C of bipartite graphs, we define quasi-C to be
the class of all graphs G such that every bipartition of G belongs to
C. This definition is motivated by a generalisation of the switch Markov
chain on perfect matchings from bipartite graphs to nonbipartite graphs.
The monotone graphs, also known as bipartite permutation graphs and
proper interval bigraphs, are such a class of bipartite graphs. We in-
vestigate the structure of quasi-monotone graphs and hence construct a
polynomial time recognition algorithm for graphs in this class.

1 Introduction

In [5] (with Jerrum) and [6] we considered the switch Markov chain on perfect
matchings in bipartite and nonbipartite graphs. This chain repeatedly replaces
two matching edges with two non-matching edges involving the same four ver-
tices. We considered the ergodicity and mixing properties of the chain.

In particular, we proved in [5] that the chain is rapidly mixing (i.e. converges
in polynomial time) on the class of monotone graphs. This class of bipartite
graphs was defined by Diaconis, Graham and Holmes in [4], motivated by sta-
tistical applications of perfect matchings. The biadjacency matrices of graphs
in the class have a “staircase” structure. Diaconis et al. conjectured the rapid
mixing property shown in [5]. We also showed in [5] that this class is, in fact,
identical to the known class of bipartite permutation graphs [14], which is itself
known to be identical to the class of proper interval bigraphs [9].

In extending the work of [5] to nonbipartite graphs in [6], we showed that
the rapid mixing proof for monotone graphs extends easily to a class of graphs
which includes, beside the monotone graphs themselves, all proper, or unit, in-
terval graphs [1]. In this class the bipartite graph given by the cut between any
bipartition of the vertices of the graph must be a monotone graph. We called
these graphs quasimonotone.

In fact, “quasi-” is an operator on bipartite graph classes, and can be applied
more generally. In this view, quasimonotone graphs are quasi-monotone graphs,
as formally defined in section 2, and discussed in section 2.1, below. For any class
of bipartite graphs that is recognisable in polynomial time, the definition of its
quasi-class implies membership in co-NP. Thus an immediate question is whether
we can recognise the quasi-class in polynomial time. The main contribution of
this paper is a polynomial time recognition algorithm for quasimonotone graphs.

⋆ corresponding author



1.1 Definitions and notation

If G = (V,E) is a graph and U ⊆ V , then G[U ] is the subgraph induced by
U . Often we do not distinguish between the set U and the subgraph it induces.
So a cycle in G is either a subgraph or the set of its vertices. Similarly, we will
write G = H when G is isomorphic to H. A subgraph of G is a cycle in G if it is
connected and 2-regular. The length or size of a cycle is the number of its edges
(or vertices). A chord of a cycle (U,F ) in G is an edge in U (2) ∩E \ F . A chord
in a cycle of even length is odd if the distance between its endpoints on the cycle
is odd. That is, an odd chord splits an even cycle into two cycles of even length.
An even chord splits an even cycle into two cycles of odd length.

A hole in a graph is a chordless cycle of length at least five. A cycle of length
three is a triangle, and a cycle of length four a quadrangle. A hole is odd if it
has an odd number of vertices, otherwise even. Let HoleFree be the class of
graphs without a hole, and EvenHoleFree the class of graphs without even
holes. A long hole is an odd hole of size at least 7.

For a graph G = (V,E), L ⊆ V and R = V \ L the graph G[L:R] is the
bipartite graph with bipartition L,R, and edge set the cut L:R = {xy ∈ E : x ∈
L, y ∈ R}. We refer to G[L:R] as a bipartition of G.

The distance dist(u, v) between two vertices u and v is the length of a shortest
(u, . . . , v) path in G. For vertices x and y in a subgraph H of G we denote
their distance in H by distH(x, y). If v ∈ V , dist(v,H) is the smallest distance
dist(v, w) from v to any vertex w ∈ H. The maximum distance between two
vertices in G is the diameter of G. The neighbourhood of a vertex v is N(v).

1.2 Structure of the paper

In 2 we discuss quasi-classes and give examples in 2.1. Sections 3 to 6 show
that quasimonotone graphs can be recognised in polynomial time. In 3.1 we
prove some properties of quasimonotone graphs, using their characterisation by
forbidden induced subgraphs. The anticipated recognition algorithm first looks
for flaws (defined in 3.1) and then branches into different procedures depending
on the length of a short hole (defined in 3.3) in the input graph. The remaining
forbidden subgraphs are preholes, also defined in 3.1.

Sections 4 and 5 deal with graphs containing a long hole. We start with
lemmas showing that the long hole enforces an annular structure in the absence
of flaws. The structure is determined by splitting, described in 5.1. Possible
preholes must wind round this annulus once or twice. We complete the process
by checking for preholes, using a procedure given in 5.2. The remaining cases
where no long hole exists are considered in 6. Finally 7 concludes the paper.

A more detailed version (also with more examples) is available, see [7].

2 Quasi-classes and pre-graphs

A hereditary class of graphs is closed under induced subgraphs. Let Bipartite

denote the class of bipartite graphs, and let C ⊆ Bipartite. Then we will say
that the graph G is quasi-C if G[L:R] ∈ C for all bipartitions L,R of V .



Lemma 1. If C ⊆ Bipartite is a hereditary class that is closed under disjoint
union then C = Bipartite ∩ quasi-C.

Proof. First let G = (L ∪ R,E) be any bipartite graph that does not belong
to C. Since G = G[L:R] the graph G does not belong to quasi-C. Hence C ⊇
Bipartite ∩ quasi-C.

Next we show C ⊆ Bipartite ∩ quasi-C. Let G = (X ∪ Y,E) be a graph in
C and let L:R be a bipartition of X ∪ Y . Now G[L:R] is the disjoint union of
G1 = G[(X ∩L)∪ (Y ∩R)] and G2 = G[(X ∩R)∪ (Y ∩L)]. The graphs G1 and
G2 belong to C since the class is hereditary, and hence G[L:R] is in C because C
is closed under disjoint union. Thus G ∈ quasi-C. ⊓⊔

A hereditary graph class can equally well be characterised by a set F of forbidden
subgraphs. The set F is minimal if no graph in F contains any other as an
induced subgraph. For a bipartite graph H, a graph G = (V,E) is a pre-H if
there is a bipartition L,R of V such that G[L:R] = H. In this case H is a
spanning subgraph of G. Clearly any bipartite graph H is itself a pre-H.

Lemma 2. If C ⊆ Bipartite is characterised by a set F of forbidden induced
subgraphs, let pre-F = {pre-H | H ∈ F}. Then quasi-C is characterised by the
set of forbidden induced subgraphs pre-F .

Proof. Suppose G = (V,E) contains H ′ = (V ′, E′), a pre-H for some H ∈ F .
Then V ′ has a bipartition L′, R′ such that H ′[L′:R′] = H. Extending L′, R′ to
a bipartition L,R of V , G[L:R] contains H. Then G[L:R] /∈ C, so G /∈ quasi-C.
Conversely, if G ∈ quasi-C, every G[L:R] ∈ C, so no G[L:R] contains H, for any
H ∈ F . Thus G contains no pre-H, for any H ∈ F , that is, no H ′ ∈ pre-F . ⊓⊔

2.1 Examples

The class quasi-Bipartite is clearly the set of all graphs.
If C is the class of complete bipartite graphs, it is easy to see that quasi-C is

the class of complete graphs. Note however, that this class is not closed under
disjoint union. Now, if C becomes the class of graphs for which every component
is complete bipartite, then quasi-C is the class of graphs without P4, paw or
diamond. These three graphs are the pre-P4’s, see Fig. 1.

Fig. 1: The pre-P4’s: the path P4, the paw and the diamond

If Cd is the class of bipartite graphs with degree at most d, for a fixed integer
d > 0, then quasi-Cd is the class of all graphs with degree at most d. The unique
forbidden subgraph for Cd is clearly the star K1,d+1. Therefore, the class quasi-Cd



is characterised by forbidding pre-K1,d+1’s, a set with size O(d2). Hence quasi-Cd
can be recognised in polynomial time, for fixed d.

A less obvious example is for the class C of linear forests, which are disjoint
unions of paths. Its quasi-class contains all graphs with connected components
that are either a path or an odd cycle.

ChordalBipartite is the class of hole-free bipartite graphs. OddChordal

is the class of graphs in which every even cycle of length at least six has an odd
chord. We show in [6] that quasi-ChordalBipartite = OddChordal. The
complexity of the recognition problem for the class OddChordal is open, even
though ChordalBipartite can be recognised in almost linear time [12].

3 The structure of quasimonotone graphs

3.1 Flaws and preholes

A bipartite graph is monotone if and only if the rows and columns of its biad-
jacency matrix can be permuted such that the ones appear consecutively and
the boundaries of these intervals are monotonic functions of the row or column
index. That is, all the ones are in a staircase-shaped region in the biadjacency
matrix. A bipartite graph is monotone if and only if it does not contain a hole,
tripod, stirrer or armchair as induced subgraph, see Fig. 2 and [11] Lemma 1.46
on page 52 or [2] Proposition 6.2.1 on page 93. Monotone graphs are also called
bipartite permutation graphs [14] and proper interval bigraphs [9].

Fig. 2: The tripod, the stirrer and the armchair.

Let Monotone denote the class of monotone graphs, then the Quasimono-

tone will denote the class quasi-Monotone. Two example graphs are shown
in Fig. 3. Let Flaw be the class containing all pre-tripods, pre-stirrers and
pre-armchairs. We will say that any graph in Flaw is a flaw. A flawless graph
G will be one which contains no flaw as an induced subgraph. Since all flaws
have seven vertices, we can test in O(n7) time whether an input graph G on n
vertices is flawless. Let Flawless denote the class of flawless graphs, and let
Quasimonotone be the class of quasimonotone graphs.

Let P = (p1, p2, . . . , pℓ) be a path or even cycle in G. The alternating bipar-
tition L,R of P assigns L = {p1, p3, . . .} and R = {p2, p4, . . .}. The path P is
prechordless if it is an induced path G[L:R]. Similarly, let C = (p1, p2, . . . , pℓ)
be an even cycle in G. Then C is a prehole if it is a hole in G[L:R]. Thus C must
be an even cycle, and all chords must run between L and L or R and R in an
alternating bipartition L,R of C. This is equivalent to requiring that C has no



Fig. 3: Two quasimonotone graphs

odd chord. The alternating partition is inconsistent for an odd cycle, so an odd
cycle C cannot be a prehole.

3.2 Properties of flawless graphs

Lemma 3. Let G ∈ Flawless. Let P = (p1, p2, p3, p4, p5, p6, p7) be a prechord-
less path in G, (p2, p3, p4, p5, p6) be a hole in G, or (p1, p2, p3, p4, p5, p6) be a
prehole in G. If v /∈ P is such that dist(v, P ) = dist(v, p4), then dist(v, p4) = 1.

Lemma 4. Every hole or prehole in a connected flawless graph is dominating.

Proof. Let C be an odd hole or prehole in the connected flawless graph G.
We show dist(v, C) ≤ 1 for every vertex v of G. If v ∈ C, this is obvious.
Otherwise, let w be a vertex such that dist(v, C) = dist(v, w). Consider the
subpath P = (p1, p2, . . . , p7) of C such that w = p4, where this path wraps
around C if |C| < 7. Since C is a hole or a prehole, P is prechordless. The result
then follows from Lemma 3. ⊓⊔

If C is an odd hole we will call n(C) = {v ∈ V : dist(v, C) ≤ 1}, the
neighbourhood of C. If G is connected then G = N(C) for any odd hole C ⊆ G.

Lemma 5. Suppose G ∈ Flawless ∩ EvenHoleFree, and that C is an odd
hole in G, of length at least seven. Then every vertex v ∈ V has at most three
neighbours in C. If there are two neighbours, w, x, then distC(w, x) = 2. If there
are three neighbours, w, x, y, then distC(w, x) = distC(x, y) = 2. If C is a short
odd hole (see 3.3) in G, then v has at most two neighbours on C.

Lemma 6. Let C be a prehole in G ∈ Flawless. Then every vertex v ∈ C has
at most five neighbours in C. Two of these are via edges of C, so v is incident
to at most three chords. If there are two chords, vw, vx, then distC(w, x) = 2. If
there are three chords, vw, vx, vy, then distC(w, x) = distC(x, y) = 2.

Proof. Otherwise, v must have at least four chords. These must be even chords to
c0, c2, c4, c6, where P = (c0, c1, . . . , c6, c7) is a subpath of C, since C is a prehole
and G has no even holes. We now move v from L to R. The only new edges
which appear in G[L:R] are those adjacent to v. But now c0, v, c3, c4, c5, c6, c7
induce an armchair in G[L:R], contradicting G ∈ Flawless, see Fig. 4. ⊓⊔



c0 c1 c2 c3 c4 c5 c6 c7

v

c0 c1 c2 c3 c4 c5 c6 c7

v

Fig. 4: An armchair

The degree bound of Lemma 6 is tight, see Fig. 5.

Fig. 5: A prehole with a vertex of degree 5

Lemma 7. Let C be an odd hole in G ∈ Flawless such that v /∈ C and x /∈ C
are adjacent. Then vertices w, y ∈ C exist such that (v, x, y, w) is a quadrangle.

3.3 Determining a short odd hole

We can test whether G contains a hole in time O(|E|2), using the algorithm
of [13]. Moreover, the algorithm returns a hole if one exists. If the hole is even,
we can conclude G /∈ Quasimonotone. If G ∈ Flawless, we will show that it
has a well-defined structure.

Lemma 8. If C is an odd cycle in a graph G, there is a triangle or an odd hole
C ′ in G.

Proof. The claim is clearly true if |C| ≤ 3. Otherwise, assume by induction that
it is true for all cycles shorter than C. If C is not already a hole, it has a chord
that divides it into a smaller odd cycle C1, and an even cycle C ′

1. The lemma
now follows by induction on C1. ⊓⊔

The proof of Lemma 8 can easily be turned into an efficient algorithm to find
C ′. An odd hole C is short if dist(v, w) = distC(v, w) for all pairs v, w ∈ C.

Lemma 9. If G is a triangle-free graph containing an odd hole C, then G con-
tains a short odd hole.

Note that the proof of Lemma 9 gives an efficient algorithm for finding a
short odd hole H, given any odd hole C. Clearly the shortest hole in G is a
short hole, but the converse need not be true in general, even for quasimonotone
graphs.



Fig. 6: Short odd holes of unequal size in a quasimonotone graph.

Corollary 1. If G has a short odd hole C, diam(G) ≥ diam(C) = (|C| − 1)/2.

If C is a prehole, G′ = G[C], and L:R is the alternating bipartition of C,
then G′[L:R] contains no edge other than those of C. A minimal prehole C is
such that G[C] contains no prehole with fewer than |C| vertices.

4 Flawless graphs containing a long hole

4.1 Triangles

Lemma 10. Let G be a quasimonotone graph containing an odd hole C of size
at least 7. Then G contains no triangle that has a vertex in C.

Fig. 7: In a quasimonotone graph a 5-hole and a triangle can share a vertex.

Lemma 11. Let G be a quasimonotone graph containing an odd hole C of size
at least 7. Then G contains no triangle which is vertex-disjoint from C.

4.2 Long odd holes

Lemma 12. Let C,C ′ be odd holes in a quasimonotone graph G such that C ′ ∩
C 6= ∅, and |C|, |C ′| ≥ 7. Let G′ = G[(C ′ ∪ C) \ (C ′ ∩ C)], Then G′ has no odd
hole or prehole.

Corollary 2. Let C,C ′ be odd holes in a quasimonotone graph G, such that
C ′ ∩ C 6= ∅. Let G′ = G[(C ′ ∪ C) \ (C ′ ∩ C)]. Then G′ is a monotone graph.

Note that the holes C,C ′ in Corollary 2 can have different size. See Fig. 6,
where G′ is a ladder (see [5]) with two pendant edges. However, if we have
vertex-disjoint odd holes they cannot have different lengths.

A prism is the graph given by joining corresponding vertices in two cycles of
the same length. It is an n-prism if the cycles have length n [10].



Lemma 13. Let G be a quasimonotone graph containing an odd hole C. Then
G contains no vertex-disjoint hole C ′ with |C ′| 6= |C|. Moreover, if |C| ≥ 7, any
two vertex-disjoint holes with |C ′| = |C| induce a prism in G.

5 Preholes in flawless graphs

Lemma 14. If G ∈ Flawless and has an odd hole of size ℓ ≥ 7, any minimal
prehole C in G is either an even hole or (a) two odd holes intersecting in an
edge or (b) two disjoint odd holes connected by a quadrangle. See Fig. 8.

C1 C2 C1 C2

Fig. 8: Preholes with odd holes C1, C2, cases (a) left and (b) right.

Thus, if G contains an odd hole of size at least 7, minimal preholes have only two
types, case (a) and case (b). From Lemma 13, case (b) are crossover preholes.

Fig. 9: Flawless crossover preholes.

So let us consider the case (a) preholes. We will call these Möbius preholes,
since we will show that such a prehole must be a Möbius ladder [8, 10].

Lemma 15. Every Möbius prehole in a flawless graph is a Möbius ladder.

Fig. 10: Two different drawings of a Möbius ladder.



5.1 Splitting

Let G be a flawless graph with a hole C of length |C| ≥ 6. If |C| is even, we
conclude G /∈ Quasimonotone, so |C| ≥ 7 is odd. Thus G does not contain a
triangle, from Lemmas 10 and 11. We will assume that this has been tested. We
will now show that G must have the annular structure referred to in section 1.2,
rather like a monotone graph with its ends identified.

Now suppose G has a short odd hole C with C ≥ 7, determined by the
procedure of Lemma 9. Thus, by Corollary 1, diam(G) ≥ 1

2 (|C|−1) ≥ 3. Choose
any v ∈ C, and consider the graph Gv = G[V \N [v]]. Then Gv contains no holes,
since any hole H in Gv must be a hole in G. But any hole H in G either contains
v, or has a vertex w adjacent to v, by Lemma 4. Since v, w /∈ Gv, H * Gv.
Neither can Gv contain a prehole, since any prehole must contain two holes.
Thus Gv is flawless and contains no holes or preholes, so is a monotone graph.
Now diam(G) is at least diam(C) = (|C| − 1)/2 ≥ 3. Thus there exists a w ∈ C
such that N(v) ∩N(w) = ∅.

A chain graph is a bipartite graph (L ∪ R,E) where L and R are linearly
ordered by inclusion of neighbourhoods. Its biadjacency matrix has the form
indicated in Fig. 11, see [5] for details. In the monotone representation, it is

C
L

R

Fig. 11: Chain graph structure

an easy observation that the graph has a decomposition into chain graphs, as
indicated in Fig. 12, where L is partitioned in D1, D3, . . . and R into D2, D4, . . ..
Brandstädt and Lozin showed in [3] that such a partition exists. For vertices v

C1
C2

C3

C4

C5

D2 | D4 | D6

D5

—

D3

—
D1 C′

w

Cw

| N(w) |
v

w

Fig. 12: Decomposition of a monotone graph / Neighbourhood of w in Gv

and w as above, N(w) and its neighbours induce a monotone subgraph Nw of
G, as indicated in Fig. 12. The vertex set of Nw is {x ∈ L ∪R : dist(w, x) ≤ 2}.
Clearly Nw is the union of two chain graphs Cw, C

′

w, with Cw lying in the rows



below and including w, and C ′

w in the rows above. Using the algorithm of [14],
the monotone representation of Gv determines this split. Then we can construct
a representation of the adjacency matrix A(G) of G as indicated in the first
diagram in Fig. 13, where D2 = N(w), C1 = Cw (transposed), and C7 = C′

w. The
chain graphs C2, . . . , C6 are a decomposition of the monotone graph Gw. Note
that the ordering of the chain graphs in the decomposition is circular, and the
second diagram in Fig. 13 gives an equivalent representation to the first, where
C1 (transposed) is moved from the first to the last position.

C1

C2
C3

C4

C5

C6
C7

D2 | D4 | D6 | D1

D7

—

D5

—
D3

—
D1

C1

C2 C3

C4

C5

C6 C7

D2 | D4 | D6 | D1

D2

—
D7

—

D5

—
D3

Fig. 13: Decomposition of A(G) for a quasimonotone graph G

Lemma 16. A flawless graph G which has an odd hole of size at least 7 is
quasimonotone if and only if it has such a decomposition and does not contain
a prehole. If there are k chain graphs in the decomposition, then k is odd, and
the shortest hole in G has k vertices.

5.2 Recognising preholes

Let G = (V,E) be a flawless graph with a hole of size ℓ ≥ 7. Lemma 16 can
determine whether or not G is quasimonotone provided it does not contain a
prehole. We now consider recognition of a prehole in such a graph.

We use the partition of V from 5.1 into independent sets D1, D2, . . . , Dℓ,
where Dℓ+1 ≡ D1. All edges in E run between Di and Di+1 (i ∈ [ℓ]). Let
Gi = G[Di ∪Di+1], with edge set Ei, and let Gi = (V,E \Ei). Note that Gi is a
chain graph and Gi is a monotone graph. Thus Gi is bipartition, with bipartition
L:R, say, with Di, Di+1 ∈ L.

We search for possible crossovers in Gi. These are pairs a, b ∈ Di+1, c, d ∈ Di,
such that ac, ad, bc, bd ∈ E. We list all such quadruples a, b, c, d, O(n4) in total,
see Fig. 14. Given any quadruple, we attempt to determine vertex disjoint paths
Pac, Pbd in Gi between a, c and b, d or between a, d and b, c. See Fig. 15, cases
(a) and (b). We can do this in O(n|E|) = O(n3) time by network flow. Both
paths are even length, since Gi is bipartite and a, b, c, d ∈ L.

If these paths do not exist, we discard this quadruple and consider the next
in the list. If these paths do exist, in case (a) we have found a crossover prehole



b d

a

c

GiDi Di+1

Fig. 14: Possible crossover

bd

a

c

DiDi+1 Gi

Pac

Pbd
bc

a
d

DiDi+1 Gi

Pad

Pbc

Fig. 15: Vertex-disjoint paths, case (a) left, (b) right

Pac, ad, Pbd, bc, in case (b) we have found a Möbius prehole Pad, bd, Pbc, ac. This
is clearly a cycle with even length. That it is a prehole is certified by reversing
the bipartition on Pac in case(a), Pad in case (b), as shown in Fig. 16. Thus we
can detect a prehole, or show that none exists, in O(n7) time. If a prehole exists
the input graph is not quasimonotone.

bd

a

c

Pac

Pbd

bc

a

d
Pad

Pbc

Fig. 16: Preholes, left with crossover (a), right of Möbius type (b).

6 Flawless graphs without long holes

6.1 Minimal preholes in hole-free graphs

Let C be any minimal prehole in a flawless hole-free graph G. A triangle in G[C]
will be called an interior triangle of C if it has no edge in common with C, a
crossing triangle if it has one edge in common with C, and a cap of C if it has
two edges in common with C.

Lemma 17. If C is a minimal prehole in a flawless graph with |C| > 12, then
G[C] has no interior or crossing triangles, and C is determined by two edge-
disjoint caps.



Let T1, T2 be caps of C, such that vi ∈ Ti is adjacent to two edges of C
(i = 1, 2). Then there are two edge-disjoint (v1, . . . , v2) paths P1, P2 in C.

v1 v2T1 T2

P1

P2

v1 v2

P1

P2

Fig. 17: A prehole and its Hamilton subgraph

Lemma 18. Let C, with |C| > 12, be a minimal prehole in a flawless hole-free
graph determined by v1, v2, and let C ′ = C \ {v1, v2}. Then G[C ′] is a Hamilton
monotone graph, and all chords of C ′ connect P1 to P2.

Proof. Clearly G[C ′] is Hamilton, since G[C] is Hamilton. Now C ′ cannot be a
prehole, since it is strictly smaller than C. So G[C ′] cannot contain a triangle,
by Lemma 17. It cannot contain a larger odd cycle, since then it would contain a
triangle, by the argument of Lemma 17. Therefore, G[C ′] is bipartite and, since
G ∈ HoleFree, contains no hole. So, since G ∈ Flawless, G[C ′] is a monotone
graph. Suppose uv is an edge of G[C ′] with u, v ∈ P1. Then, since G[C] has only
even chords, the even chord uv and the segment of P1 between u and v forms
an odd cycle, giving a contradiction. ⊓⊔

Thus any minimal prehole C comprises a Hamilton monotone graph G[C ′],
to which we add two caps T1, T2. We may also add edges from v1 and v2 to C ′,
as long as they are even chords in C.

Lemma 19. Let C be a minimal prehole with a cap at v ∈ {v1, v2}. Then there
are at most two chords from v, and both must be connected to either P1 or P2.

Let T1 = {v1, u1, w1}, T2 = {v2, u2, w2} be any two edge-disjoint triangles in
a flawless graph G. Let M be the component of G \ {v1, v2} containing u1w1,
u2w2, if such a component exists. If M does not exist then v1, v2 clearly do not
determine a prehole.

Lemma 20. C = (v1, u1, . . . , u2, v2, w2, . . . , w1, v1) determines a minimal pre-
hole if and only if M is a monotone graph containing two vertex-disjoint paths
betweens u1, u2 and v1, v2.

6.2 Preholes containing 5-holes and triangles

It remains to consider preholes in graphs which contain 5-holes. Preholes deter-
mined by two triangles will be dealt with as in section 6.1.

Lemma 21. Let C be a minimal prehole in a flawless graph G which contains
no odd hole of size greater than five. If C connects a 5-hole and a triangle, or if
C connects two 5-holes, then |C| ≤ 12.



7 Conclusion and discussion

In [6] we considered the problem of ergodicity and rapid mixing of the switch
chain in hereditary graph classes. We gave a complete answer to the ergodicity
question, and showed rapid mixing for the new class of quasimonotone graphs.
This led us to introduce a new “quasi-” operator on bipartite graph classes,
which is of independent interest. Quasimonotone graphs are a particular case of
this construction. Another interesting class is the class of odd-chordal graphs,
which are the quasi-chordal bipartite graphs. This is close to the largest class
for which the switch chain is ergodic.

A more straightforward approach to recognising quasimonotone graphs would
be provided by a polynomial time recognition algorithm for odd-chordal graphs.
This is equivalent to the detection of preholes in a graph. We have considered
this question, but we leave it as an open problem. The only evidence we can
provide is that it is NP-complete to determine if a graph is a prehole, which may
be a harder question. Nonetheless, the NP-completeness proof suggests that an
efficient algorithm for recognising odd-chordal graphs may be elusive.
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