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Abstract 8 

The effect of heating rates ranging from 5 ࣙC min-1 to 350 ࣙC min-1 on the yields of pyrolysis 9 

products of wood and its main pseudo-components (cellulose, hemicellulose and lignin) have 10 

been investigated at a temperature of 800 ࣙC in a horizontal fixed bed reactor. Results showed 11 

a successive dramatic increase and decrease in gas and liquid yields, respectively, while the 12 

yields of solid products showed a gradual decrease as heating rates increased. Increased gas 13 

formation and an increasingly aromatic oil/tar support the theory of rapid devolatilization of 14 

degradation products with increasing heating rate, leading to extensive cracking of primary 15 

pyrolysis vapours. Solid products with coal-like calorific value and large surface areas were 16 

obtained. CO became the dominant gas both on a mass and volume basis, at the heating rate of 17 

350 ࣙC min-1 for all samples except xylan, which also produced a significant yield of CO2 (20.3 18 

wt% and 25.4 vol%) compared to the other samples. Cellulose produced a gas product with 19 

highest calorific value of 35 MJ kg-1 at the highest heating rate. Results also indicate that the 20 

three main pseudo-components of biomass each exert a different influence on the products of 21 

high temperature wood pyrolysis.  22 
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1.0 Introduction 28 

Biomass pyrolysis is one of the most advanced thermochemical technologies for biomass 29 

conversion into renewable fuels and chemicals. Pyrolysis of biomass is generally characterized 30 

by both primary and secondary reactions (Mayes & Broadbelt, 2012; Mettler et al., 2012; 31 

Patwardhan et al., 2011b; Zhang et al., 2014).  Primary reactions include mainly solid-phase 32 

processes such as drying, dehydration, thermal degradation, crosslinking and devolatilization, 33 

(Patwardhan et al., 2011b; Zhang et al., 2014). Secondary reactions involve mainly gas-phase 34 

as well as gas-solid reactions such as steam reforming, dry reforming, methanation and 35 

hydrogenation, water-gas shift/reverse water-gas shift, polymerization and condensation  36 

(Patwardhan et al., 2011a; Patwardhan et al., 2011b). Some named secondary reactions include 37 

Boudouard reaction, Diels-Alder reaction, Sabatier reaction, etc. A complex combination of 38 

these reactions results in the formation of liquid/tar, gaseous and solid products during biomass 39 

pyrolysis. 40 

 41 

The predominant reactions and eventual products’ distribution during the pyrolysis process are 42 

determined by nature of biomass feedstock and process conditions including the type of reactor. 43 

The nature of biomass refers to its type, the thermal and physical properties as well as chemical 44 

compositions.  In terms of pyrolysis process conditions, important parameters such as reaction 45 

temperature, heating rate, reaction pressure, residence times and presence of catalysts (Sun et 46 

al., 2010; Wang et al., 2008; Wei et al., 2006; Zanzi et al., 2002) play vital roles in influencing 47 

the relative yields and compositions of the pyrolysis products. Heating rate, final temperature 48 

and presence of a catalyst may be used to tune the distribution and composition of products. 49 

Depending on the reactor configuration, temperature, heating rate and vapour residence times 50 
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have the greatest influence on the prevailing pyrolysis regime ranging from slow to ultra-fast 51 

pyrolysis  (Wang et al., 2008). The distribution of pyrolysis products therefore depends on how 52 

these three parameters, in addition to feedstock type, are managed. In general for a given 53 

feedstock, heating rate and temperature influence the rate of biomass degradation and 54 

devolatilization, which influence the chemical properties of the initial pyrolysis intermediate 55 

species, from which eventual molecular pyrolysis products are formed. In a fluidised bed 56 

reactor, small particle sizes, fast heating rates and short residence times ensure that fast 57 

pyrolysis is achieved at different temperatures above 400 ºC, leading to a majority liquid 58 

product via mainly primary reactions.  In a fixed bed reactor, high temperatures and high 59 

heating rates can lead to high degradation and devolatilization rates, which may lead to the 60 

formation of highly reactive intermediate species (e.g. radicals). Even under short residence 61 

times, these devolatilized reactive species could react with each other to give different final 62 

pyrolysis products.   63 

 64 

In the literature particular attention is paid to the study of pyrolysis for liquid fuel production 65 

leading to a wealth of data on studies of so-called fast and flash pyrolysis processes, where the 66 

aim is rapid heating rates and rapid volatile quenching ; and slow pyrolysis (Duman et al., 67 

2011; Elliott, 2013; Lam et al., 2017; Li et al., 2004; Luo et al., 2004; Onay & Kockar, 2003; 68 

Patwardhan et al., 2011a; Patwardhan et al., 2011b; Sun et al., 2010). However, pyrolysis is 69 

involved in any heat treatment of biomass particles, whether considered as the main step or 70 

part of a succession of steps in the process (Blondeau & Jeanmart, 2012), hence studies on high 71 

temperature pyrolysis which are also relevant to processes such as gasification and combustion, 72 

contribute to the understanding of thermochemical biomass conversion. 73 

 74 
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High temperature pyrolysis of biomass, when combined with appropriate heating rates can be 75 

used to obtain high yields of high calorific value gas products and tars with consistent chemical 76 

compositions (Blondeau & Jeanmart, 2012; Zanzi et al., 1996). In this case, high temperatures 77 

would provide the activation energies required to break most covalent bonds in biomass, 78 

leading to formation of light molecular weight species. Researchers have reported that higher 79 

temperatures promote the production of gaseous process products comprising of hydrogen, 80 

methane, CO and CO2; evidenced by increased gas volumes due to enhanced cracking and 81 

devolatilization reactions (Çaglar & Demirbas, 2002; Demirbas, 2002; Dufour et al., 2009; 82 

Williams, 2005; Zanzi et al., 2002). High temperature pyrolysis of biomass to obtain increased 83 

yields of H2, CO and CH4 and reduced CO2 have been reported (Wei et al., 2006; Zanzi et al., 84 

2002). Hydrogen, CO and CH4 can be used directly as fuels or for making synthetic 85 

hydrocarbon fuels and chemicals. Gas heating values of above 18 MJ Nm-3 have been reported  86 

for pyrolysis temperatures above 750 °C up to 900 °C (Fagbemi et al., 2001).  Biomass 87 

conversions to gas of up to 87 wt% for temperatures above 800 °C to 1000 °C have been 88 

reported (Dupont et al., 2008). Concentrations of H2 of above 28 mol% and combined H2 and 89 

CO of above 65 mol% (Li et al., 2004) and 70 - 80 vol% (Sun et al., 2010) have been reported 90 

for the pyrolysis of biomass at high temperatures (800 °C) without catalysts  resulting in an 91 

increased H2/CO ratio. However, high temperature also favours the cracking of tar (Zanzi et 92 

al., 2002) to  hydrocarbon gases like CH4 and C2H4, which tend to decompose into carbon 93 

(char) and H2 when the temperature is high enough (Dufour et al., 2009; Guoxin et al., 2009; 94 

Kantarelis et al., 2009; Sun et al., 2010). In addition, the same factors that favour increased 95 

pyrolysis gas formation may inadvertently lead to simplification of components of oil/tar 96 

products into organic compounds with simple structures, which are often useful. Therefore, 97 

further cracking and condensation of hydrocarbon gases can lead to the production of simple 98 

but highly stable aromatic hydrocarbons (Kantarelis et al., 2009). Furthermore, increased 99 
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volatile yields have been reported (Beis et al., 2002; Meesri & Moghtaderi, 2002; Seebauer et 100 

al., 1997) at high heating rates compared to lower heating rate pyrolysis at the same 101 

temperature.  This resulted from enhanced process severity impacted by rapid formation and 102 

evolution of small volatile molecules during pyrolysis. Such rapid volatile mass losses due to 103 

high heating rates could leave behind a solid residue with tuneable pore structure (Cetin et al., 104 

2005; Zanzi et al., 1996), which may be advantageous for further applications e.g. as catalyst 105 

supports, water treatment or tar cracking. 106 

 107 

In this present study, a lignocellulosic biomass sample in the form of waste wood pellets and 108 

the three main biochemical components of biomass (lignin, cellulose and hemicellulose) have 109 

been separately subjected to high temperature pyrolysis under different heating rates. A 110 

detailed analysis of the reaction products may shed some light on whether the three components 111 

interact during biomass pyrolysis. This will contribute to the understanding of the effects of 112 

temperature and heating rates on yields and composition of products from biomass and its 113 

components under the pyrolysis conditions used in this work. The novelty of this study is to 114 

provide experimental data as a basis for evaluating and applying this type of pyrolysis process 115 

as a biomass pre-processing technology for subsequent biomass valorisation into liquid fuels 116 

and chemicals. The main focus of this work will be on the gaseous and liquid products, which 117 

are useful for liquid fuels and chemicals production.  118 

 119 

2.0  Materials and Methods 120 

 121 

2.1  Materials                                                                                                                                                                                                                                                          122 

Waste wood pellets with dimensions of 6 mm diameter and 14 mm length, were originally 123 

made from pinewood sawdust. For this study, the wood pellets were ground and sieved to ≈ 1 124 
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mm particle size. The biomass components in the form of cellulose (microcrystalline), lignin 125 

(Kraft alkali) and hemicellulose (xylan) samples used were each of particle size < 180 µm. The 126 

cellulose was supplied by Avocado Research Chemicals, UK, while lignin and hemicellulose 127 

samples were obtained from Sigma-Aldrich, UK. These were used as is without further 128 

treatment. The proximate and ultimate compositions of the samples were determined using a 129 

Stanton-Redcroft Thermogravimetric analyser (TGA) and a Carlo Erba Flash EA 112 130 

elemental analyser, respectively. The results of these analyses are presented in Table 1. The 131 

moisture contents of the samples determined by TGA analysis were 6.4, 4.7, 4.1 and 6.7 wt% 132 

for wood, cellulose, lignin and xylan respectively.  133 

 134 

Pyrolysis experiments were carried out in a purpose-built horizontal fixed bed reactor, shown 135 

in Figure 1.  The reactor was made up of a horizontal stainless steel cylindrical tube of length 136 

650 mm and internal diameter of 11 mm. The reactor was heated externally by a Carbolite 137 

electrical tube furnace which provides a heated zone of length 450 mm and can be easily 138 

controlled to provide the desired final temperature and heating rate. The sample was introduced 139 

to the reactor via a sample boat, which was a stainless steel cylindrical tube with a cup at its 140 

end for holding the sample. The sample boat was designed to be easily, horizontally inserted 141 

into and withdrawn from one end of the reactor. During experiments, the sample boat was 142 

placed at the centre of the reactor’s heated zone for effective heating. A thermocouple was also 143 

integrated into the sample boat, designed to be placed concentric to the walls of the sample 144 

boat, thereby providing the temperature at the centre of the sample. 145 

 146 

2.2  Procedure for pyrolysis  147 

Experiments involving the effect of heating rates (5, 90 and 350 °C min-1) were performed to 148 

a final temperature of 800 °C. All experiments were performed with 1.0 g of the each sample 149 



6 
 

loaded unto the sample boat and inserted into the reactor which was continually swept with 150 

inert nitrogen gas at a flow rate of 100 mL min-1. The pyrolysis vapour residence time within 151 

the reactor was estimated as 9 seconds based on the reactor volume and nitrogen flow rate. The 152 

actual sample heating rates were monitored with the thermocouple inserted at the centre of the 153 

sample boat and these were found to be very close to the reactor heating rate. Pyrolysis vapours 154 

were purged from the reactor by the nitrogen flow into two sets of glass condensers; the first 155 

was water-cooled and the second with a glass wool trap was immersed in dry ice. The non-156 

condensable gases were collected in a sampling bag for off-line analysis by gas 157 

chromatography (GC). Solid products remained in the sample boat and were weighed and 158 

collected for analysis after the reactor cooled. Each experiment was carried out twice in order 159 

to determine repeatability and the reliability of the pyrolysis reactor, under identical conditions. 160 

Experimental results were reproducible within 3.5%, indicating that the reactor used in this 161 

work was reliable for pyrolysis investigations. 162 

 163 

2.3 Analysis of pyrolysis products 164 

2.3.1. Gas Analysis 165 

Non-condensable gases which were collected in the sample gas bag were analysed by GC. A 166 

Varian 3380GC with dual packed columns and dual thermal conductivity detectors (GC/TCD) 167 

was used to analyse and determine the yields of permanent gases (H2, CO, O2, N2 and CO2). 168 

The column for CO2 analysis was of 2 m length by 2 mm diameter with Haysep 80 – 100 mesh 169 

packing material. Analysis for H2, CO, O2 and N2 was carried out in a second column of 2 m 170 

length by 2 mm diameter packed with 60 – 80 mesh molecular sieve. A second Varian 3380 171 

GC with a flame ionization detector (GC/FID) was used to analyse and determine the yields of 172 

hydrocarbons gases (CH4, C2H4, C2H6, C3H6, C3H8, C4H8 and C4H10) with nitrogen carrier gas. 173 

The column was 2 m length by 2mm diameter, packed with Haysep 80 – 100 mesh. The 174 
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conditions used for the analysis have been detailed elsewhere (Efika et al., 2015). The higher 175 

heating value (HHV) of the gas products where calculated from the Equation 1 below; 176 

 177 

HHV = CVm / Zm ……………………………………………… (1) 178 

 179 

Where CVm is the sum of the products of the weight percent and the calorific values of the 180 

individual gases  and Zm is the compressibility factor of the gases. 181 

2.3.2  Oil /Tar Analysis 182 

Due to the high temperatures > 700 °C used in this work, the condensable volatiles would be 183 

referred to as a mixture of oil and tar. The condensed products collected in the condensers for 184 

each experiment were weighed and then sampled for qualitative analysis by gas 185 

chromatography/mass spectrometry (GC/MS) and Fourier transforms infra-red (FTIR). The 186 

product collected in the first condenser was brownish in colour and sticky while that collected 187 

in the second condenser was a mixture of water and a pale yellow liquid. The products from 188 

the two condensers were sampled with dichloromethane (DCM) and mixed together. Before 189 

analysis in the GC/MS/MS, the tar/oil product was passed through a packed column of 190 

anhydrous sodium sulphate to remove water. Appropriate dilutions of the prepared oil samples 191 

were made prior to GC/MS analysis. The DCM extract were then analysed semi-quantitatively 192 

on a GC/MS/MS instrument using external standard method. The GC/MS/MS system consisted 193 

of a Varian 3800-GC coupled to a Varian Saturn 2200 ion trap MS/MS equipment. The column 194 

used was a 30m x 0.25mm inner diameter Varian VF-5ms (DB-5 equivalent), while the carrier 195 

gas was helium, at a constant flow rate of 1 ml min-1. The analytical conditions and detection 196 

have been detailed elsewhere (Efika et al., 2015). Spectral searches on the installed NIST2008 197 

library were used to qualitatively identify the major ‘unknown’ compounds in the oil products. 198 

In addition, FTIR analysis of the raw liquid samples was carried out using a Thermoscientific, 199 
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Nicolet iS10 spectrometer and the infrared bands recorded was compared with characteristic 200 

infrared bands of known organic functional groups in the database. Background correction for 201 

the DCM solvent was implemented during FTIR analysis. 202 

 203 

2.3.3. Analysis of solid residues 204 

After each test, the weight of the solid residue remaining in the sample boat after pyrolysis was 205 

determined by subtracting the weight of the sample boat. The surface area of a selection of the 206 

recovered solid residues was measured to determine its suitability for further applications e.g. 207 

as catalyst supports. The surface area measurement was carried out with the Brunauer, Emmett 208 

and Teller (BET) method via nitrogen adsorption in a Quantachrome Corporation (FL, US) 209 

Autosorb 1-C instrument. In addition, the HHV of the recovered solid residue was determined 210 

using a bomb calorimeter (ASTM, 2000; ASTM D2015).  211 

 212 

3.0. Results and Discussion 213 

3.1  Effects of heating rate on Gas, Oil and Solid distribution 214 

Table 2 shows the result of the effect of heating rate on the pyrolysis of waste wood, lignin, 215 

cellulose and hemicellulose at a final high temperature of 800 °C.  Table 2 shows that three 216 

different major product fractions – solid residue, oil/tar and gas - were produced from the tests 217 

as expected (Balat, 2008; Bridgwater, 2003; Demirbas, 2001), at a final temperature of 800 °C, 218 

and at the chosen average heating rates of 5,  90 and 350 °C min-1. It is clear from Table 2 that 219 

varying the heating rate of pyrolysis influenced the yields of the three major products from the 220 

four samples. For the wood pellets, gas yields increased from 14.5 wt% at a heating rate of 5 221 

°C min-1 to 54.1 wt% at 350 °C min-1, while solid residue yields decreased from 26.7 to 14.2 222 

wt%, respectively.  The oil/tar yields initially showed an increasing trend from 49.5 to 57.4 223 

wt%, with the heating rate, from 5 °C min-1 through to 90 °C min-1. However, when the heating 224 
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rate was ramped up to 350 °C min-1, a sharp reduction in the liquid yield to 27.4 wt% occurred, 225 

which corresponded to a sharp increase in the gas yield mentioned earlier (54.1 wt%). Similar 226 

results have been obtained from other researchers for the pyrolysis of different biomass 227 

feedstocks at high final temperatures of up to 900 °C. Williams et al. (Williams & Besler, 1996) 228 

reported that increasing the heating rate for pine wood pyrolysis from 5 to 80 °C min-1 resulted 229 

in increased production of oil and gas while reducing the yield of char. Becidan et al. (Becidan 230 

et al., 2007) showed that, compared to the low heating rate, a higher heating rate of 115 °C 231 

min-1 resulted in increased gas yield and reduced liquid and char yield during pyrolysis of waste 232 

biomass.  233 

 234 

These results demonstrate how the combination of heating rate and temperature can be very 235 

influential for controlling the product yields from pyrolysis. The heating rate in combination 236 

with the particle size impacts pyrolysis by affecting how long it takes for the sample to get to 237 

the final pyrolysis temperature. More importantly, high heating rates should result in a more 238 

even and rapid heat transfer to the loaded sample in the fixed bed reactor, as a result of the 239 

relatively small particle size. Therefore, the increased gas yield during investigations at the 240 

heating rate of ≈ 350 °C min-1, would have resulted from the relatively more uniform 241 

degradation of the covalent bonds in the biomass with the activation energy provided by the 242 

rapidly increasing temperature. Moreover, the high temperature environment within the reactor 243 

heated zone also meant the primary pyrolysis vapours were equally subjected to rapid 244 

secondary heating, which led to extensive so called secondary homogenous cracking reactions 245 

of the liberated primary pyrolysis products (Blondeau & Jeanmart, 2012), thus converting the 246 

biomass derived primary products to the simplest gas molecules. Furthermore, it is expected 247 

that although the average heating rate of the bulk sample as measured by the temperature sensor 248 

is relatively rapid (6 K s-1), the condition in the reactor was  non-isothermal as a result of the 249 
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particle sizes being > 300µm (Blondeau & Jeanmart, 2011), as well as because of particle being 250 

packed into the cylindrical sample holder. This would have created both a temperature and 251 

heating rate gradient in the sample, with the particles at the outer layer initially experiencing 252 

both much higher heating rate than the bulk average as well as higher temperature than the 253 

particles at the centre. These sort of conditions, in addition to encouraging secondary 254 

homogenous cracking reactions for primary pyrolysis products, especially from the outer 255 

located particles, would have also promoted secondary intra-particle (heterogeneous) cracking 256 

reactions of the primary pyrolysis products of the particles located especially in the centre of 257 

the cylindrical arrangement (Di Blasi, 2008). This is more so for the most centrally located 258 

particles because it is argued that primary pyrolysis products from singular biomass particles 259 

would have been released into a somewhat porous wall of other biomass particles hence 260 

extending the volatiles-solid contact time as well as cracking effects. 261 

 262 

The quantity of solid residues produced from waste wood pyrolysis declined with the 263 

increasing heating rate as shown in Table 2. This is in-line with previous literatures (Ayllón et 264 

al., 2006; Williams & Besler, 1996) which reported that low heating rates resulted in more char 265 

yield from the pyrolysis of biomass, and vice-versa. The increased char yield impacted by the 266 

low heating rate pyrolysis may be explained by the promotion of the cross-linking mechanisms  267 

for  char formation by extending the time the sample spends at the “optimum char formation 268 

temperature region”,  (Hoekstra et al., 2012; Weinstetn & Broido, 1970), compared to pyrolysis 269 

at higher heating rate. 270 

Figure 2 (a to c) shows plots with 2nd order polynomial trendlines, of product yields against 271 

heating rate for the different pyrolysed samples and their product fractions (gas, oil and solids) 272 

at a fixed final temperature of 800 °C, which shows a similar trends to the work of Di Blasi and 273 

co-workers (Di Blasi et al., 1999). This indicated that at the experimental conditions, increasing 274 
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the heating rate resulted in an intensification of the high temperature effects. The plots also 275 

indicated that it was possible to estimate the product yields for pyrolysis at our experimental 276 

conditions for our samples using simple 2nd order polynomial equations. 277 

 278 

The products of the separate pyrolysis of lignin, cellulose and hemicellulose exhibited a similar 279 

trend to the waste wood sample with increasing heating rate as shown in Table 2. As the heating 280 

rate was increased from 5 to 90 °C min-1, the oil and gaseous products increased as a result of 281 

the release of volatiles from the solid structure of the samples, while the solid product yield 282 

decreased.  Cellulose and xylan, behave essentially like the waste wood; at the heating rate of 283 

5 °C min-1 oil was the product fraction of the highest yield for the cellulose and xylan while at 284 

350 °C, gas production became dominant. On the other hand, lignin produced char as the main 285 

product at all heating rates. Pyrolysis of lignin has been reported to produce extensive char due 286 

to cross linking reactions from the phenolic fractions (Custodis et al., 2014; Kawamoto, 2017; 287 

Patwardhan et al., 2011a). 288 

Further examination shows that cellulose yielded the highest oil product (54 wt%) at heating 289 

rate of 5 °C min-1, and the highest gaseous product (73.1 wt%) at the heating rate of ≈ 350 °C 290 

min-1. This is in agreement with the proximate analyses results in Table 1, which shows that 291 

cellulose has the highest volatile matter contents of all the three biomass components. Hence, 292 

the volatile content was converted mostly into condensable oil/tar during pyrolysis at 5 °C min-293 

1, and mostly into gases during pyrolysis at ≈ 350 °C min-1. Compared to the cellulose, the 294 

xylan sample produced the higher gas and solids yields at the lower heating rates (5 and 90 °C 295 

min-1), while it produced higher solid but lower gas yield at the heating rate of ≈ 350 °C min-1. 296 

Shen et al. (Shen et al., 2010b) reported more char formation from xylan than cellulose during 297 

pyrolysis up to 750 °C, at fast heating rates.  298 

 299 
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Table 2 indicates that the increased gas yield noted for the cellulose and xylan samples at the 300 

heating rate of ≈ 350 °C min-1, were as a result of the conversion of the oil products as well as 301 

the solid products, especially for cellulose. However, for the lignin sample the increased gas 302 

yield was mostly as a result of the cracking of oil products, as the solid residue remained mostly 303 

unchanged when the results of lignin pyrolysis at heating rates of 90 °C min-1 and at ≈ 350 °C 304 

min-1 are compared. Caballero et al. (Caballero et al., 1996) pyrolyzed lignin at high heating 305 

rate and temperatures up to 900 °C and found that the predominant product was char up to 800 306 

°C and then gas followed by char above 800 °C. Again, considering the low volatile matter 307 

content of lignin, the low gas and oil yields was not a surprising result under the investigated 308 

conditions in this present study. 309 

 310 

Considering the individual pyrolysis products from the wood, cellulose, xylan and lignin 311 

samples, the production of char noted for the wood sample can therefore be linked mostly to 312 

its content of lignin and partly from hemicellulose (Burhenne et al., 2013; Shen et al., 2010b). 313 

At the same time, the gaseous and oil/tar products from the wood pellet can be linked to the 314 

easily degradable volatile contents of mostly its cellulose fraction, with some contributions 315 

from the hemicellulose fraction (Burhenne et al., 2013). 316 

 317 

3.2 Gas composition 318 

Table 3 shows the detailed compositions and mass yields of components in the gas products 319 

from the four samples in relation to heating rate at 800 ºC. Clearly, the yields of the gas 320 

components increased with increasing heating rates. The highest gas mass yields were 321 

produced at the heating rate of ≈ 350 °C min-1 due to the promotion of enhanced cracking of 322 

the pyrolysis vapours. This is supported by the noted reduction in the quantity of oil/tar 323 

obtained from all the samples compared to the lower heating rate experiments. For all four 324 
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samples , CO was the dominant gas component at the heating rate of 350 °C min-1, and its 325 

formation could have resulted from rapid cracking of oxygenated primary volatiles (Duman et 326 

al., 2011) and possibly the Boudouard reaction (Radlein, 2002), equation 2. Possible reduced 327 

in-situ steam reforming reactions due to the low moisture content of the sample, as well as the 328 

presence of hydrogen containing species in the condensed liquid such as aromatics and alkenes, 329 

as shown in Table 4 may have contributed to the prevalence of CO in the gaseous product. 330 

 331 

C + CO2  2CO ……………………………………………… (2) 332 

 333 

For cellulose and xylan, CO formation has been attributed to decarbonylation of carbonyl 334 

functional groups in the biomass or the primary degradation products (Li et al., 2001; Shen et 335 

al., 2010a; Shen et al., 2010b). The CO2 and CO products of lignin pyrolysis have been reported 336 

to be as a result of the degradation of carbonyl, carboxyl and ether groups while at high 337 

temperature CO production is mostly as a result of the cracking of diaryl ether groups (Wang 338 

et al., 2009). The high yields of CO from the samples at 350 °C min-1  suggests that the gas 339 

products have potential to be further reformed into hydrogen or used for the synthesis of 340 

hydrocarbon fuels.   341 

 342 

However, CO2 was a major gas component in the gas product from all samples at the lower 343 

heating rates of 5, 20 and 90 °C min-1.  Similar results have been achieved by other researchers 344 

(Beaumont & Schwob, 1984; Meesri & Moghtaderi, 2002) for the pyrolysis of wood. The 345 

higher yield of CO2 at these conditions has been explained to be as a result of the primary 346 

decomposition of oxygen-containing functional groups, especially the decomposition of 347 

carboxylic compounds (Li et al., 2001; Meesri & Moghtaderi, 2002; Shen et al., 2010a; Shen 348 

et al., 2010b)  due to their highly thermal unstable nature. Some researchers (Yang et al., 2007) 349 
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compared the pyrolysis of cellulose, xylan and lignin and reported that xylan produced the 350 

highest CO2 content as a result of higher carboxylic content. A comparison of the CO 351 

composition for the wood components at ≈ 350 °C min-1 heating rate indicates that most of the 352 

CO content of wood is likely contributed by cellulosic materials.  353 

 354 

The HHV of the gas produced from the test at this heating rate of 350 °C min-1 was also noted 355 

to be the highest (18.8 MJ m-3) as shown in Figure 3, compared to the other heating rates. This 356 

was as a result of the increased yield of CH4 and the other hydrocarbon gases C2 – C4 in the 357 

product gas. For each of the samples, the HHV of the gases from the pyrolysis at ≈ 350 °C min-358 

1were the highest due to increased volume of gas produced and higher contents of hydrocarbon 359 

gases. Compared to the other wood components, lignin pyrolysis at ≈ 350 °C min-1 produced 360 

the lowest yield of gases, however the CV of its product gas was the highest among the wood 361 

components, due to its high content of hydrocarbons especially methane  (Wang et al., 2009; 362 

Yang et al., 2007). 363 

 364 

Table 3 shows that during pyrolysis at ≈ 350 °C min-1, the cellulose gave the highest wt% of 365 

hydrogen but at low heating, lignin produced the highest wt% of hydrogen, which agrees with 366 

the work of others (Yang et al., 2007) during  the slow pyrolysis of lignin, cellulose and 367 

hemicellulose at 900 °C. The authors attributed the yield of H2 to the cracking of C-H aromatic 368 

bonds in the lignin and carbonized residues from the other three samples. This resulted from 369 

the release of molecular hydrogen during cross-liking polymerization of carbon atoms, which 370 

condense into polycyclic aromatic hydrocarbons and then to char.  371 

 372 

3.3 Semi-quantitative composition of the oil/tar products 373 
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Figure 4 shows the spectra from the FTIR analysis of waste wood pyrolysis oil, which indicates 374 

the functional group characteristics of the pyrolysis oil from wood slow heating (5 °C min-1) 375 

and from fast heating (≈ 350 °C min-1) to 800 °C. A comparison of both spectra clearly shows 376 

differences in the peak intensities which are representative of the different functional groups 377 

present in the liquid products. The spectra demonstrate the differences in the composition of 378 

the pyrolysis oils as a result of the different heating rates. The presence of polycyclic, 379 

monocyclic and substituted aromatic groups is indicated in the absorption peaks between 675 380 

to 900 cm-1 and 1572 to 1625 cm-1. The peaks from 950 to 1325 cm-1 represent C-O stretching 381 

and O-H deformation, indicating the presence of alcohols and phenols (Efika et al., 2015). 382 

Peaks between 1350 to 1475 cm-1 and 2800 to 3000 cm-1 represent C-H deformation and 383 

indicates the presence of alkanes or alkyl groups. The presence of alkenes is indicated by the 384 

C=C stretching vibrations between peaks 1625 and 1675 cm-1. C=O stretching vibrations are 385 

indicated by the peaks between 1650 and 1850 cm-1, while O-H vibrations are indicated by the 386 

broad peaks between 3050 and 3600 cm-1, and a combination of these peaks suggests the 387 

presence of carboxylic acids and their derivatives.  388 

 389 

Table 4 shows the detected compounds from the GC/MS analysis of the oil products from 390 

wood, cellulose, xylan and lignin, and with reference to pyrolysis at the different heating rates 391 

investigated. The relative abundance of the detected compounds are indicated by asterisks, so 392 

that more asterisks in Table 4 indicates increasing weight percent yields of the identified 393 

compound. For simplicity, the compounds in the oil/tar have been classified into oxygenates, 394 

phenolics, aliphatic hydrocarbons and aromatic hydrocarbons. Table 4 shows that for the oil 395 

product from wood pyrolysis, there was a decrease in oxygenates, while aromatic compounds 396 

increased with increasing heating rate. As an indication of the effects of heating rate on the 397 

yields of the different classes of organic compounds in the oil/tar, a selection of compounds 398 
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detected in the oil/tar; representing oxygenates, phenols aliphatic and aromatic hydrocarbons 399 

have been made. Figure 5 showed the weight percent yields of cyclopentanone, phenol, indane 400 

and naphthalene in the pyrolysis oils from waste wood. Clearly, the yields of naphthalene 401 

increased from 0.1 – 3.2 wt%, with increasing heating rate from 5 to ≈ 350 °C min-1 for the 402 

pyrolysis of wood. In contrast, the yields of cyclopentanone and phenol showed a decreasing 403 

trend. As the heating rate was increased, the high temperature effects were intensified, which 404 

resulted in the cracking of products such as the oxygenates and other simple aliphatic 405 

compounds, into gases as well into the more thermally stable aromatics via Diels-Alder 406 

reactions. Such cyclization and aromatization processes led to increased refining of the oil and 407 

loss of sides groups resulting from cleavage of weaker bonds. Such refining reactions at the 408 

molecular level would increase aromatic content of the liquid products and also increase the 409 

formation in the gas products as seen in Tables 2 and 3. 410 

 411 

The GC/MS results are in agreement with the FTIR spectra presented in Figure 4 which shows 412 

an increase in the intensity of the indicative peaks for the monocyclic, polycyclic and 413 

substituted aromatic groups, in the spectra for the liquid from pyrolysis at heating rate of 350 414 

°C min-1 compared to that at 5 °C min-1. As an illustration, the GC/MS chromatograms of the 415 

oils/tars obtained from waste wood pyrolysis at heating rates of 5 °C min-1 and 350 °C min-1 416 

have been presented in Supplementary Information File (S11). The chromatograms clearly 417 

shows the transition from majority oxygenated and aliphatic compounds at the lower heating 418 

rate to a majority lower molecular-weight aromatic hydrocarbons at the higher heating rate. 419 

This transition corroborates the FTIR spectra in Figure 4, which shows higher peak intensities 420 

for peaks between 1350 to 1475 cm-1, 1625 to 1675 cm-1, 2800 to 3000 cm-1 and between peaks 421 

950 to 1325 cm-1, corresponding to the presence of aliphatic compounds (alkanes and 422 

oxygenates) in the liquid products, for the pyrolysis at 5 °C min-1 compared to the pyrolysis at 423 
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350 °C min-1,. (Yu et al., 1997) reported an increase in the aromatic content and a decrease in 424 

the oxygenate content of oil from wood pyrolysis with increasing temperature from 700 to 900 425 

°C. Other researchers (Xianwen et al., 2000) reported that the most abundant hydrocarbons 426 

detected from the pyrolysis of wood at 500 °C were alkanes, while (Tsai et al., 2007) reported 427 

the presence of many of aromatic compounds as well as oxygenated compounds for the 428 

pyrolysis of rise husk to 500 °C, at a heating rate of at 400 °C min-1. The GC/MS 429 

chromatograms obtained from the analysis of the liquid products from the biomass model 430 

compounds at heating rates of 5 ࣙC min-1 and 350 ࣙC min-1 have been provided in the 431 

Supplementary Information [SI1].  432 

 433 

The results of the analysis of the oil products from the pyrolysis of cellulose, xylan and lignin 434 

at 5 and ≈ 350 °C min-1 are also shown in Table 4, showing similar trends to those obtained 435 

from the waste wood sample. For pyrolysis at 5 °C min-1, the most abundant compounds 436 

detected for the cellulose, xylan and lignin were oxygenated and aliphatic compounds. The 437 

presence of long-chain alkanes (hexadecane and pentadecane) from slow pyrolysis of lignin 438 

was reported by (de Wild et al., 2009) during pyrolysis of lignin. The authors reported further 439 

increase in the yields of these compounds during the hydro-treatment of the pyrolysis oils, as 440 

a result of hydrodeoxygenation reaction of the lignin-derived bio-oil. While during pyrolysis ≈ 441 

350 °C min-1, the most abundant compounds detected in the oil products from cellulose, xylan 442 

and lignin were aromatics. Others have investigated the pyrolysis of lignin to 800 °C, at slow 443 

and fast heating rates, and reported increased aromatics at the fast heating conditions while an 444 

abundance of oxygenates were detected at the slow heating rate  (Windt et al., 2009). Mono-445 

aromatic compounds are also primary decomposition products of lignin (Asmadi et al., 2011), 446 

and this explains its relatively higher content in the lignin derived oil at 5 °C min-1. (Shen et 447 

al., 2010a) reported an increase in the production of ringed hydrocarbons and a decrease in 448 
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oxygenates content of the pyrolysis oil with increasing pyrolysis temperature from 449 

hemicellulose.  450 

 451 

The pyrolysis of the wood, cellulose, xylan and lignin samples at the heating rate of ≈ 350 °C 452 

min-1 intensified the effect of the high pyrolysis temperature resulting in secondary heating 453 

which promoted vapour phase cracking and condensation reactions, leading to the formation 454 

of gases and aromatic compounds. However at the heating rate of 5 °C min-1, the heating effect 455 

was minimized as volatiles were gradually released and swept out of the reactor before its 456 

temperature could increase to temperatures at which secondary reactions were encouraged, 457 

leading to the formation of mostly oxygenated and aliphatic compounds.  458 

 459 

3.4 Solid residue characteristics 460 

The BET surface area for the solid residues from wood pyrolysis at the lowest and highest 461 

heating rates were measured, and indicated that the solids from the pyrolysis at 5 °C min-1, had 462 

a higher surface area (219 m2g-1) than that for the solids from pyrolysis at ≈ 350 °C min-1 (123 463 

m2g-1). This indicated that during pyrolysis at ≈ 350 °C min-1, the thermal shock impacted on 464 

the wood sample would have caused the volatiles to be violently released from the wood 465 

structure, thereby destroying the internal pore structure (Zanzi et al., 1996) of the solid product. 466 

In contrast, during pyrolysis at slow heating rate, the volatiles gradually exited the structure of 467 

the wood sample. The HHV of the solid residues from both heating rates were similar. For 468 

instance, the solid residue obtained at a heating rate of 5 °C min-1 had a HHV of 33.9 MJ kg-1, 469 

while at a heating rate of 350 °C min-1 it was 33.1 MJ kg-1. Hence, these results demonstrate 470 

that high-temperature pyrolysis can be a source of carbonaceous solid materials with large 471 

surface areas and coal-like calorific values from biomass.  472 

 473 
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4.0 Conclusions 474 

Overall, this study provided some understanding of high temperature pyrolysis of biomass both 475 

as an advanced technology platform for biomass conversion and as pre-processing step for 476 

biomass gasification. The pyrolysis of waste wood and its major biochemical components 477 

(cellulose, xylan and lignin) were carried out in a fixed bed reactor at three different heating 478 

rates and to a final temperature of 800 ºC. A combination of heating rate and high temperature 479 

gave profound influence on the yields and compositions of solid residue, gas and liquid 480 

products as follows, and in no particular order; 481 

Firstly, promoted secondary cracking of volatiles and resulted in increased yields of product 482 

gases with high calorific values from all four samples. Secondly, Oil/tar products became more 483 

aromatic with increasing heating rate from all samples, due to thermal refinement leading to 484 

production of highly stable molecules. Finally, Char product with relatively surface areas and 485 

coal-like CVs were obtained due to rapid devolatilization of smaller molecules from within 486 

particles leading to a char of a highly porous nature. 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 
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Nomenclature 762 

min Minute 763 

wt% Weight percentage 764 

vol% Volume percentage 765 

CV Calorific value 766 

µm Micro metre 767 

GC Gas chromatography 768 

MS Mass spectroscopy 769 

TCD Thermal conductivity detector 770 

FID Flame ionization detector 771 

HHV higher heating value 772 

Zm Gas compressibility factor 773 

FTIR Fourier transforms infra-red 774 

DCM Dicloromethane 775 

BET Brunauer, Emmett and Teller 776 

K Kelvin temperature 777 

s Second 778 

≈ Approximately 779 
 780 
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List of Tables 

 

Table 1: Proximate and Ultimate compositions of waste wood sample and biomass model compounds used in this work 

 
Waste wood Cellulose  Xylan 

 

Lignin 

Ultimate analysis (wt%)     

C 46.6 41.7 40.3 61.3 

H 5.8 5.9 5.5 5.1 

N 0.40 0.41 0.41 1.1 

S nd nd nd 0.7 

O    (by diff, ash free) 38.2 52 49.8 27.7 

Proximate analysis (wt%)        

Moisture 7.0 5.0 6.0 4.0 

Ash 2.0 - 4.0 4.0 

Volatile Matter 76 82 73 56 

Fixed carbon 15 13 17 36 

   nd: not detected 
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Table 2: 
Product 
yields 
and 
mass 

balances from the high temperature pyrolysis of waste wood and biomass components in relation to heating rates 

 

 

 

 

 

 

 

 

 

 

Heating rates 5 ஈC min-1 90 ஈC min-1 ≈ 350 ஈC min-1 

Results wt% 
of sample wood cellulose xylan lignin wood cellulose xylan lignin wood cellulose xylan lignin 

Gas  14.5 21.0 27.1 16.4 17.5 21.3 27.3 16.5 52.9 73.1 44.4 29.3 

solid 26.7 16.0 27.2 43.7 20.8 12.4 22.9 37.6 15.7 5.9 22.5 36.5 

Oil 49.5 54.0 36.9 35.9 57.4 65.4 42.9 40.6 27.5 16.7 23.5 25.0 

Mass 
Balance 90.8 91.0 91.2 96.0 95.7 99.0 93.0 94.7 96.1 95.6 90.5 90.8 
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Table 3: Compositional yields of gas products (in wt% and volume %) from high temperature pyrolysis of waste wood and biomass 
components in relation to heating rates (nitrogen-free) 

Heating rates 5 ஈC min-1 90 ஈC min-1 ≈ 350 ஈC min-1 

Yields, wt% of 
sample wood cellulose xylan lignin wood cellulose xylan lignin wood cellulose xylan lignin 

 

H2 0.4 0.4 0.6 1.0 0.4 0.3 0.6 0.7 0.8 1.4 1.0 0.8 

CO 5.6 6.3 7.1 6.1 6.3 6.7 9.0 6.9 30.3 44.5 16.8 15.9 

CO2  7.2 13.0 17.5 6.2 9.2 13.1 16.0 5.8 10.9 14.7 20.3 5.7 

CH4  1.0 0.8 0.7 2.6 1.2 0.7 0.8 2.6 4.8 5.0 2.7 4.4 

C2 - C4  0.3 0.6 1.2 0.5 0.4 0.5 0.9 0.5 6.1 7.3 3.7 2.4 

Yields, volume % 
of sample    

H2 32.7 25.7 30.3 47.7 24.8 21.3 27.8 38.8 18.1 22.0 26.3 28.4 

CO 31.0 28.4 24.4 21.4 33.3 31.5 30.6 27.1 48.7 50.2 32.9 39.0 
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CO2  25.5 37.6 38.0 13.7 28.8 39.3 34.6 14.5 11.2 10.6 25.4 9.0 

CH4  9.6 6.6 4.4 16.0 11.2 6.0 4.5 18.2 13.6 9.9 9.1 18.9 

C2H4 0.4 0.4 0.4 0.2 0.6 0.5 0.4 0.3 5.7 4.7 3.9 2.5 

C2H6 0.5 0.5 1.4 0.5 0.7 0.6 1.2 0.6 0.8 1.3 1.2 0.8 

C3H6 0.2 0.3 0.3 0.1 0.3 0.5 0.3 0.1 1.1 0.8 0.6 0.6 

C3H8 0.1 nd 0.3 0.1 0.1 0.0 0.4 0.4 0.2 0.1 0.2 0.2 

C4H8 & C4H6 nd 0.4 0.2 0.1 0.1 0.1 0.1 0.0 0.6 0.2 0.4 0.6 

C4H10 nd 0.2 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.0 

Gross Calorific 

values (MJ/kg) 
8.1 9.2 13.4 13.0 8.0 8.0 12.7 11.3 24.1 35.8 25.4 16.7 

nd: not detected         

 

 

 

Table 4: List and indicative concentrations of different classes of compounds detected from GC/MS analysis of oil/tar products 
derived from high temperature pyrolysis of waste wood and biomass components in relation to heating rates 

Heating rate  5 °C min -1 ≈ 350 °C min -1 

 wood cellulose xylan lignin wood cellulose xylan lignin 

Identified compounds Oxygenates 

Cyclopentanone *** **** **** **** ** *   

Furfural           

Anisole * * ** **      

Phenol ***    *  * * 
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Acetophenone   *** **** **      

 Phenolics  

2,4-Dimethylphenol    ****       

1,2-Benzenediol            

2,3,5-Trimethylphenol ** ****   ***  ****  

4-Isopropylphenol **** **        

Dibenzofuran   ****   *         

  Aromatic hydrocarbons   

Styrene * *     ****   

o-Xylene * *        

Alphamethylstyrene ***  *  ** * ** * 

Betamethylstyrene *  * * *** *** **** ** 

Indane * * ** * *** * * * 

Indene * * * * *** *** ***  

1,2,3,4-Tetramethylbenze           

Naphthalene * ** ** * **** **** **** **** 

2-Methylnaphthalene    ** *   ****   

1-Methylnaphthalene   *** **      **** 

Biphenyl *** * * * * **** **** **** 

2-Ethylnaphthalene     *      

1-Ethylnaphthalene        ***   

2,6-Dimethylnaphthalene * * * ***      

1,4-Dimethylnaphthalene ** * ** *** ***   **** 

Fluorene *** * * *    ****  

1,3-Diphenylpropane         **  

Phenanthrene   *  *    ***  

1-Phenylnaphthalene **         

o-Terphenyl   **        
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Fluoranthene   *   *   * 

Pyrene *  *  **  * * 

m-Terphenyl    *       

1,3,5-Triphenylbenzene ***   ** * *** ** **** **** 

 Alkanes 

Octane, C8   *** *** ***   * * * 

Decane, C10 *** ** ** ** *    

Undecane, C11 ** *** *** *** * * * * 

Dodecane, C12 *** ***  *** * * * * 

Tridecane, C13 **    * * *  

Tetradecane, C14    ***     *  

Pentadecane, C15     ***    *  

Hexadecane, C16    *     * * 

Phytane    * *   *   

Heptadecane, C17    * *    * * 

Pristane    ***    * * * 

Octadecane, C18      *  * * 

Eicosane, C20         * * 

 Alkenes 

Octene, C8   **         **** * 

Nonene, C9        *** **  

Decene, C10   ****  ***    **  

Undecene, C11    ***      *** 

Dodecene, C12     ***     ** 

Tridecene, C13     *      

Tetradecene, C14           

Pentadecene, C15      ***   * 

 


