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We prove the convergence and divergence cases of an inhomogeneous Khintchine–

Groshev-type theorem for dual approximation restricted to affine subspaces in Rn. The

divergence results are proved in the more general context of Hausdorff measures.

1 Introduction

Throughout the paper, ψ : R+ → R+ is a nonincreasing function and Wn(ψ) is the set of

x ∈ Rn for which there exist infinitely many a ∈ Zn \ {0} such that

|a0 + x · a| < ψ(‖a‖n) (1.1)

for some a0 ∈ Z. Here and throughout, ‖ ‖ denotes the supremum norm of a vector

and the dot stands for the standard inner product of vectors. For obvious reasons, the

set Wn(ψ) is often referred to as the (dual) set of “ψ-approximable” vectors in Rn. The

fundamental Khintchine–Groshev theorem [22, 23] in the metric theory of Diophantine

approximation provides an elegant characterisation of the n-dimensional Lebesgue

measure of Wn(ψ) in terms of the convergence/divergence properties of a “volume sum”

associated with the approximating function ψ . We reinforce the fact that ψ will always

be assumed to be nonincreasing.
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2 V. Beresnevich et al.

Theorem 1.1. (Khintchine–Groshev) Let ψ be an approximating function. Then

∣

∣Wn(ψ)
∣

∣ =

⎧

⎨

⎩

0 if
∑∞

k=1 ψ(k) < ∞

full if
∑∞

k=1 ψ(k) = ∞.
(1.2)

We will use | | to denote the absolute value of a real number as well as the Lebesgue

measure of a measurable subset X of Rn; the context will make the use clear.

Remarks.

(1) By Dirichlet’s theorem, Wn(ψ) = Rn when ψ(k) = k−1.

(2) A point x ∈ Rn is called very well approximable (VWA) if there exists ε > 0

such that x ∈ Wn(ψε), where

ψε : R+ → R+ : k → ψε(k) := k−(1+ε).

Thus, the essence of the definition of VWA points is that for these points, the

“Dirichlet exponent” can be improved beyond the trivial. Note that in view of

Theorem 1.1, we have that |Wn(ψε)| = 0 for any ε > 0. In other words, almost

every point x ∈ Rn is not VWA.

(3) The more general Hausdorff measure version of the Khintchine–Groshev

theorem has been established in [14]. For a general background to the

classical theory of metric Diophantine approximation, we refer the reader

to the survey-type articles [7, 9].

We now consider the setting of inhomogeneous Diophantine approximation. Let

θ : Rn → R be a function and, given ψ , we let Wθ
n(ψ) be the set of x ∈ Rn for which there

exist infinitely many a ∈ Zn \ {0} such that

∣

∣a0 + x · a + θ(x)
∣

∣ < ψ(‖a‖n) (1.3)

for some a0 ∈ Z. The set W
θ
n(ψ) is often referred to as the (dual) set of “(ψ , θ)-

inhomogeneously approximable” vectors in Rn. The following inhomogeneous version

of Theorem 1.1 is established in [2]. We denote by Cn the set of n-times continuously

differentiable functions.

Theorem 1.2. Let ψ be an approximating function and θ : Rn → R be a function such

that θ ∈ C2. Then

∣

∣W
θ
n(ψ)

∣

∣ =

⎧

⎨

⎩

0 if
∑∞

k=1 ψ(k) < ∞

full if
∑∞

k=1 ψ(k) = ∞.
(1.4)

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny124/5034667
by guest
on 11 June 2018



Inhomogeneous Dual Diophantine Approximation 3

We remark that the choice of θ = constant is the setting of traditional inhomogeneous

Diophantine approximation and in that case the above result was well known, see for

example [12]. For the more general Hausdorff measure version of Theorem 1.2 within

the traditional setting, see [6] and [7, §12.1].

In this paper, we consider the theory of Diophantine approximation on man-

ifolds, specifically inhomogeneous approximation on affine subspaces. The subject of

metric Diophantine approximation on manifolds studies the conditions under which

a smooth submanifold of Rn inherits Diophantine properties of Rn, which are generic

for Lebesgue measure. Examples include the resolution of the famous Baker–Sprindžuk

conjecture [27] due to Kleinbock and Margulis [26] using homogeneous dynamics on

the space of unimodular lattices. Their result implies that almost every point on a

nondegenerate submanifold M of Rn is not VWA; that is,

∣

∣Wn(ψε) ∩ M
∣

∣

M
= 0 ∀ ε > 0. (1.5)

Here and elsewhere | . |M denotes the induced Lebesgue measure on M. It is worth

mentioning that any manifold M of Rn satisfying (1.5) is called extremal and that

Kleinbock and Margulis proved the stronger “multiplicative” extremal statement for

nondegenerate manifolds. Essentially, nondegenerate manifolds are smooth manifolds

of Rn that are sufficiently curved so as to deviate from any hyperplane, see [3, 26] for a

formal definition.

The convergence case of the Khintchine–Groshev theorem was shown to hold

for nondegenerate submanifolds of Rn in [11] and independently in [3]. Indeed, in

[11], Bernik, Kleinbock, and Margulis established the stronger “multiplicative” version.

The complementary divergence case was subsequently proved in [10] and, as a result,

we have the following complete analogue of the Khintchine–Groshev theorem for

nondegenerate manifolds.

Theorem 1.3. Let M be a nondegenerate submanifold of Rn, and let ψ be an approxi-

mating function. Then

∣

∣Wn(ψ) ∩ M
∣

∣

M
=

⎧

⎨

⎩

0 if
∑∞

k=1 ψ(k) < ∞

full if
∑∞

k=1 ψ(k) = ∞.
(1.6)

We note that the convergence case of the above theorem implies the extremal statement

(1.5) for nondegenerate manifolds. The reader is also referred to [1, 13] for recent
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4 V. Beresnevich et al.

developments concerning Diophantine approximation on nondegenerate manifolds. In

this paper, we are concerned with affine subspaces, which are the main examples of

manifolds that are not nondegenerate. Theorem 1.3 above is therefore not applicable to

them. Nevertheless, the analogue of the Baker–Sprindžuk conjecture for affine subspaces

was studied by Kleinbock in [24] (see also [25]), and the Khintchine–Groshev theorem in

the series of papers [8, 15, 16, 17, 19]. We refer the reader to the recent survey [20] for

further details on this subject. The key goal of this paper is to develop the analogous

inhomogeneous theory for affine subspaces.

We now briefly describe the current state of the inhomogeneous theory of Dio-

phantine approximation on manifolds. In [4, 5], the authors discovered a transference

principle that allowed them to establish the inhomogeneous version of the Baker–

Sprindžuk conjecture for nondegenerate manifolds from the original homogeneous

statement. Indeed, the inhomogeneous “multiplicative” extremal statement established

in [4] implies that for any nondegenerate submanifold M of Rn and θ = constant,

∣

∣W
θ
n(ψε) ∩ M

∣

∣

M
= 0 ∀ ε > 0. (1.7)

It is worth mentioning that in [21], it has been shown that the homogeneous to

inhomogeneous transference principle of [4] is flexible enough to be used for arbitrary

Diophantine exponents, not just the critical or “extremal” one. As demonstrated in [21],

this naturally extends the scope of potential applications of the original transference

principle. Beyond extremal statements such as (1.7), the complete inhomogeneous

version of the Khintchine–Groshev theorem, both convergence and divergence cases,

for nondegenerate manifolds is established in [2]. In other words, with mild conditions

imposed on the “inhomogeneous” function θ , the statement of Theorem 1.3 is shown

to be valid with Wn(ψ) replaced by W
θ
n(ψ). In fact, in the divergence case, for any

θ ∈ C2 the more general Hausdorff measure version is established. As is to be expected,

the convergence case of the Khintchine–Groshev theorem established in [2] implies

the inhomogeneous extremal statement (1.7) for nondegenerate manifolds. To the best

of our knowledge, unlike in the homogeneous setting, an inhomogeneous theory of

Diophantine approximation on affine subspaces is yet to be developed. As already

alluded to above, the purpose of this work is to address this imbalance by establishing

an inhomogeneous version of the Khintchine–Groshev theorem for affine subspaces

of Rn. As a consequence, we obtain the inhomogeneous extremal statement (1.7) for

affine subspaces. Indeed, our results go some way towards developing a coherent

inhomogeneous theory for degenerate manifolds as outlined in [2, §1.4].
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Inhomogeneous Dual Diophantine Approximation 5

In the study of Diophantine approximation on affine subspaces, one needs to

assume some condition on the slope of the affine subspace in order to ensure that

the affine subspace inherits generic Diophantine properties from its ambient Euclidean

space. We will now introduce certain Diophantine exponents of matrices that play a key

role in this regard. Indeed, we need these exponents in order to even state our main

convergence theorem.

1.1 Diophantine exponents of matrices

Throughout H will be an open subset of a d-dimensional affine subspace of Rn. By

making a change of variables, if necessary, we can assume without loss of generality

that H is of the form

{

(x, x A′ + a0) : x ∈ U
}

, (1.8)

where a0 ∈ Rn−d and A′ ∈ Matd×n−d(R) and U is an open subset of Rd. On setting

A :=
(

a0

A′

)

,

we can rewrite this parametrisation as

x 
→ (x, x̃ A), where x̃ := (1, x). (1.9)

Given a column θ ∈ Rd+1 and a matrix A ∈ Matd+1×n−d(R), the inhomogeneous

Diophantine exponent ω(A; θ) of (A; θ) is defined to be the supremum of v > 0 for which

there are infinitely many a′ ∈ Zn−d \ {0} such that

∥

∥Aa′ + a′′ + θ
∥

∥ < ‖a′‖−v (1.10)

for some a′′ ∈ Zd+1. In the case θ = 0, ω(A) := ω(A; 0) is the usual (homogeneous)

Diophantine approximation exponent of the matrix A. It is well known that (n − d)/(d +
1) ≤ ω(A) ≤ ∞ for all A ∈ Matd+1×n−d(R) and that ω(A) = (n − d)/(d + 1) for Lebesgue

almost every A.

We now introduce the higher Diophantine exponents of A as defined by Klein-

bock in [25]. For A ∈ Matd+1×n−d(R), we set

RA := (Idd+1 A) ∈ Matd+1×n+1(R), (1.11)
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6 V. Beresnevich et al.

where Idd+1 denotes the (d + 1) × (d + 1) identity matrix. Let e0, . . . , en denote the

standard basis of Rn+1 and set

Wi→j := span{ei, . . . , ej}, (1.12)

where i, j ∈ {0, · · · , n} with i ≤ j, be the linear subspace of Rn+1 spanned by vectors

ei, . . . , ej. Clearly, W0→n = Rn+1. Now let w ∈
∧j

(W0→n) represent a discrete subgroup

Ŵ of Zn+1 of rank j, that is, w is the wedge product of vectors from any given basis of Ŵ.

Define the map

c :
∧j

(W0→n) →
(

∧j−1
(W1→n)

)n+1

by setting

c(w)i :=
∑

J⊂{1,...,n}
#J=j−1

〈

ei ∧ eJ , w
〉

eJ (1.13)

for 0 ≤ i ≤ n, and let π• denote the projection
∧

(W0→n) →
∧

(Wd+1→n). For each

j = 1, . . . , n − d, define

ωj(A) := sup

⎧

⎪

⎨

⎪

⎩

v :
∃ w ∈

∧j
(Zn+1) with arbitrarily large ‖π•(w)‖

such that ‖RA c(w)‖ < ‖π•(w)‖− v+1−j
j

⎫

⎪

⎬

⎪

⎭

. (1.14)

It is shown in Lemma 5.3 of [25] that ω1(A) = ω(A). We shall see in the next section

that the Diophantine exponents ωj(A) play a key role in the convergence case of the

Khintchine–Groshev theorem for affine subspaces.

1.2 Our main theorems

As before H will denote an open subset of a d-dimensional affine subspace of Rn

parametrised as in (1.9). Then, given ψ and θ , the object of study is the set Wθ
n(ψ) ∩ H ;

that is, the set of “(ψ , θ)-inhomogeneously approximable” vectors on H (the reason

for considering an open subset of an affine subspace rather than the whole subspace

is to allow inhomogeneous functions θ that may not necessarily be defined on the

whole subspace, for example, θ(x) =
√

1 − (x2
1 + · · · + x2

d) ).Our first result establishes

the convergence case of the inhomogeneous Khintchine–Groshev theorem for affine

subspaces.
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Inhomogeneous Dual Diophantine Approximation 7

Theorem 1.4. Let H be an open subset of an affine subspace of Rn of dimension d

given by (1.9), and suppose that

ωj(A) < n for every j = 1, . . . , n − d. (1.15)

Let ψ be an approximating function and θ : Rn → R be a function such that θ |H is

analytic. Further in the case θ |H is a linear function so that

θ̂ (x) := θ(x, x̃ A) = x̃θ = θ0 + θ1x1 + · · · + θdxd (1.16)

for some column θ = (θ0, . . . , θd)t, assume that

ω(A; θ) < n. (1.17)

Then,

∣

∣W
θ
n(ψ) ∩ H

∣

∣

H
= 0 (1.18)

whenever
∞
∑

k=1

ψ(k) < ∞. (1.19)

Recall that | |H denotes the induced Lebesgue measure on H . Clearly, the above

convergence theorem implies the inhomogeneous extremal statement (1.7) for any affine

subspace satisfying (1.15) and any analytic θ̂ that additionally satisfies (1.17) in the case

it is linear.

Remarks.

(1) In the case θ |H is linear, condition (1.17) on the exponent of (A; θ) is optimal.

Indeed, suppose that

‖Aa′ + a′′ + θ‖ < ‖a′‖−n log−3 ‖a′‖ (1.20)

holds for infinitely many a′ ∈ Zn−d \ {0} and some a′′ ∈ Zd+1, but

‖Aa′ + a′′ + θ‖ < ‖a′‖−n log−4 ‖a′‖ (1.21)

holds only for finitely many a′ ∈ Zn−d \ {0} and a′′ ∈ Zd+1. Clearly, in this

case ω(A; θ) = n. The existence of such pairs (A; θ) can be proved by using

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny124/5034667
by guest
on 11 June 2018



8 V. Beresnevich et al.

the inhomogeneous version of Jarnik’s theorem for systems of linear forms

[9, Theorem 19]. Assuming a′ and a′′ satisfy (1.20), write a′ as (ad+1, . . . , an)t

and a′′ as (a0, . . . , ad)t. Then, on identifying a with (a1, . . . , an)t one readily

verifies that

θ̂ (x) + a0 + (x, x̃ A)a = x̃(Aa′ + a′′ + θ) (1.22)

and that ‖a‖ ≪ ‖a′‖. Therefore,

∣

∣

∣
θ̂ (x) + a0 + (x, x̃ A)a

∣

∣

∣
≪ ‖ Aa′ + a′′ + θ‖ ≪ ‖a‖−n log−3 ‖a‖,

where the implied constant, which depends on x, can be chosen uniformly

for x in a compact set. Take ψ(h) = h−1(log h)−2. Then, clearly for every x in

such a compact set, the inequality

∣

∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣

∣ < ψ(‖a‖n)

holds for infinitely many a ∈ Zn−d \ {0} and some a0 ∈ Z. In this case

W
θ
n(ψ) ∩ H = H

despite (1.19). An obvious modification of the above argument shows that,

given an approximating function ψ satisfying (1.19), in the case θ |H is linear,

(1.18) necessarily implies the existence of c > 0 such that

‖Aa′ + a′′ + θ‖ ≥ c ψ
(

‖(a′, a′′)‖n
)

for all (a′, a′′) ∈ Zn−d \ {0} × Zd+1.

How close this is to being a sufficient condition remains an interesting

question that is open even in the homogeneous case.

(2) We note that in case θ = 0, since ω(A) := ω(A; 0) the inhomogeneous Dio-

phantine condition (1.17) does not add extra hypotheses in the homogeneous

case.

For the divergence counterpart to Theorem 1.4, we shall prove the following

more general statement in terms Hausdorff measures. Throughout, Hs(X) will denote

the s-dimensional Hausdorff measure of a subset X of Rn and dim X the Hausdorff

dimension, where s > 0 is a real number.
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Inhomogeneous Dual Diophantine Approximation 9

Theorem 1.5. Let H be an open subset of an affine subspace of Rn of dimension d and

let s > d−1. Let ψ be an approximating function and θ : Rn → R be a function such that

θ |H ∈ C2. Suppose that (1.15) holds and that

∞
∑

k=1

k
d−s

n ψ(k)s+1−d = ∞. (1.23)

Then

H
s
(

W
θ
n(ψ) ∩ H

)

= H
s(H ). (1.24)

Given an approximating function ψ , the lower order at infinity τψ of 1/ψ is

defined by

τψ := lim inf
t→∞

− log ψ(t)

log t
(1.25)

and indicates the growth of 1/ψ “near” infinity. Now observe that the divergent sum

condition (1.23) is satisfied whenever

s < d − 1 + (n + 1)/(nτψ + 1).

Therefore, it follows from the definition of Hausdorff dimension that

dim
(

W
θ
n(ψ) ∩ H

)

≥ s if H
s
(

W
θ
n(ψ) ∩ H

)

> 0

and that H
s(H ) > 0 if s ≤ dim H = d and H �= ∅. We therefore obtain the following

dimension statement concerning the set Wθ
n(ψ) ∩ H .

Corollary 1.1. Let H be a nonempty open subset of an affine subspace of Rn of

dimension d. Let ψ be an approximating function and θ : Rn → R be a function such

that θ |H ∈ C2. Suppose that (1.15) holds and that 1 ≤ τψ < ∞. Then

dim
(

W
θ
n(ψ) ∩ H

)

≥ d − 1 + n + 1

nτψ + 1
. (1.26)

Remarks.

(1) To the best of our knowledge, the above findings constitute the first known

results in the context of inhomogeneous Diophantine approximation on

affine subspaces. In fact, Theorem 1.5 is new even for Lebesgue measure

(i.e., when s = d) and in many cases for the homogeneous setting (i.e.,
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10 V. Beresnevich et al.

when θ ≡ 0). The only previously known cases in the homogeneous setting

were the following:

(a) the case of lines passing through the origin, which was treated in [8],

and

(b) the case of affine hyperplanes (d = n − 1), which was treated in [18].

(2) In the case d = n − 1 condition (1.15) represents a single inequality imposed

on the main Diophantine exponent ω(A) of A.

(3) In the case s = d the sum within (1.23) matches the one within (1.19). Thus,

Theorem 1.5 naturally complements the statement of Theorem 1.4.

(4) In [2], the smoothness condition imposed on the inhomogeneous function θ is

weaker than what we have assumed to establish the convergence statement

of Theorem 1.4. In short we have imposed the stronger analyticity condition

to deal with a technical problem involving (C, α)-good functions (see below

for the definition). It is plausible that this condition can be relaxed and

brought at par with that imposed in [2].

(5) The homogeneous results in [11] and the inhomogeneous convergence results

in [2] are proved in the context of more general multivariable approximating

functions. This setting includes the case of “multiplicative” Diophantine

approximation. Both our main theorems should hold for nondegenerate

submanifolds of affine subspaces and our convergence theorem should, in

addition, be true in the multivariable setting. We plan to return to this

extension in a separate work.

2 The Gradient Division

In this section, we prepare the groundwork to prove Theorem 1.4, the “convergence

case”. Let U be the same as in (1.8) and as before define θ̂ : U −→ R by setting

θ̂ (x) := θ(x, x̃ A).

Clearly, θ̂ is an analytic function since θ |H is analytic. For a ∈ Zn \ {0}, we define

L(a) :=
{

x ∈ U :
∣

∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣

∣ < ψ(‖a‖n) for some a0 ∈ Z
}

.

Observe that lim supL(a) is the projection of W
θ
n(ψ) ∩ H onto Rd. Here and elsewhere,

unless stated otherwise, a ∈ Zn \ {0} and any unspecified limsup is taken over such a.
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Inhomogeneous Dual Diophantine Approximation 11

Since the projection from H to Rd is bi-Lipschitz, Theorem 1.4 will follow on showing

that | lim supL(a)| = 0. In fact, it is sufficient to show that for each x ∈ U, we can choose

an open ball B centred at x with 11B ⊆ U such that

∣

∣ lim supL(a, B)
∣

∣ = 0 , (2.1)

where L(a, B) := L(a) ∩ B.

To prove the above measure zero statement, it is natural to consider separately

the case when we have a “large derivative” and the case when we do not. More precisely,

we split the set L(a, B) into two subsets depending on the size of the quantity ∇(θ̂(x) +
(x, x̃ A)a) = ∇(θ̂(x)) + [Idd A′]at —here A′ is as introduced at the start of Section 1.1 and

as usual ∇ denotes the gradient operator. With this in mind, for any sufficiently small

open ball B with 11B ⊆ U, we define

Lsmall(a, B) =
{

x ∈ L(a, B) :
∥

∥

∥
∇
(

θ̂ (x) + (x, x̃ A) · a
)

∥

∥

∥
<
√

ndL‖a‖
}

, (2.2)

where

L := max

{

sup
|β|=2, x∈2B

∥

∥

∥
∂β θ̂ (x)

∥

∥

∥
,

1

4r2

}

(2.3)

and r is the radius of B. Here for a multi-index β = (i1, . . . , id) of non-negative integers

|β| := i1 + · · · + id and ∂β denotes the corresponding differentiation operator, that is,
∂ |β|

∂x
i1
1 ... ∂x

id
d

. Set Llarge(a, B) = L(a, B)\Lsmall(a, B). We will prove that for any “appropriately

chosen” B ⊆ 11B ⊆ U,

∣

∣ lim supLlarge(a, B)
∣

∣ = 0 (2.4)

and

∣

∣ lim supLsmall(a, B)
∣

∣ = 0 . (2.5)

Clearly, on combining the measure zero statements (2.4) and (2.5) we obtain the desired

measure zero statement (2.1).

3 Estimating the Measure of lim supLlarge(a, B)

In this section, we will establish (2.4) as a simple consequence of the following

statement.
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12 V. Beresnevich et al.

Proposition 3.1. [11, Lemma 2.2] Let B ⊆ Rd be a ball of radius r and F ∈ C2(2B), where

2B is the ball with the same centre as B and radius 2r. Let

M∗ := sup
|β|=2, x∈2B

∥

∥∂βF(x)
∥

∥ (3.1)

and

M := max

{

M∗,
1

4r2

}

. (3.2)

Then for every δ′ > 0, the set of all x ∈ B such that |p + F(x)| < δ′ for some p ∈ Z and

∥

∥∇F(x)
∥

∥ ≥
√

dM (3.3)

has measure at most Kdδ′|B|, where Kd > 0 is a constant dependent only on d.

To prove (2.4) from Proposition 3.1, we start with any sufficiently small open ball

B in U. We fix a ∈ Zn \ {0} and take F(x) = ((x, x̃A), θ̂ (x)) · (a, 1) for x ∈ 2B and δ′ = ψ(‖a‖n).

Clearly, M = L, where L is given by (2.3). Hence, by Proposition 3.1, we get that

∣

∣Llarge(a, B)
∣

∣ ≤ Kdψ(‖a‖n)|B|,

and thus

∑

a∈Zn\{0}

∣

∣Llarge(a, B)
∣

∣ ≤ Kd

∑

a∈Zn\{0}
ψ(‖a‖n)|B| ≪

∞
∑

h=1

hn−1ψ(hn) ≪
∞
∑

h=1

ψ(h).

Since the latter sum is convergent, on applying the Borel–Cantelli lemma we obtain

(2.4), as desired. In the above, as well as elsewhere, ≪ means an inequality with an

unspecified multiplicative constant.

In order to establish (2.5) we will use the “inhomogeneous transference princi-

ple” introduced in [4, Section 5], whose simplified version is recalled in the next section.

4 Inhomogeneous Transference Principle

Throughout this section, we shall let B be an open ball in Rd and ̺ be the d-dimensional

Lebesgue measure restricted to B so that the closed ball B becomes the support of ̺.

Consider two countable index sets T , A and two maps H : (t, α, η) 
→ Ht(α, η) and

I : (t, α, η) 
→ It(α, η) from T × A × R+ to the collection of all open sets in Rd. Take a set
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� of functions φ : T −→ R+. For each φ ∈ �, define

�I(φ) := lim sup
t∈T

⋃

α∈A
It
(

α, φ(t)
)

and �H(φ) := lim sup
t∈T

⋃

α∈A
Ht

(

α, φ(t)
)

.

We now discuss the two main properties that enables one to transfer zero ̺-measure

statements for the “homogeneous” limsup sets �H(φ) to the “inhomogeneous” limsup

sets �I(φ).

(1) Intersection property: The triplet (H, I, �) is said to satisfy the intersection

property if for any φ ∈ �, there exists φ∗ ∈ � such that for all but finitely

many t ∈ T and for all distinct α, α′ ∈ A, we have

It
(

α, φ(t)
)

∩ It
(

α′, φ(t)
)

⊆
⋃

α′′∈A
Ht

(

α′′, φ∗(t)
)

. (4.1)

(2) Contracting property: We say that ̺ is contracting with respect to (I, φ) if for

any φ ∈ �, there exists φ+ ∈ �, a sequence of positive numbers {kt}t∈T with
∑

t∈T kt < ∞ and for all but finitely many t ∈ T and all α ∈ A, a collection

Ct,α of balls B centred in B satisfying the three conditions given below:

B ∩ It
(

α, φ(t)
)

⊆
⋃

B∈Ct,α

B , (4.2)

B ∩
⋃

B∈Ct,α

B ⊆ It
(

α, φ+(t)
)

, (4.3)

and

̺
(

5B ∩ It
(

α, φ(t)
))

≤ kt̺(5B). (4.4)

The main transference for our purpose, which follows easily from [4, Theorem 5], can be

stated as follows.

Theorem 4.1. If (H, I, �) satisfies the intersection property and ̺ is contracting with

respect to (I, φ) then

∀φ ∈ �, ̺
(

�H(φ)
)

= 0 �⇒ ∀φ ∈ �, ̺
(

�I(φ)
)

= 0.
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14 V. Beresnevich et al.

5 Proof of (2.5) from Theorem 4.1

Let T := Z+,A = (Zn \ {0}) × Z. For t ∈ T, α := (a, a0) ∈ A and η ∈ R+, we set

It(α, η) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x ∈ U :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣ <
η

2nt
∥

∥∇(θ̂(x) + (x, x̃ A)a)
∥

∥ <
√

ndL × η × 2t/2

2t ≤ ‖a‖ < 2t+1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5.1)

and

Ht(α, η) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x ∈ U :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣a0 + (x, x̃ A)a
∣

∣ <
2η

2nt
∥

∥∇(x, x̃ A) · a
∥

∥ < 2
√

ndL × η × 2t/2

‖a‖ < 2t+2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5.2)

Given δ ∈ R, define

φδ : T −→ R+ : t → φδ(t) := 2δt .

Pick γ > 0 and consider the set

� :=
{

φδ : 0 ≤ δ < γ
}

.

Recall, that in view of Section 3, the proof of Theorem 1.4 has been reduced to

showing the truth of (2.5). The above transference principle plays a key role in carrying

out this task. With this in mind, the proof of (2.5) splits naturally into three main steps.

Let B ⊆ U be an open ball and recall that ̺ is the d-dimensional Lebesgue measure

restricted to B.

Step 1: We show that if γ is appropriately chosen, then

̺
(

�H(φδ)
)

= 0 ∀ δ ∈ [0, γ ) , (5.3)

regardless of the choice B. This will be the subject of Sections 6–8.

Step 2: We show that the triplet (H, I, �) as defined above satisfies the intersection

property. This will be the subject of Section 9.

Step 3: We show that ̺ is contracting with respect to (I, φδ). This will be the subject

of Section 10.

The upshot of successfully carry out these steps, is that on applying Theorem 4.1, we

are able to conclude that

̺
(

�I(φδ)
)

= 0 ∀ δ ∈ [0, γ ).
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This in turn implies (2.5), since

lim supLsmall(a, B) ⊆ �I(φδ) ∩ B ∀ δ > 0.

To carry out Step 1 we shall employ dynamical tools. For that, we need to recall

a few elementary properties of the so called “good functions” introduced by Kleinbock

and Margulis [26].

6 (C, α)-good functions

Let C and α be positive numbers and V be an open subset of Rd. A function f : V → R is

said to be (C, α)-good on V if for any open ball B ⊆ V, and for any ε > 0, one has:

∣

∣

{

x ∈ B : | f (x)| < ε
}∣

∣ ≤ C

(

ε

supx∈B | f (x)|

)α

|B|. (6.1)

Now consider f = ( f1, . . . , fn), a map from an open subset U ⊆ Rd to Rn. We will say that

f is good at x0 ∈ U if there exists a neighbourhood V ⊆ U of x0 and C, α > 0 such that

any linear combination of 1, f1, . . . , fn is (C, α)-good on V. The map f is said to be good if

it is good at every point of U. Note that C, α need not be uniform.

We will make use of the following properties of (C, α)-good functions, for example, see

[24].

(G1) If f is (C, α)-good on an open set V, so is λf for all λ ∈ R.

(G2) If fi, i ∈ I are (C, α)-good on V, so is supi∈I | fi|.
(G3) If f is (C, α)-good on V and for some c1, c2 > 0, c1 ≤ | f (x)|

|g(x)| ≤ c2 for all x ∈ V,

then g is (C(c2/c1)α, α)-good on V.

(G4) If f is (C, α)-good on V, it is (C′, α′)-good on V ′ for every C′ ≥ max{C, 1}, α′ ≤ α

and V ′ ⊂ V.

One can note that from (G2), it follows that the supremum norm of a vector valued

function f is (C, α)-good whenever each of its components is (C, α)-good. Furthermore,

in view of (G3), we can replace the norm by an equivalent one, only affecting C but not α.

The following result provides us with an important class of good functions.

Proposition 6.1. [11, Lemma 3.2] Any polynomial f ∈ R[x1, . . . , xd] of degree not

exceeding l is (Cd,l,
1
dl

)-good on Rd, where Cd,l = 2d+1dl(l+1)1/l

Vd
and Vd is the volume of the

unit ball in Rd with respect to the Euclidean norm. In particular, constant and linear

polynomials are (2d+2d
Vd

, 1
d
)-good on Rd.
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16 V. Beresnevich et al.

The main dynamical tool that we will be exploiting to show (5.3) is commonly

known as the “quantitative nondivergence” estimate in the space of unimodular lattices.

This constitutes our next section.

7 A Quantitative Nondivergence Estimate

Let W be a finite dimensional real vector space. For a discrete subgroup Ŵ of W, we set

ŴR to be the minimal linear subspace of W containing Ŵ. A subgroup Ŵ of � is said to be

primitive in � if Ŵ = ŴR ∩ �. We denote the set of all nonzero primitive subgroups of Ŵ

by L(Ŵ). Let j := dim(ŴR) be the rank of Ŵ. We say that w ∈
∧j

(W) represents Ŵ if

w =

⎧

⎨

⎩

1 if j = 0

v1 ∧ · · · ∧ vj if j > 0 and v1, . . . , vj is a basis of Ŵ.

In fact, one can easily see that such a representative of Ŵ is always unique up to a sign.

A function ν :
∧

(W) −→ R+ is called submultiplicative if

(i) ν is continuous with respect to natural topology on
∧

(W),

(ii) ∀ t ∈ Rand w ∈
∧

(W), ν(tw) = |t|ν(w), and

(iii) ∀ u, w ∈
∧

(W), ν(u ∧ w) ≤ ν(u)ν(w).

In view of property (ii) above, without any confusion, we can define ν(Ŵ) := ν(w) where

w represents Ŵ. Armed with the notion of submultiplicative, we are in the position to

state the “quantitative nondivergence” estimate that we will require in establishing (5.3).

Theorem 7.1. [11, Theorem 6.2] Let W be a finite dimensional real vector space, � a

discrete subgroup of W of rank k, and let a ball B = B(x0, r0) ⊂ Rd and a continuous map

H : B̃ → GL(W) be given, where B̃ := B(x0, 3kr0). Take C ≥ 1, α > 0, 0 < ρ < 1 and let ν be

a submultiplicative function on
∧

(W). Assume that for any Ŵ ∈ L(�),

(KM1) the function x 
→ ν(H(x)Ŵ) is (C, α)-good on B̃,

(KM2) supx∈B ν(H(x)Ŵ) ≥ ρ,

(KM3) ∀ x ∈ B̃, #{Ŵ ∈ L(�) : ν(H(x)Ŵ) < ρ} < ∞.

Then for every ε′′ > 0 we have that

∣

∣

∣

{

x ∈ B : ν(H(x)λ) < ε′′ for some λ ∈ �\{0}
}

∣

∣

∣ < k (3dNd)k C

(

ε′′

ρ

)α

|B|, (7.1)

where Nd is the Besicovitch constant for Rd.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny124/5034667
by guest
on 11 June 2018



Inhomogeneous Dual Diophantine Approximation 17

8 Proof of (5.3)

Fix a ball B ⊂ U such that 11B ⊂ U. For t ∈ Z+ and δ ∈ [0, γ ), we define the set

At :=
⋃

α∈A

(

Ht

(

α, φδ(t)
)

∩ B
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x ∈ B : ∃(a, a0) ∈ Zn \ {0} × Z s.t.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣a0 + (x, x̃ A)a
∣

∣ < 2×2δt

2nt
∥

∥∇(x, x̃ A) · a
∥

∥ < 2
√

ndL × 2δt × 2t/2

‖a‖ < 2t+2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Then, by definition

�H(φδ) ∩ B ⊆ lim supt→∞ At

and so (5.3) follows on showing that

∣

∣ lim supt→∞ At

∣

∣ = 0. (8.1)

With this in mind, pick β ∈
(

0, 1
2(n+1)

)

and set

δ′ := 2

2nt
, K := 2 ×

√
ndL × 2t/2, T := 2t+2, (8.2)

ε′ := (δ′KTn−1)
1

n+1 =
(

22n
√

ndL
)

1
n+1 1

2t/2(n+1)
, (8.3)

and

ε := 2βtε′ =
(

22n
√

ndL
)

1
n+1 2βt

2t/2(n+1)
. (8.4)

Furthermore, for x ∈ Rd, let

ux :=

⎛

⎜

⎜

⎝

1 0 x x A′ + a0

0 Id Id A′

0 0 In

⎞

⎟

⎟

⎠

(8.5)

and for t ∈ Z+, let

gt := diag
( ε

δ′ ,
ε

K
, . . . ,

ε

K
,
ε

T
, . . . ,

ε

T

)

, (8.6)

where ε, δ′, T, K are defined above and the ε
K and ε

T appear d and n times, respectively.

Note that these parameters depend on t and some fixed constants. Also, denote by � the
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18 V. Beresnevich et al.

subgroup of Z1+d+n consisting of vectors of the form:

� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p

0
...

0

q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: p ∈ Z, q ∈ Zn

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (8.7)

Then, it readily follows from the above definitions that

At ⊆ Ãt :=
{

x ∈ B : ‖gtuxλ‖ < 2δtε for some λ ∈ �\{0}
}

, (8.8)

and so (8.1) follows on showing that

∣

∣ lim supt→∞ Ãt

∣

∣ = 0.

In view of the Borel–Cantelli lemma, this will follow on showing that

∞
∑

t=0

∣

∣Ãt

∣

∣ < ∞. (8.9)

With the intention of using Theorem 7.1 to prove (8.9), we take W = R1+d+n

with basis e0, e∗1, . . . , e∗d, e1, . . . , en, � as given by (8.7) and H(x) = gtux. The submul-

tiplicative function ν on W is chosen as described in [11, §7]. Namely, let W∗ be the

d-dimensional subspace of W spanned by e∗1, . . . , e∗d so that � given by (8.7) is equal

to the intersection of Z1+d+n and W⊥
∗ . Here we identify W⊥

∗ with Rn+1 canonically.

Also, let W be the ideal of
∧

(W) generated by
∧2

(W∗), and let π∗ be the orthogonal

projection with kernel W. Then ‖w‖e is defined to be the Euclidean norm of π∗(w). In

other words, if w is written as a sum of exterior products of the base vectors ei and

e∗i, to compute ν(w) we ignore the components containing exterior products of the type

e∗i ∧ e∗j, 1 ≤ i �= j ≤ d, and simply take the Euclidean norm of the sum of the remaining

components. By definition, it is immediate that ν|W agrees with the Euclidean norm.

For appropriately determined quantities C, α, ρ we now validate, one by one, the

conditions (KM1)–(KM3) associated with Theorem 7.1. Condition (KM3) can be verified

for any ρ ≤ 1 in exactly the same manner as in [11, §7]. For the verification of the

remaining conditions, we begin with the explicit computation of the quantity H(x)w
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for any w ∈
∧k

(W⊥
∗ ) and k = 1, . . . , n + 1. On writing x = (x1, . . . , xd) and (x, x̃ A) =

( f1(x), . . . , fn(x)), we see that

(1) H(x) e0 = ε
δ′ e0,

(2) H(x) e∗i = ε
K e∗i for all 1 ≤ i ≤ d,

(3) H(x) ei = ε
δ′ fi(x) e0 + ε

K

∑d
j=1

∂fj(x)

∂xi
e∗j + ε

T ei for all 1 ≤ i ≤ n.

Note that each fi(x) is a polynomial in x1, . . . , xd with degree at most 1 so that each

partial derivative
∂fj(x)

∂xi
is constant.

8.1 Checking (KM1)

Since � = Z1+d+n ∩ W⊥
∗ , any representative w ∈

∧k
(W) of any subgroup of � of rank k,

1 ≤ k ≤ n + 1, can be written as
∑

I aIeI , where each aI ∈ Z and eI = eii ∧ · · · ∧ eik with

i1, . . . , ik ∈ {0, 1, . . . , n}, i1 < · · · < ik.

Since each component of π∗(H(x)w) is a polynomial in x1, . . . , xd with degree at

most 1 and in view of Proposition 6.1, each of them is
(

2d+2d
Vd

, 1
d

)

-good on B̃. This implies

that the function x 
→ ‖π∗(H(x)w)‖ is
(

2d+2d
Vd

, 1
d

)

-good on B̃. As

1

2
1+d+n

2

≤
∥

∥π∗(H(x)w)
∥

∥

ν
(

π∗(H(x)w)
) ≤ 1,

it follows from properties (G3) and (G4) of good functions that ν(π∗(H(x)w)) is (C, α)-good

on B̃ with

C := max

⎧

⎨

⎩

2

(

d+2+ 1+d+n
2d

)

d

Vd
, 1

⎫

⎬

⎭

and α := 1

d
. (8.10)

This verifies condition (KM1).

8.2 Checking (KM2)

Let Ŵ be a subgroup of � with rank k and w ∈
∧k

(W⊥
∗ ) represent Ŵ. We first consider

the case k = n + 1. Thus, w = w e0 ∧ e1 ∧ · · · ∧ en, where w ∈ Z\{0}. Hence, for any x ∈ B,

it is easily verified that the coefficient of e0 ∧ e∗1 ∧ e2 ∧ · · · ∧ en in π∗(H(x)w) is

w
εn+1

δ′KTn−1
.
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20 V. Beresnevich et al.

It now follows via (8.2)–(8.4), that

sup
x∈B

ν
(

H(x)Ŵ
)

= sup
x∈B

ν
(

H(x)w
)

≥ sup
x∈B

∥

∥π∗(H(x)w)
∥

∥

≥
∣

∣

∣

∣

w
εn+1

δ′KTn−1

∣

∣

∣

∣

= |w|2β(n+1)t (ε′)n+1

δ′KTn−1

= |w|2β(n+1)t ≥ 1. (8.11)

Thus, when k = n + 1 condition (KM2) is valid for any 0 < ρ < 1.

Assume now that 1 ≤ k ≤ n. To bound the norm of ‖π∗(H(x)w)‖ from below,

we will proceed along the lines of [19, §5.3] using a technique from [25]. As observed in

[19, §5.3], for any x ∈ B

∥

∥π∗(H(x)w)
∥

∥ ≥
∥

∥g̃tũxw
∥

∥,

where

ũx =
(

1 x x̃ A

0 In

)

and g̃t = diag
( ε

δ′ ,
ε

T
, . . . ,

ε

T

)

. (8.12)

Hence,

sup
x∈B

ν
(

H(x)Ŵ
)

= sup
x∈B

ν
(

H(x)w
)

≥ sup
x∈B

∥

∥π∗(H(x)w)
∥

∥

≥ sup
x∈B

∥

∥g̃tũxw
∥

∥. (8.13)

Thus, the name of the game is to bound supx∈B ‖g̃tũxw‖ from below. It follows from (4.6)

in [25], that

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ 1

2
n+1

2

max

{(

εk

δ′Tk−1

)

sup
x∈B

∥

∥(x, x̃ A) c(w)
∥

∥,
( ε

T

)k ∥
∥π(w)

∥

∥

}

, (8.14)

where c is the function given by (1.13), π is the projection from
∧

(W⊥
∗ ) to

∧

(W1→n), and

W1→n stands for the span of the vectors e1, . . . , en . Now, recall that

(x, x̃ A) = x̃ RA,

where RA is given by (1.11). Therefore, we can replace supx∈B ‖(x, x̃ A)c(w)‖ in the

above norm calculation by supx∈B ‖x̃RAc(w)‖. As the functions 1, x1, . . . , xd are linearly

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny124/5034667
by guest
on 11 June 2018



Inhomogeneous Dual Diophantine Approximation 21

independent over R on B, the map

v 
→ sup
x∈B

‖x̃v‖

defines a norm on (
∧

(W1→n))d+1, which must be equivalent to the supremum norm on

(
∧

(W1→n))d+1. Thus, there is a constant K2 > 0 depending on d, n and B, such that

sup
x∈B

∥

∥x̃ RA c(w)
∥

∥ ≥ K2

∥

∥RA c(w)
∥

∥,

and consequently, via (8.14), that

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ 1

2
n+1

2

max

{(

εk

δ′Tk−1

)

K2

∥

∥RA c(w)
∥

∥,
( ε

T

)k ∥
∥π(w)

∥

∥

}

. (8.15)

To continue, we consider two separate cases depending on the size of the rank

k. We first note that from Lemma 5.1 in [25], we get that for any n − d < k ≤ n for all

but finitely many w ∈
∧k

(�) we have that ‖RA c(w)‖ ≥ 1. Also, note that ‖RA c(w)‖ does

not vanish, as otherwise if ‖RA c(w0)‖ were zero, then, by the linearity of the map c(w),

we would get ‖RA c(λw)‖ = 0 for all integers λ, contrary to what we have already seen.

Consequently, there is a constant K3 > 0 depending only on A, such that

∥

∥RA c(w)
∥

∥ ≥ K3. (8.16)

Therefore, by (8.15), we get that

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ K2K3

2
n+1

2

(

εk

δ′Tk−1

)

. (8.17)

It follows from (8.2)–(8.4), that

εk

δ′Tk−1
=

(

22n
√

ndL
)

k
n+1 1

2

(

1
2(n+1)

−β
)

kt

2nt

2

1

2(t+2)(k−1)

≥ min
n−d<k≤n

(

22n
√

ndL
)

k
n+1 1

2

(

1
2(n+1)

−β
)

nt

2nt

2

1

2(t+2)(n−1)

= 1

22n−1
min

n−d<k≤n

(

22n
√

ndL
)

k
n+1

2

(

1−
(

1
2(n+1)

−β
)

n
)

t
.
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22 V. Beresnevich et al.

On picking β such that

1

2(n + 1)
− 1

n
< β <

1

2(n + 1)
, (8.18)

we obtain via (8.17), that for all subgroups Ŵ of � with rank n − d < k ≤ n

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ K2K3

2
5n−1

2

min
n−d<k≤n

(

22n
√

ndL
)

k
n+1

. (8.19)

We now obtain an analogous lower bound result for subgroups Ŵ of � with rank 1 ≤ k ≤
n − d. In this case, a consequence of (1.15) is that there exist constants 0 < θ ′, K4 < 1,

depending only on A, such for any w ∈
∧k

(�)

∥

∥RA c(w)
∥

∥ ≥ K4

∥

∥π•(w)
∥

∥

− (n−θ ′)+1−k
k . (8.20)

Also, ‖π(w)‖ ≥ ‖π•(w)‖ if 1 ≤ k ≤ n − d. Therefore, it follows from (8.15) that

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ max

{(

εk

δ′Tk−1

)

K2K4

∥

∥π•(w)
∥

∥

− (n−θ ′)+1−k
k ,

( ε

T

)k ∥
∥π•(w)

∥

∥

}

≥ κ
( ε

T

)k
, (8.21)

where κ is the solution to the equation

K2K4T

δ′ y− (n−θ ′)+1−k
k = y. (8.22)

In other words, κ := (K2K4)
k

n−θ ′+1
(

T
δ′
)

k
n−θ ′+1 and so it follows from (8.2)–(8.4) that

κ
( ε

T

)k
= (K2K4)

k
n−θ ′+1

(

T

δ′

)
k

n−θ ′+1
( ε

T

)k

= (K2K4)
k

n−θ ′+1 2
k

n−θ ′+1 2
(n+1)kt
n−θ ′+1

(

22n
√

ndL
)

k
n+1 1

2

(

1
2(n+1)

−β
)

kt

1

2(t+2)k

= (K2K4)
k

n−θ ′+1 2
k

n−θ ′+1
1

22k

(

22n
√

ndL
)

k
n+1

2

((

n+1
n−θ ′+1

−1
)

−
(

1
2(n+1)

−β
))

kt

= (K2K4)
k

n−θ ′+1

(

22n
√

ndL
)

k
n+1

2

(

1
n−θ ′+1

−2
)

k
2

((

n+1
n−θ ′+1

−1
)

−
(

1
2(n+1)

−β
))

kt
.
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On redefining β if necessary, namely so that both (8.18) and

1

2(n + 1)
− θ ′

(n − θ ′) + 1
< β <

1

2(n + 1)
, (8.23)

hold, it follows that

κ
( ε

T

)k
≥ K5 := min

1≤k≤n−d
(K2K4)

k
n−θ ′+1

(

22n
√

ndL
)

k
n+1

2

(

1
n−θ ′+1

−2
)

k
.

Note that (8.23) has a solution β since 0 < θ ′ < 1. This together with (8.21) implies that

for all subgroups Ŵ of � with rank 1 ≤ k ≤ n − d, we have that

sup
x∈B

∥

∥g̃tũxw
∥

∥ ≥ 1

2
n+1

2

K5. (8.24)

On combining (8.11), (8.13), (8.19), and (8.24), we have verified condition (KM2) with

ρ := min

{

1

2
,

K2K3

2
5n−1

2

min
n−d<k≤n

(

22n
√

ndL
)

k
n+1

,
1

2
n+1

2

K5

}

. (8.25)

We are now in the position to apply Theorem 7.1 to establish the desired

convergent sum statement (8.9).

8.3 The proof of (8.9)

With the choice of β ∈ (0, 1/2) made in the Section 8.2, let

0 < γ <
1

2(n + 1)
− β. (8.26)

Clearly, γ > 0 and note that for any δ ∈ [0, γ )

Ãt ⊆
{

x ∈ B : ν
(

H(x)λ
)

<
√

1 + d + n 2δt ε for some λ ∈ �\{0}
}

.

Here we make use of the fact that ν|W coincides with the Euclidean norm on W. Now on

applying Theorem 7.1 with ε′′ :=
√

1 + d + n 2δtε, where ε is given by (8.4), and C, α, and ρ
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24 V. Beresnevich et al.

are as given in (8.10) and (8.25), we have

∣

∣Ãt

∣

∣ ≤
∣

∣

∣

{

x ∈ B : ν(H(x)λ) <
√

1 + d + n 2δt ε for some λ ∈ �\{0}
}

∣

∣

∣

≤ (n + 1)(3dNd)n+1C(1 + d + n)
1

2d

(

ε

ρ

)
1
d

|B|

≤ (n + 1)(3dNd)n+1C(1 + d + n)
1

2d
1

ρ
1
d

(

22n
√

ndL
)

1
d(n+1) 1

2

(

1
2(n+1)

−(β+δ)

d

)

t

|B|. (8.27)

As δ < γ , it follows via (8.26) that δ + β < 1
2(n+1)

, and so

∞
∑

t=0

∣

∣Ãt

∣

∣ ≪
∞
∑

t=0

2
−
(

1
2(n+1)

−(β+δ)

d

)

t

< ∞.

By the Borel–Cantelli lemma, this establishes (8.9), as desired.

9 Verification of the Intersection Property for (H, I, �)

Let γ be given by (8.26) and let δ ∈ [0, γ ). Suppose t ∈ T := Z+ is such that t(n − δ) ≥ 1

and α := (a, a0), α′ := (a′, a′
0) ∈ A with α �= α′. Recall, A := (Zn \ {0}) × Z. Then, for any

x ∈ It(α, φδ(t)) ∩ It(α
′, φδ(t)), it is easily verified that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∣

∣(a0 − a′
0) + (x, x̃ A)(a − a′)

∣

∣ < 2×2δt

2nt

∥

∥∇(x, x̃ A) · (a − a′)
∥

∥ < 2
√

ndL × 2δt × 2t/2

∥

∥(a − a′)
∥

∥ < 2t+2

. (9.1)

Suppose for the moment that a = a′. Then a0 �= a′
0 as α �= α′. This implies, in view of

the first inequality of (9.1), that 1 ≤ |(a0 − a′
0)| < 1

2t(n−δ)−1 ≤ 1, which is a contradiction.

Thus, a �= a′ and so (a − a′, a0 − a′
0) ∈ A. The upshot of this together with (9.1) is that

x ∈ Ht(α
′′, φδ(t)) with α′′ = (a − a′, a0 − a′

0). This establishes (4.1) with φ∗ = φ = φδ and

thereby verifies the desired intersection property associated with the Inhomogeneous

Transference Principle.

10 Verification of the Contraction Property of ̺

With reference to Section 5, recall that showing ̺ is contracting with respect to (I, φδ) is

the third and final step in establishing Theorem 1.4. We start by observing that in view
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of [24, Corollary 3.3] and the fact that the inhomogeneous function θ restricted to H is

analytic (it is worth pointing out that this is the only point in the proof of Theorem 1.4

where we use the fact that θ |H is analytic), the functions

x 
→
∣

∣

∣
θ̂ (x) + a0 + (x, x̃ A)a

∣

∣

∣

and

x 
→
∥

∥

∥∇(θ̂(x) + (x, x̃ A) · a)

∥

∥

∥

defined on U are good at every point of U. Now pick a point x0 ∈ U. On using property

(G4) of good functions if necessary, we can choose an open ball B with centre at x0

and two positive constants C, α0 such that the above two functions are (C, α0)-good on

11B ⊆ U. Throughout this section we fix such a ball B.

For each t ∈ T and α ∈ A, consider the function Ft,α : U → R given by

Ft,α(x) := max

{

2nt
√

ndL 2t/2
∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣,
∥

∥∇(θ̂ (x) + (x, x̃ A) · a)
∥

∥

}

,

where L is given by (2.3). It follows at once, from the properties of good functions, that

for each t ∈ Tand α ∈ A we have that

Ft,α is (C, α0)-good on 11B. (10.1)

Next, observe that for any η ∈ R+ the first two inequalities appearing in (5.1) are

equivalent to the following single inequality

Ft,α(x) < η
√

ndL 2t/2.

Hence, for any t ∈ T, α = (a, a0) ∈ A and η ∈ R+

It(α, η) =
{

x ∈ U : Ft,α(x) < η
√

ndL 2t/2
}

if 2t ≤ ‖a‖ < 2t+1, (10.2)

and It(α, η) = ∅ otherwise. For any δ ∈ [0, γ ), consider the function φ+
δ : T → R+ given by

φ+
δ (t) := 2

δ+γ
2 t.
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Clearly, φ+
δ ∈ �. Also, for any t ∈ T we have that

It
(

α, φδ(t)
)

⊆ It
(

α, φ+
δ (t)

)

. (10.3)

In order to establish the desired contracting property, for all but finitely many

t ∈ T and all α ∈ A, we need to ensure the existence of a collection Ct,α of balls B centred

in B and an appropriate sequence {kt}t∈T of positive numbers satisfying (4.2), (4.3), and

(4.4) with φ = φδ and φ+ = φ+
δ . With this in mind, let (t, α) ∈ T × A and suppose that

It(α, φδ(t)) = ∅. Then the collection Ct,α = ∅ obviously suffices. Thus, we can assume that

It(α, φδ(t)) �= ∅ and in view of (10.2), it follows that

It
(

α, φ+
δ (t)

)

∩ B ⊆
{

x ∈ B :
∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣ <
1

2

(

n− δ+γ
2

)

t

}

. (10.4)

Assume for the moment that θ̂ is a linear map given by (1.16). Then, by (1.22) and (1.17),

we have that θ̂ (x) + a0 + (x, x̃A)a is a linear combination of x1, . . . , xd with at least one of

the coefficient being ≫ 2t(−n+γ ′) in absolute value, where 0 < γ ′ < n − ω(A; θ). Hence,

sup
x∈B

∣

∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣

∣ ≫ 2t(−n+γ ′),

where the implied constant will not depend on t. Therefore, in view of (10.4), choosing γ

within (8.26) so that we additionally meet the inequalities

0 < γ < γ ′ (10.5)

ensures that

It
(

α, φ+
δ (t)

)

∩ B � B ∀ t ≥ t0, (10.6)

where t0 ∈ N is a sufficiently large constant.

Now consider the case θ̂ is not a linear function. Then,

θ̂ (x) + a0 + (x, x̃ A)a = θ̂ (x) + x̃(Aa′ + a′′), (10.7)

where a′ = (ad+1, . . . , an)t and a′′ = (a0, . . . , ad)t. Thus, (10.7) is a linear combination

of the functions 1, x1, . . ., xd, θ̂ (x), which are linearly independent over R. Therefore,

(10.7) is not identically zero. Furthermore, the vector of the coefficients of this linear

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny124/5034667
by guest
on 11 June 2018



Inhomogeneous Dual Diophantine Approximation 27

combination is obviously of norm at least 1. Hence,

inf
(a,a0)∈Rn+1

sup
x∈B

∣

∣

∣θ̂ (x) + a0 + (x, x̃ A)a
∣

∣

∣ ≥ inf
‖η‖=1

sup
x∈B

∣

∣

∣η0 + η1x1 + · · · + ηdxd + ηd+1θ̂ (x)

∣

∣

∣ > 0,

(10.8)

where η = (η0, . . . , ηd+1) and the latter quantity is strictly positive since we take the

infimum of a positive continuous function over a compact set (the unit sphere). By (10.4)

and (10.8), we once again ensure that (10.6) holds for a sufficiently large choice of t0.

By (10.3) and the fact that It(α, φ+
δ (t)) is open, for any x ∈ It(α, φδ(t)) ∩ B, there is

a ball B′(x) centred at x such that

B
′(x) ⊆ It

(

α, φ+
δ (t)

)

. (10.9)

On combining (10.6), (10.9) and the fact that B is bounded, we find that there exists a

scaling factor τ ≥ 1 such that the ball B(x) := τB′(x) satisfies

B(x) ∩ B ⊆ It
(

α, φ+
δ (t)

)

∩ B � 5B(x) ∩ B (10.10)

and

5B(x) ⊂ 11 B. (10.11)

For t ≥ t0 and α ∈ A, we now let

Ct,α :=
{

B(x) : x ∈ It (α, φδ(t)) ∩ B
}

.

Then by construction and the left hand side (l.h.s) of (10.10), any such collection of balls

automatically satisfies conditions (4.2) and (4.3) with φ = φδ and φ+ = φ+
δ . Regarding

condition (4.4), we proceed as follows.

Let B ∈ Ct,α. By (10.2) and the right hand side of (10.10), we have that

sup
x∈5B

Ft,α(x) ≥ sup
x∈5B∩B

Ft,α(x) ≥
√

ndL 2
δ+γ

2 t 2t/2 . (10.12)

On the other hand,

sup
x∈5B∩It(α,φδ(t))

Ft,α(x) ≤
√

ndL 2δt 2t/2 . (10.13)

On combining (10.12) and (10.13), it follows that

sup
x∈5B∩It(α,φδ(t))

Ft,α(x) ≤ 2δt 1

2
δ+γ

2 t
sup
x∈5B

Ft,α(x) = 1

2
γ−δ

2 t
sup
x∈5B

Ft,α(x).
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This together with (10.11) and (10.1), implies that for any t ≥ t0 and α ∈ A

̺
(

5B ∩ It
(

α, φδ(t)
))

≤
∣

∣5B ∩ It
(

α, φδ(t)
)∣

∣

≤
∣

∣

∣

∣

{

x ∈ 5B : Ft,α(x) ≤ 1

2
γ−δ

2 t
sup
x∈5B

Ft,α(x)

}∣

∣

∣

∣

≤ C̃
1

2
γ−δ

2 α0t
|5B|, (10.14)

where C̃ > 0 is some constant depending on B. On using (10.11) and the fact that B is

centred in B, we have that |5B| ≤ cd̺(5B) for some constant cd depending on d only.

Hence, (10.14) implies that for all but finitely many t ∈ T

̺
(

5B ∩ It
(

α, φδ(t)
))

≤ cdC̃ 2− γ−δ
2 α0t ̺(5B).

This verifies condition (4.4) with φ = φδ and

kt := cdC̃ 2− γ−δ
2 α0t.

Furthermore, it is easily seen that
∑

t∈T kt < ∞ and thus all the conditions of the

contracting property are satisfied for the collection Ct,α as defined above.

11 The Divergence Theory: Proof of Theorem 1.5

The proof of Theorem 1.5 makes use of the following statement, which is a special and

simplified version of Theorem 3 appearing in [2].

Theorem 11.1. Let M := {f(x) : x ∈ U} ⊆ Rn be a manifold of dimension d

parameterised by a smooth map f : U → Rn defined on a ball U ⊆ Rd. Suppose there

exists an absolute constant C0 ≥ 1 such that for any ball B with 2B ⊆ U and any κ ∈ (0, 1),

we have that

∣

∣

∣

∣

∣

{

x ∈ B : ∃ (a, a0) ∈ Zn \ {0} × Z s.t.

∣

∣

∣

∣

∣

∣

∣a0 + f(x) · a
∣

∣ < κ
Qn

‖a‖ ≤ Q

}∣

∣

∣

∣

∣

≤ C0 κ |B| (11.1)
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for all sufficiently large Q. Let ψ be an approximation function and θ : Rn → R be a

function such that θ |M ∈ C2. Let s > d − 1 and suppose that

∑

a∈Zn\{0}
‖a‖

(

ψ(‖a‖n)

‖a‖

)s+1−d

= ∞ . (11.2)

Then

H
s
(

W
θ
n(ψ) ∩ M

)

= H
s(M) . (11.3)

Note that, by the monotonicity of ψ , (11.2) is equivalent to (1.23). Hence, armed

with Theorem 11.1, the proof of Theorem 1.5 reduces to establishing (11.1) with U ⊂ Rd

being an open subset, M = H and f given by (1.9). With this in mind, for any ball B such

that 11B ⊆ U, any κ ∈ (0, 1) and Q > 1, let

L
1(B, κ, Q) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x ∈ B : ∃(a, a0) ∈ Zn \ {0} × Z s.t.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣a0 + (x, x̃ A) · a
∣

∣ < κ
Qn

∥

∥∇(x, x̃ A) · a
∥

∥ ≥
√

nd‖a‖
2r

‖a‖ ≤ Q

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(11.4)

and

L
2(B, κ, Q) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x ∈ B : ∃(a, a0) ∈ Zn \ {0} × Z s.t.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣a0 + (x, x̃ A) · a
∣

∣ < κ
Qn

∥

∥∇(x, x̃ A) · a
∥

∥ <

√
nd‖a‖
2r

‖a‖ ≤ Q

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (11.5)

We note that the set appearing in (11.1) is contained in the union of the “large derivative”

set L1(B, κ, Q) and the “small derivative” set L2(B, κ, Q). Thus,

l.h.s of (11.1) ≤
∣

∣L
1(B, κ, Q)

∣

∣ +
∣

∣L
2(B, κ, Q)

∣

∣. (11.6)

As in the proof of Theorem 1.4, estimating the measure of the large derivative set is

relatively easy and makes use of Proposition 3.1. To begin with, observe that

L
1(B, κ, Q) =

⋃

a∈Zn, 0<‖a‖≤Q

L
1(a, B, κ, Q),
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where for any a ∈ Zn \ {0},

L
1(a, B, κ, Q) :=

⎧

⎨

⎩

x ∈ B :

∣

∣

∣

∣

∣

∣

∣

∣a0 + (x, x̃ A) · a
∣

∣ < κ
Qn

∥

∥∇(x, x̃ A) · a
∥

∥ ≥
√

nd‖a‖
2r

⎫

⎬

⎭

.

Now fix a ∈ Zn \ {0} and with reference to Proposition 3.1, let F(x) = (x, x̃A) · a for x ∈ 2B

and δ′ = κ Q−n. By definition,

M ≥ 1

4r2
,

where M is given in (3.2) and so it follows from Proposition 3.1 that
∣

∣

∣L
1(a, B, κ, Q)

∣

∣

∣ ≤ Kd
κ

Qn
|B|.

In turn, this implies that
∣

∣

∣L
1(B, κ, Q)

∣

∣

∣ ≤ Kd
κ

Qn
(2Q + 1)n |B| ≤ 3nKd κ |B|. (11.7)

We now turn our attention to estimating the measure of the small derivative set

L2(B, κ, Q). Let t be the unique integer satisfying 2t ≤ Q < 2t+1 and δ satisfy 0 < δ < γ ,

where γ is as defined earlier. For t sufficiently large we obviously have that

L
2(B, κ, Q) ⊂ At , (11.8)

where At is defined at the beginning of Section 8. Then, as a result of (8.8) and (8.27), we

have that
∣

∣

∣L
2(B, κ, Q)

∣

∣

∣ ≤ κ |B| (11.9)

provided that t is sufficiently large.

The desired estimate (11.1) now follows from (11.6), (11.7), and (11.9) with

C0 := 3nKd + 1.

This thereby completes the proof of Theorem 1.5.
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