
This is a repository copy of Variability Management in Safety-Critical Software Product
Line Engineering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130928/

Version: Accepted Version

Proceedings Paper:
De Oliveira, André Luiz, Braga, Rosana T. V., Masiero, Paulo C. et al. (3 more authors)
(2018) Variability Management in Safety-Critical Software Product Line Engineering. In:
International Conference on Software Reuse.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Variability management in safety-critical software

product line engineering

A. L. de Oliveira1, R. T. V. Braga2, P. C. Masiero2, Y. Papadopoulos
3
, I. Habli4, T. Kelly4

1 Federal University of Juiz de Fora, Juiz de Fora, Brazil
2University of São Paulo, São Carlos, Brazil
3University of Hull, Hull, United Kingdom

4University of York, York, United Kingdom
andre.oliveira@ice.ufjf.br,{rtvb,masiero}@icmc.usp.br,

y.i.papadopoulos@hull.ac.uk,{ibrahim.habli,tim.kelly}@york.ac.uk

Abstract. Safety-critical systems developed upon SPLE approach have to address safe-
ty standards, which establish guidance for analyzing and demonstrating dependability
properties of the system at different levels of abstraction. However, the adoption of an
SPLE approach for developing safety-critical systems demands the integration of safety
engineering into SPLE processes. Thus, variability management in both system design
and dependability analysis should be considered through SPLE life-cycle. Variation in
design and context may impact on dependability properties during Hazard Analysis and
Risk Assessment (HARA), allocation of functional and non-functional safety require-
ments, and component fault analysis. This paper presents DEPendable-SPLE, a model-
based approach that extends traditional SPLE methods, to support variability model-
ing/management in dependability analysis. The approach is illustrated in a case study
from the aerospace domain. As a result, the approach enabled efficient management of
the impact of design and context variations on HARA and component fault modeling.

Keywords: Variability management, safety-critical systems, dependability.

1 Introduction

Safety-critical systems (SCS) are computer systems in which the occurrence of failures may
lead to catastrophic consequences. Due to the benefits of large-scale reuse, Software Product
Line Engineering (SPLE) and component-based approaches have been largely adopted by the
industry in the development of SCS, especially in automotive [7, 32] and aerospace domains
[8, 14]. However, safety-critical systems developed upon an SPLE approach have to address
guidance defined in safety standards, e.g., ISO 26262 [18] for automotive, DO-178C [31] and
SAE ARP 4754A [10] for aerospace. These standards establish that dependability properties
of a SCS should be analyzed and demonstrated at different levels of abstraction before its
release for operation. The adoption of an SPLE approach for developing safety-critical sys-
tems demands the integration of safety engineering into SPLE processes [14, 28]. Composi-
tional dependability analysis techniques [6, 27, 30] provide the automated support for safety
engineering, and seamless integration between system design and dependability analysis.
Thus, system design and dependability analysis can be performed in a single model, contrib-
uting to reduce the complexity of the product line dependability analysis. Whereas safety-
critical SPLE involves safety engineering, variability management in dependability analysis
should be considered through software product line (SPL) life-cycle. Dependability analysis
can be defined as the identification, early on the design, of potential threats to system reliabil-

mailto:andre.oliveira@ice.ufjf.br,%7brtvb,masiero%7d@icmc.usp.br
mailto:y.i.papadopoulos@hull.ac.uk

2

ity, availability, integrity, and safety, their potential causes, and measures to avoid or minimize
their effects.

In safety-critical SPLE, dependability analysis should be performed aware of the impact of
variation in the design and usage context on dependability properties to enable the systematic
reuse of both architectural design and dependability information. Variation in the system de-
sign and usage context may raise different hazards, with different causes, and different risk
that they may pose for the overall safety. As dependability properties may change according
to the selection of product variants and their context, variability in dependability modeling
should also be managed in safety-critical SPLE. Thus, mapping links between context and
design variations and their realization in the dependability analysis, i.e., Hazard Analysis and
Risk Assessment (HARA), and component fault modeling, should be defined in the SPL
variability model. Existing variability management techniques [1, 15, 17, 32, 33, 34] provide
support for managing variation at requirements, architecture, components, source code, and
test cases. However, these techniques were not originally designed/or used to support variabil-
ity management in dependability models developed with the support of compositional analy-
sis techniques, e.g., OSATE AADL [6], HiP-HOPS [30], and CHESS [27].

Variability management in SPL dependability analysis/modeling enables the traceability of
the variation in the design and context throughout dependability assets, and the systematic
reuse of both architectural components and dependability information. Such reuse contributes
to reduce the complexity, effort and costs in performing dependability analysis for specific
product variants, since such analysis is not performed from scratch. Therefore, with the sup-
port of compositional safety analysis techniques, artefacts such as fault trees and Failure
Modes and Effects Analysis (FMEA), required by safety standards for certification of safety-
critical systems, can be automatically generated for a given product variant from the reused
dependability information. Dependability analysis can only be treated as a product line asset if
the variability model contains information about variation points and their realization in the
dependability model. Therefore, the dependability model should be included in the SPL core
assets, to enable the systematic reuse of dependability information together with other SPL
assets, reducing the costs of generating safety assets for a larger number of product variants
built around the SPL core assets. Although the reuse of dependability information provided by
an SPLE approach is an attractive idea, existing approaches to support it are focused on the
reuse of fault trees and FMEA [5, 12, 13, 26, 32], which can be automatically generated from
reusable product line dependability analysis information. This paper presents DEPendable-
SPLE (DEPendable Software Product Line Engineering), a model-based approach that ex-
tends traditional SPLE methods, to address dependability/safety analysis in SPLE, enhancing
domain engineering with HARA, functional safety and integrity requirements allocation,
component fault modeling activities, the support for variability modeling/management in
dependability analysis, and application engineering with variant-specific dependability analy-
sis, product derivation, fault trees and FMEA synthesis. This is required for certification of
safety-critical systems in compliance with safety standards, e.g., ISO 26262 Parts 3 and 4 for
automotive, and SAE ARP 4754A safety process for avionics. The application of the pro-
posed approach is illustrated in a realistic unmanned aircraft system SPL. The proposed ap-
proach distinguishes from traditional SPLE methods by considering the impact of de-
sign/usage context variations on dependability analysis, thus, integrating variant management
into compositional dependability analysis. Such integration allows the systematic reuse of
both SPL architecture and dependability information. The remaining of this paper is organized
as follows. Section 2 presents an analysis of existing variability types in safety-critical SPLE

3

and their relationships. Section 3 presents the DEPendable-SPLE approach to support varia-
bility management in dependability analysis, and its application in a realistic aerospace SPL.
Sections 4 and 5 detail related work, conclusion, and future work.

2 Product and Usage Context Variation and their Impact

Variability in safety-critical SPLs can be: system (product) or contextual variability [17].
System variability can occur in: capability, operating environment, domain technology, im-
plementation technique, or quality attribute features [19, 24]. Capability comprises features
regarding end-user visible characteristics. Operating environment comprises features associat-
ed with the target environment where a given software product is operated. Domain technolo-
gy relates to features representing specific domain techniques or tools that can be used to
implement the SPL assets. Implementation techniques are features regarding specific imple-
mentation strategies, e.g., redundant or non-redundant control system architectures in the
avionics domain. Quality attribute refers to features that the SPL products must address such
as usability, maintainability, and data integrity checking. Usage context features relate to
where and how the SPL is used. Such classification has been considered through this paper.
Combinations among these features act as key driver during safety-critical SPL design, de-
pendability analysis/modeling, and product derivation/instantiation. Such multi-perspective
features and combinations among them have a direct influence in SPL architectural decisions
and dependability analysis aimed at safety certification. The following subsections presents
the Tiriba Flight Control SPL, used through this paper, and an analysis of the impact of varia-
tion in product and usage context features on the SPL design and dependability analysis. Such
analysis, which is one of the contributions of this paper, was performed by analyzing the fol-
lowing system architectures and their respective dependability models: aircraft braking system
[11], door controller [25], Tiriba UAV [33], and automotive braking system [29] product
lines. Their architecture models were specified in AADL and Simulink, and their dependabil-
ity models were specified in AADL/Error Annex, and HiP-HOPS analysis techniques.

2.1 Tiriba Flight Control Product Line

Tiriba Flight Control avionics product line (TFC-SPL) is part of the Tiriba UAV-SPL [2],
which comprises a control subsystem with the following goals: to start the flight mode (direct,
stabilized, or autonomous), processing and setup flight commands, keeping flight conditions,
and executing commands sent by the navigation subsystem. Two different TFC product vari-
ants in different usage contexts were considered through this paper. Although Tiriba was
originally designed in MATLAB/Simulink, to illustrate the integration of variability manage-
ment and compositional dependability analysis techniques, TFC architectural and dependabil-
ity models were specified in AADL and AADL Error Annex [6]. Base Variability Resolution
(BVR) toolset [34] and the developed AADL/Error Annex adapter were used to support vari-
ability management in both architecture and dependability models. TFC-SPL was designed
following an extractive strategy by analyzing the original Tiriba flight control subsystem Sim-
ulink model [33]. TFC-SPL comprises the Pilot Mode variation point, which contains four
pilot mode options/variants: Manual Pilot is mandatory, Assisted Pilot, Autonomous Pilot, and
Autopilot are optional. Manual Pilot mode is a human operator sending commands to the
unmanned aircraft vehicle (UAV) from a ground control station. Autopilot executes a pre-
defined route. Assisted Mode allows the operator sending commands to the UAV configured
with Autopilot. Autonomous Pilot allows the UAV performing actions according to its current

4

environmental conditions captured by pressure sensors. Assisted Pilot, Autonomous Pilot, and
Autopilot can be combined into several different ways, allowing seven different flight control
variants. TFC product variants can operate in a range of different contexts defined by combin-
ing Airspace, Application, and UAV Size variation points [2]. The composition of pilot mode
and usage context variants leads to 84 different TFC variants. Since it would be prohibitive
considering all these variants to perform dependability analysis, only TFC manual and auton-
omous (TFC-MAT) and all pilot modes (TFC-ALL) product variants, Controlled and Uncon-

trolled airspace context variants, illustrated in Fig. 1a, were considered through this paper.
TFC-SPL architecture comprises 4 subsystems and 14 components, which are composed

by 252 model elements and subcomponents. An excerpt of the TFC SysML main block dia-
gram is shown in Fig. 1b. Mode Switch encapsulates the pilot mode variation point, whilst
Command Switch encapsulates the variation point inherent to the source from the pilot com-
mands, e.g., manual pilot subsystem, sent to the UAV. Basic Command Processor (BCP) and
its ports represent the realization of the Autonomous pilot mode. PWM Decoder output port
connected to Command Switch block represents the realization of the Manual Pilot mode in
the design. The realization of Autopilot is given by: Autopilot subsystem, PWMDecod-

er.FlightControls output connected to FlightStabilizer and CommandSwitch model elements,
and FlightStabilizer.AutopilotSettings output port connected to AssistedModeSwitch. Finally,
ModeSwitcher.ControlMode output port connected to AssistedModeSwitch and Com-

mandSwitch elements represent the realization of the Assisted Pilot mode.

Fig. 1. Impact of product/usage context variations on design and dependability analysis.

5

2.2 The Impact of Variation on SPL Design

Interactions among usage context features define constraints that may impact on design deci-
sions aiming safety certification, in which different design choices must be taken according to
the targeted context. In both non-critical and safety-critical SPLs, variation points and their
variants defined in a feature model have a directly impact on the derivation of variant-specific
structural/architectural and behavioral models. In the development of safety-critical systems,
the system architecture is often expressed in data-flow oriented models, and the system behav-
ior is expressed in Finite State Machines (FSMs). In data-flow oriented architectural models,
structural variability can be found in systems, subsystems, components, their ports and con-
nections via flows from input to output ports, which may change according to the targeted
usage context. For example, considering the TFC-SPL [33], developed upon Simulink model
blocks, the selection of TFC-MAT variant from Pilot Mode variation point (Fig. 1a) implies in
the selection of PWM Decoder and Basic Command Processor components, their ports and
connections (Fig. 1b) during the product derivation process.

The realization of TFC-MAT and other product variants in the structural model are high-
lighted in Fig. 1 with blue lines linking features (Fig. 1a) to their realization in architectural
components and their ports (Fig. 1b). It is important to highlight that variation in the usage
context combined with variation in product features, and isolated variation in the usage con-
text may also impact on the derivation of variant-specific structural and behavioral models.
For example, considering the TFC-SPL, the selection of Pilot Mode product and Airspace
usage context variants impacts on the derivation of redundant or non-redundant components
in a variant-specific architecture model. Still in TFC-SPL, product features associated with
assisted, autopilot, autonomous, and manual pilot modes, i.e., all pilot modes (TFC-ALL)
product variant (Fig. 1a), are materialized in the architecture by all Tiriba flight control com-
ponents, their ports and connections (Fig. 1b). Architectural variation inherent to TFC-MAT
and TFC-ALL variants and usage context variation can be further propagated throughout
Tiriba mission controller behavioral model expressed in a FSM (Fig. 1c).

In safety-critical SPLE, variation in product and usage context features may also impact on
the system behavior, which can be expressed in a FSM. Thus, FSM states, state transitions,
and events that trigger state transitions may vary according to the selection of the targeted
product/usage context. Variation in FSM can directly impact on elements of the system archi-
tecture, changing data port values, configuration of components, and their connections. FSM
variability can be firstly found in the number and in the structure of the state flows associated
with different product variants and their usage context. Variation in a state flow can be found
in its input and output data, states, and state transitions. A State can have different local varia-

bles with different values, and it can be involved in different transitions according to the tar-
geted product and usage context variants. State Transition variation can be found in source
and target states, in the event that triggers the transition, its execution priority order and out-

going events. A transition Event may be triggered by different mode/states with different
guard conditions. A guard condition is a condition that should be satisfied for the transition
from a source state to a target state. Transition events may also have timing constraints. For
example, an event is dispatched on an interval of one second after a system failure. Effects of a
transition event represent changes in state variables, which might vary according to the tar-
geted product variant and context. Finally, state transitions may dispatch different outgoing

events affecting both behavior and structure of a given product variant. Examples of outgoing

events are changes on states and variables from other FSMs, and changes in structural ele-
ments such as systems, subsystems, subcomponents, their connections, and port values.

6

Variation in FSMs can be found in Tiriba UAV optional mission-related features [33].
Variability in the selection of these features was specified in a FSM that defines the Tiriba
mission controller using a mechanism of transitions conditioned to variables that define varia-
bility, as illustrated in Fig. 1c. Thus, when Entry Segment Simulation is selected, a simulation
is performed whenever the UAV starts a new mission segment (Fig. 1c), in order to find out
the suitable approach to switch between two mission segments. When Feather Threshold

feature is selected, the UAV route is adjusted whenever the aircraft deviates more than a cer-
tain limit from the planned mission route, i.e., correction start state transition in the FSM [33].
Finally, when Failure Handler is selected, the UAV is able to return to specific positions
where a picture was not captured during the mission [33]. The activation/deactivation of mis-
sion controller features are defined by alternative flows with Boolean conditional variables
(Fig. 1c), which allow enabling/disabling flows and FSM states according to the selected
product/context variants. Thus, for each mission-related feature, there is a variable whose
value defines which FSM states and transitions will take place in the final product. SimEnable
is a Boolean variable that controls the activation/deactivation of the behavior related to the
Entry Segment Simulation. When this feature selected, this variable is set with true value. The
same is valid for selection/deselection of Failure Handler and Feather Threshold features.

Usage context features may have influence in the selection of product features that impact
on the FSMs, changing the system behavior. Thus, when uncontrolled airspace context and
TFC-ALL variants are chosen, SimEnable variable is set true activating the transition to the
Simulating state in a variant-specific mission controller FSM. When controlled airspace con-
text and TFC-MAT variants are selected, Feather Threshold and Failure Handler variables
are set true, activating the correction start and good simulation state transitions.

2.3 The Impact of Variation on SPL Dependability Analysis

In addition to the impact of product and usage context variants on architectural and behavioral
models in conventional SPLs, such variation may be propagated throughout dependability
analysis in safety-critical SPLs. Thus, variation in SPL architectural and behavioral models,
defined in product and usage context variants, can be further propagated throughout the SPL
safety lifecycle, impacting on HARA, and allocation of safety requirements (i.e., Functional-
Safety Concept in ISO 26262). Fig. 1 illustrates the impact of variation in Tiriba SPL design,
i.e., architectural (i.e., block diagram in Fig. 1b) and behavioral (i.e., FSM in Fig. 1c) models
and usage context (Fig. 1a), on product line HARA and allocation of safety requirements (Fig.
1d), and their propagation throughout component failure modeling (Fig. 1e), Fault Tree Anal-
ysis (FTA) and FMEA (Fig. 1f) dependability-related activities required to achieve safety
certification. The production of dependability-related artefacts contributes to increase the costs
of the system development. Thus, understanding how SPL product and usage context variants
impact on dependability analysis contributes to achieve the systematic reuse of both design
and dependability artefacts, reducing the certification costs of individual SPL products. Com-
binations among product and usage context variants may be useful to derive scenarios, which
can be used to guide dependability analysis in safety-critical SPL architectures. Thus, different
failure conditions can lead to system-level failures (hazards) with different probability, severi-
ty, criticality levels, and different safety requirements can be allocated to avoid/minimizing
hazard effects on the overall safety according to design choices and targeted contexts. Safety
requirement is the required risk reduction measures associated with a given system failure or
component failure. Variability types in dependability analysis are detailed in the following.

7

Variability in HARA. During hazard analysis, different hazards and hazard causes can
emerge according to the targeted product and usage context variants. Fig. 1d shows an exam-
ple of variation in Tiriba SPL hazard analysis and risk assessment. The causes for no pilot

commands hazard are omission failures in FailSafeController and PWMDecoder component
outputs when TFC-MAT product and controlled airspace usage context variants are chosen
(Fig. 1a). On the other hand, omission failures in FailSafeController, ModeSwitcher, and
PWMDecoder component outputs are the causes for the occurrence of the same hazard when
TFC-ALL variant and uncontrolled airspace context are selected. In risk assessment, variation
can be found in probabilistic criteria, e.g., likelihood and severity in SAE ARP 4754A avion-
ics standard, used to classify the risk posed by each system hazard for the overall safety. In
Tiriba SPL risk assessment, different risk probability and severity were assigned to no pilot

commands hazard, according to the targeted product and usage context variants. Thus, the
probability of occurrence of an omission of pilot commands, i.e., no pilot commands hazard,
is 10-9 per hour of operation, with a catastrophic severity when TFC-MAT product and con-

trolled airspace usage context variants are chosen. On the other hand, the probability of occur-
rence of this hazard is 10-7 per hour of operation with a hazardous severity when TFC-ALL
product and uncontrolled airspace context variants are chosen.

Variability in the Allocation of Safety Requirements and Integrity Levels. Still in
HARA, after classifying the risk posed by each identified hazard and contributing component
failure mode, variation can be found in the allocation of functional safety requirements and
Safety Integrity Levels (SILs) to mitigate the effects of system or component failures on the
overall safety. Variation in functional safety requirements can be found in architectural deci-
sions that must be taken to eliminate or minimizing the effects of a system or component
failure, which might change according to the targeted product and usage context variants. For
example, in the Tiriba UAV product line, the control system architecture can be Redundant
when controlled airspace usage context is chosen. A non-redundant architecture can be
adopted when the UAV is intended to operate in an uncontrolled airspace [2].

Variation in the allocation of SILs relates to the variation on the mitigation mechanisms to
handle the risk posed by a given system hazard, component failure mode, or component,
which might change according to the targeted product and usage context variants. This may
impact on the SPL development process, in which different system engineering activities, e.g.,
verification, validation, and testing should be carried out to address the targeted level [3].
Process-oriented safety standards, e.g., DO-178C and ISO 26262, define a set of safety objec-
tives that should be addressed per SIL. Safety objectives define a set of activities to be per-
formed and artefacts to be produced. DO-178C defines five levels of integrity named Devel-
opment Assurance Levels (DALs). Level A is the highest stringent integrity, and level E is the
less stringent. ISO 26262 automotive standard also defines five levels of safety integrity where
QM is the less stringent and level D is the stringent. Addressing higher stringent SILs demand
the most stringent safety objectives, system engineering activities, and software artefacts,
increasing the development costs. Allocating less stringent SILs to less-critical SPL compo-
nents and more stringent SILs only to highly critical components can contribute to reduce the
SPL development costs. An example of variation in integrity levels is observed in the alloca-
tion of DALs to mitigate the effects of the occurrence of no pilot commands hazard, during
the Tiriba SPL dependability analysis (see Fig. 1d). So, DAL A should be assigned to mitigate
the effects of this hazard in TFC-MAT variant operating in a controlled airspace. On the other
hand, DAL B should be assigned to mitigate the effects of this hazard in TFC-ALL variant
operating in an uncontrolled airspace. Such variation may be further propagated throughout

8

the decomposition of SILs allocated to hazards throughout contributing failures modes and
components. Variation in SIL decomposition, which can be performed with automated tool
support [30], is outside the scope of this paper. It is important to highlight that when develop-
ing reusable components, all variability aspects of a component should be considered from the
initial stages of the SPL lifecycle, and the most stringent SIL assigned to that component in
different contexts should be assigned to that component to ensure its safety usage across the
SPL. Thus, product and contextual variability will not change the mitigation mechanisms for
that component in specific product variants.

Variability in Component Failure Modeling. In the safety lifecycle, component failure
modeling is intended to identify how components contribute to the occurrence of potential
system-level failures identified during hazard analysis. Variation in component failure model-
ing can be found in component output deviations that contribute in some way for the occur-
rence of system failures, which might change from a targeted product/context variant to an-
other. Different input deviations, internal failures, or combinations among them (named fail-

ure expression), which contribute to the occurrence of a given output deviation, may also be
raised in different product/context variants. Variation in the design, i.e., in architecture and
behavior models, may also impact on how component failures propagate throughout other
components. Thus, output deviations of a given component may be propagated throughout
different components according to the chosen product/context variants. Different prod-
uct/context variants lead to different connections among components, via their ports, so it may
change the way in which failures are propagated throughout the system architecture.

Variation in HARA can be propagated throughout how components contribute to the oc-
currence of system hazards. Tiriba Basic Command Processor (BCP) component failure
modeling, shown in Fig. 1e, illustrates examples of variation in output deviations and combi-
nations among component failures leading to output deviations in two different prod-
uct/context variants. Omission-autopilotSettings output deviation may be raised when TFC-
MAT product and controlled airspace context variants are chosen, whilst one additional out-
put deviation, i.e., omission-mode, can also be raised when TFC-ALL product and uncon-

trolled airspace context variants are chosen. Such variation can also be propagated throughout
the causes that lead to the occurrence of a given component output deviation. The causes of an
output deviation can be stated in a failure expression using logical operators (AND, OR,
NOT) that describe how combinations among internal and input failures of a component may
lead to the occurrence of an output deviation. Such variation can be found in the causes of the
Omission-autopilotSettings output in both product variants. An internal omission failure in
BCP component or an omission in both BCP inputs can raise an Omission-autopilotSettings
output in TFC-ALL variant. Conversely, an internal omission failure in BCP or an omission
failure in one of its inputs may raise an Omission-autopilotSettings in TFC-MAT variant.

Probabilistic criteria values, e.g., likelihood, severity, failure and repair rates, which can be
assigned to a given hardware component, may also vary according to the targeted product and
usage context variants. An example of such variation was found in the assignment of failure
rates to Barometric Processor hardware component from the Tiriba UAV-SPL. The compo-
nent failure rate is 10-9 per hour of operation when TFC-MAT variant is chosen, and 10-7 per
hour when TFC-ALL variant is selected. Variation in component failure modeling can be
further propagated throughout fault trees and FMEA dependability artefacts, which can be
automatically generated, with the support compositional dependability analysis techniques [6,
27, 30], from HARA and component failure modeling. Such variation can be seen in fault tree
gates and nodes (Fig. 1f), and in the way how components contribute to hazards in a FMEA

9

table from different product variants [5, 28, 29, 32]. Thus, variation in hazard causes can be
evidenced in the structure of a fault tree as illustrated in Fig. 1f, in which PWMDecoder and
FailSafeController component output deviations are top-level failures of no pilot commands
fault tree when TFC-MAT variant is chosen. On the other hand, an output deviation in
ModeSwitcher component together with other two aforementioned output deviations, are the
top-level failures of no pilot commands fault tree when TFC-ALL product variant is chosen.
Finally, variation in HARA, allocation of safety requirements, component failure modeling,
fault trees and FMEA results are propagated throughout the structure of a variant-specific
assurance case. An assurance case is a defensible, comprehensive, and justifiable argument
supported by a body evidence which demonstrate that the system acceptably safe to operate in
a particular context [22]. Assurance case is recommended by standards for certifying safety-
critical systems in both automotive [18] and aerospace [10] domains. The analysis of the im-
pact of product and context variants in assurance case is outside the scope of this paper.

3 DEPendable-SPLE

Interactions among product and usage context features can be used to establish safety certifi-
cation criteria that might impact on SPL architectural decisions and dependability analysis.
This section presents DEPendable-SPLE, a model-based approach that extends traditional
SPLE methods, with support for HARA, allocation of safety requirements and component
failure modeling dependability-related activities, variability modeling/management in both
SPL domain and application engineering phases as illustrated in Fig. 2. In domain engineer-
ing, four steps related to dependability analysis and variability realization modeling were
defined. The last step extends the variability modeling step, established in conventional SPLE
methods, by considering feature realization in the dependability model. This is intended to
support the systematic reuse of dependability information in SPL application engineering.

In SPL application engineering, the following steps were defined: product requirements
analysis (i.e., product feature modeling), product derivation, which extends conventional
SPLE product derivation process by linking features to their realization in the dependability
model, and dependable-related activities: product dependability analysis, and fault trees and
FMEA synthesis required to achieve the systematic reuse of dependability information, reduc-
ing product safety certification effort and costs. Compositional dependability analysis [6, 27,
30] and variability management techniques [1, 32, 33, 34] can be used to support DEPenda-
ble-SPLE dependability analysis and variability management steps, both in domain and appli-
cation engineering. DEPendable-SPLE is applicable independently from the underlying vari-
ability management and compositional dependability analysis techniques. It should be used
together with traditional SPLE methods [4, 19, 23] for developing dependable safety-critical
SPL architectures. The steps shown in Fig. 2 are described and illustrated, by considering TFC

Fig. 2. An overview of DEPendable-SPLE approach.

10

-MAT and TFC-ALL product variants from TFC-SPL, in the following.

3.1 DEPendable-SPLE: Domain Engineering

In the first step, dependability analysis scenarios are defined from the analysis of interactions
among product and usage context features. After scoping SPL dependability analysis to a set
of targeted scenarios, HARA, allocation of safety requirements, and component failure model-
ing dependability-related steps are performed iteratively and incrementally for each scenario.
Finally, features are linked to their realization in architecture and dependability models during
safety-critical SPL variability realization modeling.

Identification of Candidate Scenarios for SPL Dependability Analysis. Inputs: the fea-
ture model containing the specification of product and usage context features and their interac-
tions, SPL structural and behavioral models, and analyst’s domain knowledge. Purpose: iden-
tifying, from the analysis of interactions among product and usage context features, variants
(scenarios) relevant for the stakeholders, by combining features that may be considered to
guide SPL dependability analysis. The identification of scenarios encompasses the following
tasks: i) to identify combinations among product features, which represent system functions
and their interactions in structural and behavioral models, to derive product variants; ii) for
each identified product variant, combinations among features are analyzed to establish poten-
tial usage contexts in which the given product variant can operate; and finally, iii) by combin-
ing the identified product/context variants, different scenarios can be derived. For example,
from the analysis of TFC-SPL product/context variants, a range of candidate scenarios can be
derived. Scenarios might support safety analysts in extracting the required domain knowledge
to perform SPL dependability analysis. However, since it would be prohibitive performing
such analysis covering all product/context variants, the analyst’s domain knowledge, and rele-
vant product variants for the stakeholders can be used as criteria to assess candidate scenarios
to perform dependability analysis [3, 28, 29]. Outputs: combinations among product and usage
context variants relevant for the stakeholders. In TFC-SPL, the TFC-MAT/Controlled and
TFC-ALL/Uncontrolled scenarios were considered to perform dependability analysis.

Hazard Analysis and Risk Assessment. Inputs: targeted scenario relevant for the stake-
holders, SPL structural/architectural and behavioral models. Purpose: After choosing a given
scenario earlier identified at the previous step, HARA can be performed aiming at identifying
combinations among component failures leading to system-level failures named hazards.
Hazards can be specified by means of logical expressions involving potential failures in SPL
architectural components that might lead to system failures. These failures are generally stated
in terms of failure types that typically include: omission, commission, value, early or late
failure modes. Firstly, interactions among core architectural components are analyzed to iden-
tify potential hazards that can emerge from such interactions. Later, optional, alternative, and
mutual inclusive/exclusive architectural components, representing variation defined in the
targeted scenario, are analyzed to identify potential hazards that can emerge in such scenario.
This step results in a list of variant-specific hazards. Next, risk assessment is performed to
estimate/classify, based on probabilistic risk tolerability criteria defined in the targeted safety
standard, the risk posed by each identified hazard. Outputs: list of identified hazards and risk
classification for each analyzed scenario. TFC-SPL HARA was performed with the support of
domain experts, by considering TFC-MAT and TFC-ALL and their usage context, which
were analyzed from the perspective of SAE ARP 4754A risk assessment process. During
HARA, variation in no pilot commands and value pilot commands hazards and their risks
were identified in both two aforementioned variants (Fig. 1d) as described in Section 2.3. No

11

pilot commands can emerge in a TFC variant whenever both pilot modes, e.g., manual pilot
and autopilot, are omitting their outputs. An incorrect value for pilot commands can emerge
when all pilot modes provide wrong flight commands, e.g., wrong coordinates.

Allocation of Safety Requirements. Inputs: HARA results. Purpose: From the analysis of
HARA results, functional safety requirements and SILs are allocated aimed at eliminating or
minimizing hazard effects on the overall safety. SILs should be allocated to each identified
hazard according to their risk classification. Moreover, SILs allocated to system hazards can
be further decomposed throughout contributing components and their failure modes. Such
decomposition can be performed with automated support of SIL decomposition genetic/meta-
heuristic algorithms [30]. Finally, allocation of functional safety requirements aims at identify-
ing system functions that can be added to the system architecture for eliminating or minimiz-
ing the impact of a hazard or a component failure on the overall safety. Redundancy is an
example of functional safety requirement. When a new functional safety requirement is added
to the SPL architecture, dependability analysis should be performed again to evaluate the im-
pact of the newer functionality on the overall safety in the context of the targeted scenarios.
Output: system functions added to the system architecture, and a set of SILs assigned to miti-
gate hazards and component failures. In TFC-SPL, DALs from different stringencies were
assigned to hazards in different TFC variants (Fig. 1d), as described in Section 2.3.

Component Failure Modeling. Inputs: SPL architecture model and HARA results. Pur-

pose: From the analysis of the identified hazards that can emerge in a particular scenario, as-
sumptions about how architectural components can fail and contribute to the occurrence of
each identified hazard can be made. In this step, firstly, a particular component is chosen, fol-
lowed by the identification of potential output deviations that can contribute to the occurrence
of each identified hazard. Next, potential causes of each identified output deviation should be
specified by analyzing potential combinations among component internal failures and input
deviations that may lead to the occurrence of each output deviation. Such analysis continues
whilst there are architectural components to be analyzed. Output: a set of component failure
data showing how components can contribute to the occurrence of system hazards in each
targeted scenario. In TFC-SPL, different component failures may contribute to the occurrence
of the identified system hazards in different TFC variants and usage contexts. Thus, compo-
nent failure modeling was carried out, and 106 failure logic expressions were added to 47
Tiriba flight control model elements. Fig. 1e illustrates an example of variation in the specifi-
cation of failure logic for the BCP component. Different output deviations may be raised from
this component in different product variants. Omission of AutopilotSettings and Mode outputs
may be raised, contributing to the occurrence of hazards when TFC-ALL variant is chosen.
However, only an omission of AutopilotSettings output contributes to the occurrence of haz-
ards when TFC-MAT product variant is chosen. Besides, different combinations among com-
ponent input deviations and internal failures contribute to the occurrence of Omission-

autopilotSettings output in both TFC-MAT and TFC-ALL variants (column Failure Expr. in
Fig. 1e). Thus, when variability in the dependability model is solved for TFC-ALL variant,
only component failure logic associated with this variant is included in a variant-specific de-
pendability model. Variation in the DALs allocated to TFC hazards is further propagated
throughout DALs allocated to mitigate the effects of contributing component failure modes.
Variant-specific SIL decomposition can be performed automatically with the support of me-
taheuristics and genetic algorithms [30]. Additionally, product line SIL decomposition can be
derived from the automated analysis of multiple variant-specific SIL decomposition results
[28]. Early on the design, it can support the elaboration of a cost-effective safety-critical SPL

12

development process. Finally, different component failure data lead to different fault propaga-
tions, i.e., combinations of component failures leading to hazards. Such variation is then prop-
agated throughout fault trees and FMEA. In order to support the systematic reuse of the TFC-
SPL dependability model, the impact of design and usage context variations on dependability
information is managed during the variability modeling.

Variability Realization Modeling. Inputs: SPL feature, architectural, behavioral, and de-
pendability models. Purpose: This step expands the variability modeling step defined in tradi-
tional SPLE methods [4, 23], aimed at establishing mappings between features to their realiza-
tion in the architecture, to enable variability management in the dependability model. Thus, in
this step, mappings linking product/context features to their realization in architectural, behav-
ioral, and dependability models are defined. It can be performed with the support of exten-
sions from existing variant management techniques. This step encompasses the following
tasks: i) specification of design and dependable-related variation points and their variants from
the analysis of product/context features, and scenarios used to guide dependability analysis; ii)
mapping design variants to their realization in the SPL architecture by: defining model ele-
ments to be included/excluded when design variants are chosen/resolved during product deri-
vation; and finally, iii) mapping dependable-related variants to their realization in the depend-
ability model by: linking each scenario considered during dependability analysis to the corre-
sponding HARA, risk assessment, allocation of safety requirements, and failure data associat-
ed with each variant-specific component. Output: The end of this step yields a variability
model, which links features to their realization in both architecture and dependability models.
TFC-SPL feature and variability models were specified with the support of BVR toolset and
BVR AADL Error Annex adapter. Details about how to configure a BVR variability model
for a given SPL can be found elsewhere [34]. BVR fragment substitutions were defined to
show how variability in the TFC-SPL AADL architecture and Error Annex models are solved
when TFC-MAT/Controlled and TFC-ALL/Uncontrolled structural and dependable-related
variants are chosen. Table 1 illustrates placement and replacement fragments, and fragment
substitutions associated with TFC-MAT/Controlled airspace dependable-related variant. The
acronyms in table columns respectively represent: variation point (VP), fragment substitution
(FS), fragment type (F), and component failure data (CFD). An excerpt of mappings linking
dependable-related variants to their realization in the dependability model, defined in the
TFC-SPL variability model, is shown in Table 1. So, when TFC-MAT variant and its context
are selected, as defined in a placement fragment, HARA results and component failure data
associated with other TFC variants are removed from the dependability model. On the other
hand, as specified in the replacement fragment, TFC-MAT related HARA results and compo-
nent failure data are included in the final dependability model. Later, TFC-MAT related frag-
ment substitution is created by combining both placement/replacement fragments. The final
TFC-SPL variability model comprises 8 fragment substitutions, 2 placements, and 8 replace-

Table 1. Pilot model/usage context variant and its realization in the dependability model.

VP FS F HARA Results CFD

Pilot Mode/
Airspace

TFC-MAT/
CONTROLLED

P

MAS-NoPilotCommands,
 ALL-BCP,
 MAS-BCP,
 MAS-PWD

MAS-ValuePilotCommands,

MAP-NoPilotCommands,

MAP-ValuePilotCommands,

ALL-NoPilotCommands,

ALL-ValuePilotCommands

R

MAT-NoPilotCommands,
MAT-ValuePilotCommands

MAT-BCP,
MAT-MS,

MAT-PWD

13

ment fragments. Four fragments substitutions are associated with structural variability, and
four fragment substitutions are associated with variability in the dependability model.

3.2 DEPendable-SPLE: Application Engineering

Product Requirements Analysis. Input: SPL feature model. Purpose: In this step, architec-
tural and dependable-related variants, defined in the SPL feature model, which addresses
product-specific requirements, are chosen. Output: product feature model. Product Deriva-

tion. Inputs: SPL feature and augmented variability models, product feature model, and SPL
assets, in this case, architecture, behavioral, and dependability models. Purpose: Variability
specified in SPL architecture/dependability models are solved with the support of a variability
management tool, and a product variant is then derived. Whereas the available variant man-
agement techniques do not provide native support for managing variability in the dependabil-
ity model, in this paper, BVR toolset [34] was adapted to enable support for variability man-
agement in AADL Error Annex dependability models. The BVR adapter extends OSATE
AADL model editor to enable BVR communicating with OSATE model editors to manage
variability in AADL structural/behavioral/dependability models. Since BVR is built upon
Eclipse Modeling Framework [9], the adapter was implemented as an Eclipse-based plugin.
Due to page limitation, BVR AADL extension is not discussed in this paper. During TFC-
SPL product derivation, for each product variant, the following artefacts were input to BVR:
TFC-SPL feature model, an instance model, variability model, and SPL AADL/Error Annex
structural/dependability models. Outputs: Variant-specific AADL/Error Annex models. Vari-
ability management in TFC-SPL enabled the systematic reuse of almost 100% of dependabil-
ity information, produced during domain engineering, in the derivation of each TFC variant.

Variant-Specific Dependability Analysis. Inputs: product feature model, product archi-
tectural and behavioral models, analyst’s domain knowledge. Purpose: After product deriva-
tion, variant-specific dependability analysis can be performed by following the steps defined
in domain engineering. Such analysis focuses on identifying the impact of variant-specific
system functions, added to the reused product architecture model, on the overall system safe-
ty. When variant-specific system functions are added to the SPL architecture, its correspond-
ing dependability information should be added to the SPL repository. Outputs: Enhanced
product architecture and dependability models, and in some cases, feedback to the SPL pro-
cess, enhancing SPL architecture and dependability models. Fault Trees and FMEA Syn-

thesis. Inputs: The reused variant-specific architecture model, enhanced with specific depend-
ability information, is the input for automatic synthesis of fault trees and FMEA, supported by
compositional analysis techniques [6, 27, 30]. Purpose: Generating FTA and FMEA, which
are evidence required by safety standards, e.g., ARP 4754A, to achieve safety certification,
from the reused dependability information. The accuracy of the generated variant-specific
fault trees and FMEA is dependent whether dependability analysis activities were performed
aware of the impact of variation in the design and context. Outputs: FTA and FMEA are used
to demonstrate that the system architecture addresses the safety requirements. Variant-specific
TFC AADL structural and dependability models were input to generate fault trees for 8 vari-
ant-specific hazards, and FMEA results were synthesized from the fault trees. Fig. 1f shows
an excerpt of no pilot commands fault tree generated for TFC-ALL variant, which illustrates
the impact of SPL variation on hazard causes (see Section 2.3). Such variation is further prop-
agated throughout failure modes that indirectly contribute to the occurrence of this hazard. In

FMEA, different component failures might directly/indirectly contribute to the occurrence of

14

hazards in each TFC variant. Variation in fault trees and FMEA are further propagated
throughout assurance cases, which can be generated from these assets with the support of
model-based techniques [16]. The application of DEPendable-SPLE steps enabled the sys-
tematic analysis of the impact of variation in TFC-SPL product/context features in both SPL
design and dependability analysis. Such analysis increased the precision of dependability
analysis information produced in domain engineering, and enabled the systematic reuse of
dependable-related information early on the SPL safety lifecycle, in comparison with conven-
tional SPLE methods, which emphasize the analysis of the impact of product/context variation
only on the SPL design, and reuse of development artefacts.

4 Related Work

Research on variability management in dependability assets is split into extensions of tradi-
tional safety analysis techniques, e.g., FTA and FMEA, to suite SPLE processes [5, 12, 26],
and model-based techniques [7, 20, 21, 32]. The most notable work in the first category is the
extension of software FTA (SFTA) to address the impact of SPL variation on dependability
analysis [5, 12]. In such approach, each leaf node of a SFTA is labeled with the commonality
or variability associated with that leaf node. This approach is built upon a technique for devel-
oping a product line SFTA in domain engineering, and a pruning technique for reusing SFTA
in application engineering. Product Line SFTA was later extended to integrate SFTA results
with state-based models [26]. Such extension allows mapping SFTA leaf nodes into compo-
nents, and modeling the behavior of each component in a state chart. PL-SFTA and its exten-
sion consider FTA as a reusable asset. However, FTA can be automatically generated from
dependability information produced in domain engineering, e.g., HARA and component
failure modeling. Thus, variability management in dependability properties earlier on FTA
and FMEA synthesis, as presented in this paper, enables the systematic reuse of dependability
information, and traceability of dependable-related variation throughout SPL safety life-cycle.

In the second category, Schulze et al. [32] have proposed an approach, by integrating
commercial Medini ISO 26262 safety analysis and pure::variants tools, to support variability
management in functional safety-related assets, which was evaluated in an automotive case
study. Their approach is based on a referencing model, which maps problem-domain features
with artefacts in the solution space, in this case, requirements, FTA, and safety goals. Schulze
et al. approach was further extended with a process for model-based change impact analysis of
variability into automotive functional safety [20]. This process combines variability manage-
ment techniques with safety engineering and software configuration management activities to
achieve a complete safety assessment. This process supports change impact analysis in the
following scenarios: when a specific variant shows undesired behavior and it needs to be fixed,
in cases where an innovative function requires an extension of an existing system function, and
the function behavior is changed and it should be analyzed, and when a newer optional func-
tion is developed. In the same way as Schulze et al approach and its extension, our approach is
built upon a variability model, linking problem-domain context and product features with
artefacts from the solution space, e.g., components and their failure data. Although Schulze et

al. [32] approach provides support for variability management in functional safety assets, they
didn’t emphasize the management of the impact of contextual variation in architecture, HARA
and component failure modeling, as presented in this paper. In addition, our approach is appli-
cable to domains other than automotive, and it is independent from the underlying tooling
support. Nevertheless, Schulze et al. approach [32] and its extension [20] also presented a

15

good and efficient solution for variability/change management in functional safety. Kaßmeyer
et al. [21] presented a systematic model-based approach integrated with the change impact
analysis approach [20]. Kaßmeyer et al. tool-supported approach combines requirements en-
gineering and architectural design, safety analysis, and variant management tools, allowing
seamless safety engineering across product variants by representing safety artefacts in a ho-
mogeneous UML-compliant model notation. In their approach, HARA and component fault
modeling is performed by annotating the UML model in the same way as DEPendable-SPLE
approach. As part of Kaßmeyer et al. approach, Domis et al. [7] have extended Component
Integrated Component Fault Trees (C2FT) technique with variation points and integrated it
with UML via a profile into Enterprise Architect tool. Although Kaßmeyer et al. [21] ap-
proach and its extension [7] also provides a good solution for variant management in function-
al safety; it is dependent upon specific commercial tools. On the other hand, DEPendable-
SPLE can be applied independently of the underlying tooling support.

5 Conclusion

This paper has presented DEPendable-SPLE model-based approach to support variant man-
agement in dependability analysis. Such approach enables the systematic reuse of SPL archi-
tecture and dependability models in application engineering. DEPendable-SPLE is applicable
independently from the underlying variant management and dependability analysis tech-
niques. In this paper, the approach was applied with the support of OSATE AADL & Error
Annex architectural modeling and compositional dependability analysis tool, BVR toolset,
and OSATE AADL BVR adapter. This adapter was developed by the authors to enable BVR
managing variability in AADL architectural/dependability models. These tools were used to
support dependability analysis and variant management steps for the TFC-SPL. DEPendable-
SPLE supports the analysis of the impact of design and context variations on dependability
analysis. Thus, Tiriba product/context variants were linked to their realization in architecture
and dependability models. Further, multiple variant-specific architecture/dependability models
were automatically generated during product derivation with the support of BVR tool. The
systematic reuse of the dependability model is achieved early on SPL safety process. DE-
Pendable-SPLE enabled the systematic reuse of almost 100% of TFC dependability infor-
mation, produced in domain engineering, in the derivation of each one of the four TFC prod-
uct variants. It contributed to reduce the effort and costs in performing dependability analysis
for a specific product variant. With the support of compositional techniques, in this case,
OSATE AADL, FTAs and FMEA were generated from the reused AADL architec-
ture/dependability models. This paper also presented an analysis of the impact of de-
sign/context variations on architecture and dependability analysis. Further work on this topic
is focused in detailing how variability in AADL architecture/error models is specified and
managed. Further work also intends to investigate the impact of design/context variations on
SIL allocation and development processes of safety-critical SPLs. Finally, we also intend to
investigate the usage of model-driven techniques to generate variant-specific assurance cases,
and the potential of SIL decomposition techniques in supporting SPL architectural decisions.

Acknowledgments. CNPq grant number: 152693-2011-4, and CAPES research agencies.

References

1. Big Lever. 2016. Gears. Available on-line: http://www.biglever.com.

16

2. Braga, R. T. V., Trindade Jr., O., Branco, K. R. L. J. C., Lee, J. Incorporating certification in feature modelling of
an unmanned aerial vehicle product line. In: Proc. of the 16th SPLC, 1–10, (2012).

3. Braga, R. T. V., Trindade Jr., O., Branco, K. R. L. J. C., Neris, L.O., Lee, J. Adapting a software product line engi-
neering process for certifying safety critical embedded systems. In Proc. 31st SAFECOMP, 352-363, (2012).

4. Braga, R. T. V., Branco, K. R. L. J. C, Trindade Jr., O., Masiero, P.C. The ProLiCES approach to develop product
lines for safety-critical embedded system and its application to the unmanned aerial vehicles domain. CLEI Elec-

tronic Journal, v. 15, n.2, 1-12, (2012).
5. Dehlinger, J., Lutz, R. Software fault tree analysis for product lines. In Proc. of the 8th IEEE HASE, USA, (2004).
6. Delange, J., Feiler, P. Architecture fault modeling with the AADL error-model annex. In Proc. of the 40th

EUROMICRO, Verona, 361-368, (2014).

7. Domis, D., Adler, R. Becker, M. Integrating variability and safety analysis models using commercial UML-based
tools. In Proc. of the 19thSPLC, ACM, USA, 225-234, (2015).

8. Dordowsky, F., Bridges, R., Tschope, H., Implementing a software product line for a complex avionics system. In
Proc. of the 15th Int. SPLC, IEEE, 241-250, (2011).

9. ECLIPSE. 2016. Eclipse Modeling Framework Project. Available on-line: http://www.eclipse.org/modeling/emf.
10. EUROCAE. 2010. ARP4754A - guidelines for development of civil aircraft and systems, EUROCAE.
11. EUROCAE. Aircraft wheel braking system. Available: https://github.com/osate/examples/tree /master/ARP4761
12. Feng, Q., Lutz, R. Bi-directional safety analysis of product lines. Journal of Sys. and Sw,v.78,n.2, 111-127, (2005).
13. Gómez, C., Peter, L., Sutor, A. Variability management of safety and reliability models: an intermediate model

towards systematic reuse of component fault trees. In Proc. 29th SAFECOMP, Springer, v. 6351, 28-40, (2010).
14. Habli, I., Kelly, T., Hopkins, I. Challenges of establishing a software product line for an aerospace engine monitor-

ing system. In Proc. of the 11th SPLC, IEEE, Japan, 193-202, (2007).
15. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G. K., Svendsen, A. Adding standardized variability to do-

main specific languages. In Proc. of the 12th Int. Software Product Line Conf., IEEE, 139-148, (2008).
16. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T., Weaving an assurance case from design: a model-based

approach. In Proc. of the 16th HASE, Daytona Beach, IEEE, p.110-117, (2015).
17. Heuer, A., Pohl, K. Structuring variability in the context of embedded systems during software engineering. In:

Proc. of the 8th Workshop on Variability Modelling of Software-intensive Systems, ACM, (2014).
18. ISO. 2011. ISO 26262: road vehicles functional safety.
19. Kang, K. C., Kim, S., Lee, J., Kim, K., Jounghyun Kim, G., Shin, E. Form: A feature-oriented reuse method with

domain-specific reference architectures. Annals of Software Eng., v. 5, 143–168, (1998).
20. Käßmeyer, M., Schulze, M., Schurius, M. A process to support a systematic change impact analysis of variability

and safety in automotive functions. In Proc. of the 19th SPLC, ACM, NY, USA, 235-244, (2015).
21. Käßmeyer, M., Moncada, D. S. V., Schurius, M. Evaluation of a systematic approach in variant management for

safety-critical systems development. In Proc.13thInt.Conf. Embedded and Ubiquitous Comp., IEEE, 35-43, (2015).
22. Kelly, T., MCdermid, J., Safety case construction and reuse using patterns. In: Proc. of the 16th SAFECOMP,

Springer-London, LNCS, p. 55–69, (1997).
23. Krueger, C. Variation management for software production lines. In: Proc. 2nd SPLC, v.2379, 37-48,(2002).
24. Lee, K., Kang, K. C. Usage context as key driver for feature selection. In Proc. 14th SPLC, v.6287, 32–46p, (2010).
25. Leveson, N. Door control system. Available on-line: https://github.com/osate/examples/tree/master/Train
26. Liu, J., Dehlinger, J., Lutz, R. Safety analysis of software product lines using stated modeling. Journal of Systems

and Software, v. 80, n. 11, 1879-1892, (2007).
27. Mazzini, S., Favaro, J., Puri, S., Baracchi, L. CHESS: an open source methodology and toolset for the develop-

ment of critical systems. In Join Proceedings of EduSymp, pp. 59-66 (2016).
28. Oliveira, A. L., Braga, R., Masiero, P. C., Papadopoulos, Y., Habli, I., Kelly, T. Model-based safety analysis of

software product lines. International Journal of Embedded Systems, Inderscience Publishers, (2016).
29. Oliveira, A. L., Braga, R. T. B., Masiero, P. C., Papadopoulos, Y., Habli, I., Kelly, T. A model-based approach to

support the automatic safety analysis of multiple product line products. In Proc. of the 4th Brazilian Symp. on

Computing Systems Eng., Brazil, IEEE, 7-12, (2014).
30. Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann. Engineering failure analysis and design optimiza-

tion with HIP-HOPS. Journal of Eng. Failure Analysis, v.18, i.2, 590-608, (2011).
31. RTCA. DO-178C software considerations in airborne systems and equipment certification, (2012).
32. Schulze, M., Mauersberger, J., Beuche, D. Functional safety and variability: can it be brought together? In Proc. of

the 17th Int. SPLC, ACM, NY, USA, 236-243, (2013).
33. Steiner, E. M., Masiero, P. C., Bonifácio, R. Managing SPL variabilities in UAV Simulink models with

Pure::variants and Hephaestus. CLEI Electronic Journal, v. 16, n.1, 1-16, (2013).
34. Vasilevskiy, A., Haugen, Ø., Chauvel, F., Johansen, M. F., Shimbara, D. The BVR tool bundle to support product

line engineering. In Proc. of the 19th Int. Software Product Line Conf., ACM, New York, USA, 380-384, (2015).

http://www.eclipse.org/modeling/emf
https://github.com/osate/examples/tree%20/master/ARP4761
https://github.com/osate/examples/tree/master/Train

