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SUMMARY

Voxel-based micro-finite-element (µFE) models are used extensively in bone mechanics research. A major

disadvantage of voxel-based µFE models is that voxel surface jaggedness causes distortion of contact-

induced stresses. Past efforts in resolving this problem have only been partially successful; i.e., mesh

smoothing failed to preserve uniformity of the stiffness matrix, resulting in (excessively) larger solution

times, whereas reducing contact to a bonded interface introduced spurious tensile stresses at the contact

surface. This paper introduces a novel ‘smooth’ contact formulation that defines gap distances based on an

artificial smooth surface representation while using the conventional penalty contact framework. Detailed

analyses of a sphere under compression demonstrated that the smooth formulation predicts contact-induced

stresses more accurately than the bonded contact formulation. When applied to a realistic bone contact

problem, errors in the smooth contact result were under 2%, whereas errors in the bonded contact result were

up to 42.2%. We conclude that the novel smooth contact formulation presents a memory-efficient method

for contact problems in voxel-based µFE models. It presents the first method that allows modeling finite

slip in large-scale voxel meshes common to high-resolution image-based models of bone while keeping the

benefits of a fast and efficient voxel-based solution scheme. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Micro-computed-tomography (µCT) images of bone, discretized on a Cartesian grid, can be used1

directly to define a micro-finite-element (µFE) model where each volume element (henceforth2

voxel) has an identical cubic shape. Over the last three decades, voxel-based µFE models have3

been used to perform non-invasive biomechanical investigations [1, 2, 3]. Recent advances in4

using highly-parallelized multi-grid solvers have made it possible to rapidly solve voxel-based µFE5

models with millions of degrees of freedom (DOFs) [4]. The advent of voxel-based µFE models6

have not only revolutionized healthcare technology at the point-of-care (e.g. HRpQCT-based bone7

strength analysis [5]) but have also pushed the frontiers of exploitation of imaging techniques8

(Synchrotron Radiation CT-imaging [6]). Voxel-based µFE modelling is perhaps indispensible9

in studying bone-remodelling within cancellous tissue since it possesses the necessary level of10

microstructural fidelty in comparison to homogenized continuum FE models [7, 8].11

In voxel-based µFE models all voxel edges are oriented along the same Cartesian axes.12

These models fail to smoothly discretize any surface that has an orientation different from13

the three Cartesian directions. A natural surface, e.g., of a bone, thus becomes jagged in the14

voxel representation and causes artificial stress and traction concentrations. To overcome this15

problem, researchers have investigated the effect of smoothing the surface by distorting the16

voxels [9, 10, 11, 12]. Using a model of a two-dimensional (2D) annular ring it has been shown17

that smoothing, but not mesh refinement, reduces the error in the predicted stresses [11]. However,18

mesh smoothing increases computing costs as the stiffness matrix for each distorted element must19

be computed individually. For example, in a model of trabecular bone microstructure the application20
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A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 3

of smoothing to voxel-based meshes did not result in a significant reduction of stresses on the bone21

surfaces compared to the substantial increase in simulation times [9, 10].22

For problems involving contact, the error is further influenced by a modelling artifact related23

to the orientation of the voxel relative to the loading direction [13]. Quantification of the contact-24

induced errors in stress prediction accounting for voxel orientation, is yet to be performed. The25

error in the predicted stress at the boundary becomes critical in models where contact is present.26

A common approach is to ‘bond’ the opposing surfaces [14, 15, 3, 16]. By design, this method is27

not suitable in situations where node contact pairs are changing during the simulation: e.g. incipient28

contact, secondary instability and finite sliding. Hence, this bonding approach has been restricted29

to some limited scenarios of loading at the bone–implant interface. Though the global strength [3]30

and apparent stiffness [14] of the bone–implant bond have been satisfactorily predicted by this31

approach, the quality of local stress prediction remains unknown. Furthermore, tensile tractions can32

be predicted which obviously cannot occur in physical reality.33

In standard FE, the node-to-surface contact formulation [17, 18] has been widely used to model34

three-dimensional (3D) contact interaction. In this formulation, one of the two contacting surfaces35

(the ‘master’ surface) possesses a higher stiffness, lower mesh refinement, lesser degrees of freedom,36

or a combination of these, compared to the opposing (‘slave’) surface. The orientation of voxels37

edges and the shape of the voxels at the slave surface do not influence the contact formulation. Only38

the separation distance of slave-surface nodes relative to the master surface elements determines the39

contact stresses.40

The aim of this paper is to develop an efficient contact algorithm that can take full advantage41

of voxel-based meshes. We hypothesize that the contact-induced stresses can be quantified using42

the penalty-based contact formulation from standard FE, while redefining the distance between43

slave nodes relative to the master surface based on an artificially defined surface that does not alter44

the shape of the voxels. The paper introduces a ‘smooth’ contact formulation in which the node-45

to-surface formulation is modified by defining ghost slave nodes that lie on a nominally smooth46

surface. The problem of elastic compression of a sphere is analyzed using voxel-based models. This47
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4 P. BHATTACHARYA ET AL.

problem is the 3D counterpart of the elastic compression of an infinitely long cylinder in 2D [19,48

p. 107]. The sphere model allows the investigation of contact-induced errors in dependence of mesh49

refinement and relative voxel orientation without other confounding factors. The effectiveness of50

the novel smooth contact formulation is demonstrated further by analysing the realistic problem of51

contact in a human hip joint between the femur and the acetabulum.52

2. METHOD

2.1. Finite-element discretization and contact formulations53

In the standard FE approach [18, 20, 21] a contact problem is expressed by the matrix equation54

0 = F + R
c − Ka (1)

where K is the stiffness matrix, F, R
c and a are the vectors of applied forces, contact forces and55

nodal displacements, respectively. In the penalty contact enforcement method, the contact force R
c

56

is related to the contact gap between the opposing contact surfaces through a contact-interaction57

law. For example, a hard–frictionless contact is specified as58

R
c =











−kcgnn gn < 0

0 otherwise

(2)

Here a node-to-surface discretization is used, with one contact surface defined as the master and the59

opposite surface defined as the slave. The contact force acting on any node of the slave surface is60

given by R
c above, kc is a constant scalar referred to as the penalty stiffness parameter, the contact61

gap is defined as gn ≡ n · (s − m), n is the current outward normal to the master facet closest to the62

slave node, s is the current position of the slave node and m is the current position of a node on the63

closest master facet. Equal and opposite contact forces are distributed on nodes of the master facet.64

For nodes that do not belong to either the master or slave surfaces, the contact force is zero.65

The set of equations (1) and (2) is non-linear in a, since R
c, gn and n depend on a through66

their dependence on current nodal positions. To determine the unknowns a and R
c, one attempts to67

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 5

iteratively minimize the residual68

r = F + R
c − Ka (3)

Using 1 to denote a variation between successive iterations, linearization of Eqs. (2) and (3) gives69

1R
c = −K

c1a (4)

1r = 1R
c − K1a (5)

where K
c is the so-called contact stiffness matrix. The displacement update that minimizes the70

residual (i.e. r + 1r = 0) is obtained by combining Eqs. (3)–(5), to get71

1a = (K + K
c)−1(F + R

c − Ka) (6)

The updates are iteratively computed and applied to a until convergence is reached. This72

conventional formulation is henceforth referred to as the Stair-Case, Sliding Contact (SC-SC)73

model, where ‘stair-case’ highlights the jaggedness of the voxelated slave surface, and ‘sliding74

contact’ highlights that slave node displacement tangential to the master surface is not restricted. We75

note that the entire treatment is a standard approach and has been discussed in detail in textbooks76

on the subject [18].77

In the smooth contact formulation, each slave node is identified with a ghost slave node, where78

the ghost slave nodes lie on a smooth representation of the voxelated slave surface in the reference79

configuration. It is not needed to discretize the smooth representation of the voxelated surface into80

finite surface elements, and one may identify the ghost slave node as the position on the smooth81

representation of the voxelated surface that is closest to the slave node in the SC-SC model. Identical82

displacements are applied to the slave node and its corresponding ghost slave node at all times. The83

only difference in the smooth contact formulation with respect to the SC-SC model is that the84

contact gap is redefined as gn ≡ n · (s̃ − m) where s̃ is the ghost slave node position in the current85

configuration. This redefinition modifies the computed contact force vector R
c and the contact86

stiffness matrix K
c, but only up to their dependence on the contact gap distance gn . This smooth87

contact formulation is henceforth referred to as the Simulated Smoothed surface, Sliding Contact88

(SS-SC) model. ‘Simulated smoothed surface’ highlights that ghost slave nodes lying on a fictitious89

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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6 P. BHATTACHARYA ET AL.

smooth surface are employed in defining the gap distance, but also that this redefinition is the only90

difference with respect to the SC-SC model. In particular, the voxels connected to slave nodes are91

not deformed, and the stiffness matrix K is identical for the SC-SC and SS-SC formulations. The92

novelty of our method is that an artificial surface is defined that is used to calculate gap distances93

while the voxelated nature of the elements is kept such that fast and highly memory efficient solvers94

can be used.95

3. APPLICATION TO ELASTIC COMPRESSION OF A SPHERE

Consider a deformable sphere (radius R) with its centre at the origin O . In the reference96

configuration the sphere is stress-free and positioned between two parallel rigid planes that are97

touching the sphere. We consider the problem where the distance between the rigid planes reduces98

by 0.2R leading to 10 % apparent compressive strain in the sphere.99

3.1. Voxel models100

Define a rectangular coordinate system (x, y, z) with the origin located at O and with the direction101

x aligned along the sphere diameter normal to the rigid contact planes. A reduced form of the102

above problem is considered by noting that irrespective of the choice of voxelation procedure, the103

problem is symmetric about the equatorial plane x = 0. Hence only the hemispherical region and104

the one rigid plane lying in the half-space x ≥ 0 is considered. In this reduced model the surface105

of the hemisphere initially at x = 0 always remains planar but displaces a distance of 0.1R in the106

+x-direction. The rigid plane is held fixed in space.107

The hemispherical volume is populated by 8-noded linear voxels (side length a < R) with edges108

aligned to a coordinate system (X, Y, Z) with origin at O . The choice of X , Y and Z directions is109

made as follows. We note that the orientation of the voxels of the hemisphere relative to the rigid110

contact plane is determined by the orientation of the (X, Y, Z) system relative to the (x, y, z) system.111

However, due to cubic symmetry of the voxels, only part of the voxelated hemisphere boundary112

presents unique voxel orientations to a locally tangent plane (shaded region in Figure 1A). It is easy113

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 7

to see that in two dimensions this is equivalent to the fact that only a 45◦ sector of a pixelated circle114

presents unique orientations to a locally tangent segment (Figure 1B). Hence locations labeled Loc-115

1 to Loc-7 are identified within the shaded region (Figure 1A) in order to investigate contact-induced116

errors in dependence of relative voxel orientation. Coordinates of these locations in the (X, Y, Z)117

system are listed in Table I. The directions of the coordinate axes (X, Y, Z) are selected such that118

the locations Loc-i (i = 1. . . 7) in the (X, Y, Z)-system corresponds to the location (R, 0, 0) in the119

(x, y, z)-system and the Y axis lies anywhere on the x–y plane.120

Voxelating the hemisphere in the above manner ensures that all voxels possess at least one121

node for which x ≥ 0. A flat equatorial surface is obtained by setting x = 0 for nodes with122

x < 0. To model the rigid contact plane, a 4-noded rectangular surface element is defined123

with nodes located at x = R + g0, y = ±0.5R, z = ±0.5R. The nominal gap g0 = 2a between124

the hemisphere and the rectangular element ensures that penetration does not occur in the125

reference configuration, irrespective of the choice of voxel size and orientation. In all, 42 different126

voxel geometries are analysed. In these models the relative orientation between (X, Y, Z) and127

(x, y, z) coordinate systems varies from Loc-1 to Loc-7 and mesh refinement a/R varies as128

0.0125, 0.025, 0.0375, 0.05, 0.075 and 0.1 (Figure 2).129

In all models the hemisphere is considered to be homogeneous isotropic linear elastic with130

Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0.3. To achieve 10% apparent compressive131

strain, all nodes of the hemisphere located at x = 0 in the reference configuration are displaced by132

0.1R + g0 in the +x-direction. The y- and z-degrees of freedom (DOFs) of the node at O and the133

z-DOF of the node nearest to (0, 0.5R, 0) are constrained throughout the solution, thus restricting134

rigid-body translation and rotation. All nodes of the rectangular surface element are held fixed in135

space. The total displacement is applied over 10 equal increments.136

Nodes on the hemisphere surface with x > 0.9R are defined as slave nodes. To simulate bonded137

contact, all degrees of freedom are restricted for all the slave nodes. For SS-SC models, each slave138

node position in the reference configuration is projected in the radial direction on the surface of139

the analytical hemisphere to obtain the corresponding ghost slave node position in the reference140

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 P. BHATTACHARYA ET AL.

configuration. For both SC-SC and SS-SC, hard–frictionless contact interaction is modelled between141

slave nodes and the master surface (rectangular surface element). The penalty contact stiffness142

parameter is taken to be kc = 0.1E R for all models and this was found to result in negligible143

overclosure. Contact iterations are assumed to have converged if either the maximum absolute144

difference in nodal displacements between the current contact iteration and the last contact iteration145

is less than 0.01% of the maximum absolute difference in nodal displacements between the current146

contact iteration and the last converged increment, or a maximum 10 contact iterations have been147

performed. The FE models are analyzed using an in-house FE code developed and executed with148

MATLAB version 8.5.0 (R2015a) (The Mathworks Inc., Massachusetts, United States). Computed149

results are visualized using software ParaView version 4.3.1 (Kitware Inc., New York, United150

States).151

3.2. Benchmark model152

The benchmark model of the problem is created using a geometry conforming mesh. Axisymmetry153

reduces the problem to a plane of revolution (Figure 3). The centre of the sphere O coincides with154

the origin of the planar coordinate system (ξ, ρ). The axis of revolution is ξ and only the quadrant155

ξ, ρ ≥ 0 is considered.156

The 2D domain of the hemisphere cross section is meshed using 4-noded linear axisymmetric157

elements with increasing refinement closer to the contact region (element size ∼ 0.005R). The rigid158

contact plane is represented by a line segment parallel to the ρ axis and passing through (R, 0). The159

contact line segment is treated as an analytical solid and is thus not discretized. In the reference160

configuration the hemisphere and the rigid plane are just in contact.161

The hemisphere possesses identical constitutive behavior as the voxel-based models. To achieve162

10% apparent compressive strain, the nodes at the top of the hemisphere are given a displacement163

of 0.1R in the +ξ -direction, while nodes situated on the ξ -axis are constrained from movement in164

the ρ-direction. The contact line segment is held fixed in space. Hard–frictionless contact behavior165

using penalty contact enforcement method is implemented using the node-to-surface formulation166

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 9

and with the identical numerical value for kc as in the voxel models. The hemisphere boundary167

nodes are defined as slave nodes and the contact line segment acts as master surface. The model is168

solved using software Abaqus/Standard version 6.13-1 (Dassault Systèmes Simulia Corp., Rhode169

Island, United States).170

4. APPLICATION TO THE HUMAN HIP JOINT

Grosland et al. [22] considered the problem of compressive contact at the human hip joint between171

the femur and the acetabulum. In this paper we considered the same problem, except that: (a) bone172

geometries are taken from the public data repository of the VAKHUM project [23, 24], (b) a smaller173

subset of the proximal femur volume is analyzed, (c) a displacement-control boundary condition is174

applied to the femur (instead of a load-control boundary condition being applied to the pelvis), and175

(d) the meshing and contact interaction details are as described below. Stereolithography (STL) files176

for the segmented surfaces of a left femur and a pelvis were downloaded from the repository. Only177

a subset of the pelvis STL in the region near the acetabulum are retained (61801 facets attached to178

33477 nodes). The STL for the femur is also cropped to retain triangular facets only in the head179

region. Additional geometric features (edges and surfaces) are generated to define a closed volume180

of the femoral head region. Following Grosland et al. [22], a rigid–deformable contact scenario is181

considered, whereby the pelvis is considered a rigid body and the femur is deformable. Pelvis STL182

facets are directly used for the surface definition and no volume mesh or material definitions are183

added. In the reference configuration the femur and pelvis regions do not inter-penetrate and the184

average contact gap in the acetabular region is ∼ 1.5 mm.185

4.1. Voxel models186

The voxel model for the above problem is created as follows. The image data from the VAKHUM187

dataset used a reference coordinate system in which the axes were aligned nominally with the188

anatomical body axes. The same rectangular coordinate system is used here, hence the x , y and189

z directions are parallel to the medial–lateral, anterior–posterior and inferior–superior directions190

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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10 P. BHATTACHARYA ET AL.

respectively. The closed volume of the femur head is discretized using a freely available mesh191

voxelation package [25]. A total of 55962 linear voxels (side length 1 mm) and 61832 nodes are192

generated. All voxels possessed linear isotropic elastic material properties (E = 10 GPa, ν = 0.3).193

A displacement, with medial and superior components equal to 3 mm, is applied to all nodes on194

the lateral and inferior planar surfaces of the femur. For one node on each of these two surfaces,195

the anterior–posterior displacement component is set to zero in order to prevent spurious rigid body196

motion.197

In the bonded contact model, the pelvis STL is used to identify a subset of the femur surface198

nodes which are to be ‘bonded’. Specifically, femur surface nodes within 3
√

2 mm (= magnitude of199

applied displacement) of the nearest pelvis facet in the reference configuration are selected. Once200

these ‘bonded’ nodes are identified, the pelvis geometry is discarded, and the ‘bonded’ nodes are201

held fixed for the rest of the analysis. The displacement of the lateral and inferior planar surfaces of202

the femur is applied over a single increment.203

In the SC-SC model, all pelvis facet nodes are held fixed in space. Hard-frictionless contact204

behavior using a node-to-surface discretization is defined between the femur and the pelvis models.205

All facets of the pelvis models are considered to be potential master surface facets. Exterior nodes206

of the femur voxel mesh that are on the acetabulum-facing side of a plane (Figure 4) are defined207

as slave nodes because only these are likely to come into contact. In the SS-SC model, ghost slave208

node positions in the reference configuration are defined by projecting the slave nodes of the SC-SC209

model on to the nearest facet of the femur STL. The total displacement of the femoral head is applied210

over 5 equal increments. Within each increment, contact is considered between a slave node/ghost211

slave node (SC-SC/SS-SC) and all those master facets which have at least one node within 4 mm212

of the current slave node/ghost slave node position. A penalty contact stiffness of kc = 1 GPa.mm213

was found to result in negligible overclosure. Contact iterations are assumed to have converged214

if either the maximum absolute difference in nodal displacements between the current contact215

iteration and the last contact iteration is less than 0.01% of the maximum absolute difference in216

nodal displacements between the current contact iteration and the last converged increment, or if217

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme



A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 11

a maximum 10 contact iterations have been performed. All voxel models are analysed using the218

in-house finite-element code noted previously.219

4.2. Benchmark model220

The coordinate axis system of the benchmark model is identical to that of the voxel models. A221

tetrahedral mesh is used to discretize the femur head volume using Ansys ICEM CFD 15.0 (ANSYS222

Inc., Pennsylvania, United States) thus generating 137854 nodes and 788620 linear tetrahedra223

(nominal element size 1 mm). The triangulated pelvis surface possessed the same rigid body224

definition as in the voxel models.225

The femur volume is given identical material properties as in the voxel models. The boundary226

conditions applied on the femur and pelvis are identical to that in the voxel models. General contact227

interaction (surface-to-surface contact formulation) is defined between all surface elements of the228

femur and the pelvis models. Hard–frictionless contact behavior is simulated using the penalty229

method and an identical value of penalty stiffness kc as in the voxel models. The benchmark model230

is solved incrementally, with the total displacement being applied over 5 equal increments. The231

model is analysed using Abaqus/Standard.232

4.3. Analysis233

Computed results are visualized using ParaView. Qualitative comparison of contact-induced stresses234

between the benchmark and the voxel models is performed by considering stress distributions on a235

coronal plane of the femoral head plotted in the undeformed configuration. Quantitative comparison236

of the voxel models with respect to the benchmark model is performed by considering all voxel237

nodal locations.238

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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12 P. BHATTACHARYA ET AL.

5. RESULTS

5.1. Elastic compression of sphere239

As an illustrative result, in Figure 5 the minimum principal stress contours (normalized by E) are240

plotted on the y = 0 plane (reference configuration) for the bonded, SC-SC and SS-SC models, for241

a representative mesh refinement and voxel orientation (a/R = 0.075, Loc-1). In the bonded model,242

the peak compressive stress occurs at the corners of the bottom-most voxels. This peak compressive243

stress is also significantly larger in magnitude than the peak compressive stress in the SC-SC and244

the SS-SC models. Although the peak compressive stress magnitudes are similar in the SC-SC and245

SS-SC models, the location of the peak compressive stress is more realistic for the SS-SC model246

than in the SC-SC model. Thus for this representative case, the bonded model predicts both the247

location and the magnitude inaccurately, the SC-SC model predicts the location inaccurately, while248

the SS-SC model performs the best of all three.249

Now considering the results in more detail, stresses and distances are normalized by E and R250

respectively. Results are reported as a function of the distance along the x (or ξ for benchmark) axes251

in the undeformed configuration. The normalized distances 0 and 1 correspond respectively to the252

hemisphere center and the point of nominal contact initiation (R, 0, 0). Figure 6A shows all three253

principal stresses in the benchmark model. The highest compressive stress at any point, and thereby254

the minimum principal stress direction, is expectedly along x which is the direction of loading. The255

middle and the maximum principal stresses at any point (Figure 6A) are identical as a consequence256

of axisymmetry. For the sake of brevity, mid-principal stresses are omitted from further analysis. In257

the region x/R . 0.63 the maximum principal stress is tensile due to the Poisson’s effect in which258

compression along x causes a radially outward stretch in the y–z plane. Figures 6B, C compare259

the maximum and minimum principal stresses respectively between the benchmark and the voxel260

models with a/R = 0.075 and orientation Loc-1. The maximum principal stress in these particular261

voxel models compares better with the benchmark than the minimum principal stress. The maximum262

error in any contact formulation is expectedly the largest at the point of contact. The magnitude of263

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NOVEL CONTACT FORMULATION FOR VOXEL-BASED µFE MODELS OF BONE 13

this largest error is nearly the same for the bonded and SC-SC formulations, and is minimized for264

SS-SC.265

In the following we focus on the region close to the contact surface (x/R ≥ 0.8). Figure 7266

considers principal stresses in dependence of orientation and contact formulation for the coarsest267

(a/R = 0.1) and the most refined (a/R = 0.0125) mesh models. The dispersion across the different268

voxel orientations reduces as the mesh is refined irrespective of the choice of contact model. As269

the mesh is refined, variation reduces at nearly every location along the radial line, along with a270

reduction in extent of the region of large variations. The overall variation in minimum principal271

stress is larger than the variation in maximum principal stress for all contact models. For the bonded272

contact formulation (Figure 7A, D) the average error, i.e. the difference between the centerline of the273

dispersion envelope and the benchmark, does not change significantly due to mesh refinement. This274

result is true for either principal stress. For SC-SC (Figure 7B, E) the average errors are significantly275

reduced compared to bonded contact, and the reduction is higher for the most refined mesh models.276

Yet, the maximum widths of the dispersion envelopes, which occur close to the point of contact,277

are substantially larger in SC-SC compared to those in bonded contact for both mesh refinements.278

Thus, going from bonded to SC-SC, the accuracy is improved, but the precision is poorer. In279

contrast, when SS-SC is used (Figure 7C, F), both the average error and the maximum dispersion280

are reduced compared to bonded contact – irrespective of mesh refinement or principal stress being281

considered. Thus both accuracy and precision improve in SS-SC when compared to bonded contact.282

Increasing mesh refinement leads to an increase in accuracy everywhere, but precision increases283

nearly everywhere except in a very small region close to contact.284

Next, for each principal stress component the normalized maximum absolute error285

(NMAXABSE) was quantified as a local error measure:286

NMAXABSE =
max

i∈[1,N ]
|σi − σ̃i |

max
i∈[1,N ]

|σi |
(7)
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For each stress component the normalized root mean square error (NRMSE) was defined as a global287

error measure as follows:288

NRMSE =

√

avg
i∈[1,N ]

(σi − σ̃i )
2

max
i∈[1,N ]

|σi |
. (8)

where σ and σ̃ are the principal stress variable obtained from the benchmark and a voxel-based289

model respectively. The subscript i is the index of N = 100 equispaced points along x/R ≥ 0.8290

where the stresses are evaluated. The normalization factor in the denominator is effectively the291

value of the principal stress variable at the point of contact.292

For a specific combination of mesh refinement, contact model and principal stress variable, both293

NMAXABSE and NRMSE depend on voxel orientation. We assume that for an arbitrary orientation294

the predicted stress would lie wholly within the envelope of predicted stress values corresponding295

to the seven orientations considered here. With this assumption we obtain the maximum and296

minimum values of NMAXABSE and NRMSE across all orientations. A larger difference between297

the maximum and minimum values is taken to render the local (NMAXABSE) or global (NRMSE)298

prediction less precise. A larger average of the maximum and minimum values is taken to render the299

local or global prediction less accurate. For the bonded contact models, considering any principal300

stress, no significant change in local precision or local accuracy is observed as a function of mesh301

refinement (Figures 8A,D). At any given refinement, local precision and local accuracy are similar302

between maximum and minimum principal stresses.303

For SC-SC models (Figures 8B,E), considering any principal stress, mesh refinement does not304

improve the local precision, but local accuracy increases for maximum principal stress while it305

remains nearly unchanged for minimum principal stress. Minimum principal stress predictions306

are less accurate and less precise locally than maximum principal stress predictions for a given307

refinement. Comparing with bonded contact, the local accuracy in SC-SC is higher for both principal308

stresses at any given mesh refinement. However, the local precision is poorer in SC-SC than in309

bonded contact, and especially so in the case of the minimum principal stress.310

For SS-SC models (Figures 8C,F), considering any principal stress, mesh refinement does311

not change the local precision, but local accuracy increases for both principal stresses. At any312
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given refinement, local precision and local accuracy are similar between maximum and minimum313

principal stresses. Comparing with bonded contact, local accuracy is higher in SS-SC for both314

principal stresses at any given mesh refinement. Most importantly, this improvement does not315

adversely affect local precision, which is similar between SS-SC and bonded contact for both316

principal stress.317

All the above trends hold when considering global accuracy and precision. We draw attention to318

the fact that for a given combination of mesh-refinement, contact model and principal stress, both319

accuracy and precision are higher globally than locally. This highlights that the errors in predicted320

stresses are localized to the near-contact region.321

5.2. Femur–acetabulum contact322

Figure 9 compares the principal stress distribution on a coronal plane between the benchmark,323

bonded, SC-SC and SS-SC models. The errors in the bonded contact results compared to the324

benchmark model are substantial and even qualitative agreement is not achieved. Qualitatively, the325

SC-SC and the SS-SC results agree with the benchmark; but quantitatively, the SS-SC results are326

superior to the SC-SC results. For example, in the SC-SC results compressive stresses (negative327

value contours) are concentrated at corners of the boundary, an artifact that is avoided in the SS-SC328

results. Similarly, regions of negative valued principal stress contours are larger in SC-SC results329

than in the benchmark and the SS-SC results. This improves both near-surface and interior stress330

predictions for the SS-SC formulation compared to the SC-SC formulation.331

The local (NMAXABSE) and global (NRMSE) accuracy in the prediction of principal, normal332

and shear stresses are compared between the different contact formulations in table II. These error333

measures were defined previously in Eqs. (7) and (8). For the hip contact problem, the stresses334

are evaluated at N = 56313 points, indexed i = 1 . . . N , in the interior of the voxel models and335

the benchmark model. These points correspond to nodal positions of the voxel models. Due to336

differences in discretization between the voxel models and the benchmark model, 5519(= 61832 −337

56313) voxel nodal positions fall outside the femoral volume of the benchmark model, and are338
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omitted from the error analysis. Although only one voxelation direction was considered, it is noted339

that the relative orientation of the femur voxel edges and the pelvis facets varies over a large range of340

angles. This is a result of the highly conforming contact situation that naturally arises in this realistic341

problem. Hence, unlike in the sphere contact problem, the results here are not expected to change342

significantly with voxelation direction. It is found that the local accuracy increases going from SC-343

SC to SS-SC formulations for most stress invariants and components. The local accuracy for bonded344

contact is always and significantly worse than that for SS-SC. Global accuracy increases by an order345

of magnitude going from bonded contact to SC-SC, and by yet another order of magnitude when346

using SS-SC formulation. This highlights that the errors in predicted stresses are spread throughout347

the femoral head volume. For all the stress variables considered, global errors are up to 42.2% for348

the bonded model, but only up to 1.16% for the SS-SC model.349

6. DISCUSSION AND CONCLUSIONS

The jagged surface nature of voxel-based FE models prevents an accurate determination of stresses350

for a body in contact. Considering first the simple problem of elastic compression of a sphere,351

it was shown that voxel models exhibited spurious stress concentrations at and near the region352

of contact. Errors were found to depend on voxel orientation, mesh refinement, choice of contact353

model and stress variable itself. With increasing mesh refinement, the accuracy of stress prediction354

was unchanged for bonded contact. Compared to the bonded contact results, accuracy was higher355

for both SC-SC and SS-SC, and even improved in general with increasing mesh refinement.356

However, SS-SC performed significantly better than SC-SC in increasing the precision across voxel357

orientations. The precision in SC-SC was similar or worse than that in bonded contact, and remained358

nearly unchanged with increasing mesh refinement. In a strong contrast, the precision in SS-SC was359

similar or smaller than that in bonded contact, and decreased with increasing mesh refinement. Thus360

the advantage of mesh refinement is expected only in the presence of SS-SC.361

In the human hip joint contact problem, the femoral head had an overall radius of curvature362

of about 25 mm, but possessed some local features with radii of curvature down to about 5 mm363
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(visual estimates). Additionally, in this problem nearly all possible voxel orientations relative to364

the pelvis contact surface were realized due to the highly conforming contact situation. In light of365

the sphere-compression results, voxel models of the femur–acetabulum problem, created with side366

length 1 mm (a/R ∼ 0.04 for the whole femoral head), were expected to show significant errors in367

bonded contact prediction especially at the near-surface regions. For the SC-SC and SS-SC models368

relatively smaller errors were expected, with additional quantitative improvement expected for SS-369

SC due to the lower dispersion in errors. However, close to the local features of high curvature370

(where a/R ∼ 0.2), it was expected that the errors in all contact models would be similar and high.371

Yet, the prediction of the stress distributions throughout the femoral head interior by the SS-SC372

formulation was found to be excellent, and was better than that by the SC-SC and bonded contact373

formulations. This can be explained by the fact that the contact-induced stresses in the hip joint374

problem influenced a much larger region around the points of contact than in the sphere compression375

problem, leading to suppression of localized regions of large error. The benchmark results show that376

the influence of contact was evident even at significant depths from the femoral head surface. This377

explains why the relative performance improvement in the SS-SC formulation compared to the SC-378

SC formulation (as evidenced by the global quantity NRMSE) was even better than that estimated379

by the sphere compression results. The results from the bonded contact model, which represents the380

state-of-the-art in µFE, was found to be of very low quality throughout for this particular problem.381

The inability to allow finite slipping led to tensile stresses at the contact boundary.382

In the SC-SC and SS-SC models, the subset of slaves nodes that participate actively in contact (i.e.383

possess a non-zero contact force magnitude) emerge automatically during the solution procedure.384

Hence, considering a larger set of nodes as slave nodes initially does not affect the end result. This385

is not the case for the bonded contact approach, as too many bonded nodes would cause larger386

deviations in the result. In order not to artificially bias against the bonded result in this manner, we387

selected the bonded nodes based on the initial gap distance between the femur and the pelvis. This388

set of nodes was a smaller subset of the set of nodes defined as slave nodes in the SC-SC and SS-SC389

femur models. In order to test that this subset was not too small, i.e. it did not omit locations that390
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would otherwise participate in contact, we analysed the SC-SC and SS-SC results a posteriori. It391

was found that the slave nodes that were in active contact were a subset of the nodes defined as392

bonded nodes, thereby assuring that the bonded model did not bond too few nodes.393

The improvement in overall prediction accuracy going from the bonded contact model to the394

SS-SC model makes a strong case for why the latter should be implemented within state-of-the-art395

voxel-based µFE software. It is interesting to note that, to the best of our knowledge, no FE software396

package currently enables the customization of contact gap definition, i.e. the distance between a397

slave node and its corresponding master surface element. This definition is central to the SS-SC398

implementation, and its customizability should be considered in the design of contact analysis in FE399

software packages.400

The current implementation of the contact algorithm did not investigate the scenario when the401

master surface is deformable assuming it to be rigid in both the sphere compression and femur–402

acetabulum contact problems. This simplified the computation of the contact stiffness matrix terms403

since changes to the master surface normal could be neglected. In the application area of bone404

contact this assumption is reasonable, since the surfaces do not undergo large deformations and405

any rigid body motion can be removed by choosing the coordinate system to move with the master406

surface. However, numerical formulations of the additional contact stiffness matrix terms in the407

presence of a deformable master surface are readily found in the literature [18] and do not limit the408

implementation of the SS-SC formulation itself.409

The constitutive behavior of the hemisphere and the femur were taken to be linear elastic410

homogeneous and isotropic. Past studies have shown that in the context of bone contact interaction,411

both elasticity and failure are important, and tension–compression non-linearity and anisotropy in412

both moduli and strength are expected to play a role. It is obvious that accounting for the above413

complexities will influence the accuracy and precision values estimated in this paper. Further studies414

are needed to evaluate the effect of such considerations on voxel-based contact analysis which were415

outside the scope of the present work.416
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In conclusion, a contact problem considered in this paper was that between a plane and a417

sphere, the latter possessing a homogeneous curvature at all points of its 3D surface. Use of this418

simple geometry removed confounding factors and enabled a thorough investigation of the effect419

of orientation and mesh-refinement on the accuracy of stress prediction. The superiority of the SS-420

SC formulation over the SC-SC and, in particular, the bonded contact formulations was shown421

to be valid across a range of values of orientation and mesh-refinement that is relevant to bone422

contact models. Subsequent to these findings, a realistic problem of femur–acetabulum contact423

was further investigated. It was found that the reduction in errors going from the SC-SC model424

to the SS-SC model was in fact much larger in this more realistic problem, than what was estimated425

from the sphere compression results. This can be explained by the inherent differences in how426

contact-induced stresses influence the solution between the realistic case and the simple problem.427

Furthermore, it was shown that the improvement due to the SS-SC algorithm over the state-of-the-art428

(bonded contact) was potentially even larger in realistic problems.429

These findings demonstrate that the novel SS-SC formulation introduced in this paper can430

significantly increase the current scope of application of voxel-based bone models, especially to431

problems involving contact.432
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Table I. Coordinates of the locations shown in Figure 1A.

Loc-1 Loc-2 Loc-3 Loc-4 Loc-5 Loc-6 Loc-7

X/R 1.000 0.577 0.707 0.924 0.888 0.674 0.855

Y/R 0.000 0.577 0.000 0.000 0.325 0.303 0.216

Z/R 0.000 0.577 0.707 0.383 0.325 0.674 0.472
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Table II. Comparison of normalized maximum absolute error (NMAXABSE) and normalized root mean

squared error (NRMSE) in principal (σ1, σ2, σ3), normal (σxx , σyy , σzz) and shear (σxy , σxz , σyz) stress

fields for the bonded, stair-case, sliding contact (SC-SC) and simulated smoothed surface, sliding contact

(SS-SC) formulations compared to the benchmark model of femur–acetabulum contact.

NMAXABSE NRMSE

Bonded SC-SC SS-SC Bonded SC-SC SS-SC

σ1 0.943 0.510 0.560 0.116 0.0291 0.00853

σ2 0.941 0.540 0.511 0.153 0.0336 0.00817

σ3 1.75 0.676 0.427 0.305 0.0409 0.00806

σxx 1.45 0.433 0.440 0.260 0.0387 0.00728

σyy 0.957 0.429 0.387 0.116 0.0290 0.00689

σzz 1.60 0.839 0.444 0.213 0.0299 0.00829

σxy 2.31 0.894 0.354 0.266 0.0436 0.00925

σxz 2.75 0.700 0.285 0.422 0.0473 0.0102

σyz 1.78 1.01 0.450 0.217 0.0496 0.0116
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(A) (B)

Figure 1. (A) The shaded triangular region is the smallest region on the spherical surface that presents unique

orientations of the voxels to a local tangent plane. Seven locations on this shaded region are labeled Loc-1

to Loc-7. Dashed curves lie on symmetry planes about which the shaded region can be repeatedly reflected

to recover the entire spherical surface. (B) Reflective symmetry can be visualized on the positive quadrant

of the X -Z plane. Unique orientations of the voxels (solid outline) with respect to local tangents (coloured

lines) are present entirely within the 45◦-sector bounded by the locations Loc-1 and Loc-3.

Figure 2. Mesh of the voxelated hemisphere for representative combinations of mesh-refinement and voxel

orientation: (A) a/R = 0.1 and Loc-1, (B) a/R = 0.05 and Loc-4, (C) a/R = 0.0125 and Loc-7.
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ξ

O ρ

Figure 3. Mesh and applied boundary conditions for the benchmark model.

Figure 4. In the voxel models, contact interaction was defined between the outward pelvis surface facets

(yellow) and the exterior nodes of the femur (red dots) that were on the acetabulum facing side of a

specified plane (transparent blue). Here the pelvis is cut at a coronal cross-section to clarify the position

of the acetabular surface with respect to the femoral head in the reference configuration.
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Figure 5. Contours of minimum principal stress computed by (A) bonded, (B) stair-case, sliding contact

(SC-SC) and (C) simulated smoothed surface, sliding contact (SS-SC) models, respectively, are shown on

the y = 0 plane of the hemispheres in the reference configuration, corresponding to a/R = 0.075 and Loc-1

case. Stress values are normalized with respect to the Young’s modulus E .
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Figure 6. Principal stresses normalized with respect to Young’s modulus E along the radial line passing

through the point of initial contact. Normalized distances 0 and 1 correspond to the centre of the sphere

and the point of initial contact, respectively. (A) Maximum, middle and minimum principal stresses in the

benchmark model. For the voxel geometry corresponding to a/R = 0.075 and Loc-1, (B) maximum and

(C) minimum principal stresses are compared with the benchmark for the bonded, stair-case, sliding contact

(SC-SC) and simulated smoothed surface, sliding contact (SS-SC) models.
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Figure 7. The influence of mesh refinement on the dispersion in predicted stresses across different voxel

orientations for the bonded, stair-case, sliding contact (SC-SC) and simulated smoothed surface, sliding

contact (SS-SC) models. Predicted stresses for the coarsest (a/R = 0.1) and the most refined (a/R =

0.0125) voxel models are shown. Stresses are normalized with respect to Young’s modulus E and plotted

along the undeformed radial line and in the region close to contact (x ≥ 0.8). The shaded envelopes show

the dispersion of predicted stresses across the different orientations. The dashed line is the stress predicted

by the benchmark model.
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Figure 8. Comparison of normalized maximum absolute error (NMAXABSE) and normalized root mean

squared error (NRMSE) in (A–C) maximum and (D–F) minimum principal stress predictions for the bonded,

stair-case, sliding contact (SC-SC) and simulated smoothed surface, sliding contact (SS-SC) models. The

shaded envelopes depict the dispersion of the errors across the different orientations over a range of mesh

refinements.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme



30 P. BHATTACHARYA ET AL.

Figure 9. Comparison of principal stresses at the same coronal section between the tetrahedral mesh model

(A,E,I), the voxel mesh model with bonded contact (B,F,J), stair-case, sliding contact or SC-SC (C,G,K) and

simulated smoothed surface, sliding contact or SS-SC (D,H,L) formulations.
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