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Abstract	
	
Our	ability	to	detect	faint	images	is	better	with	two	eyes	than	with	one,	but	how	great	is	this	improvement?	A	meta-
analysis	 of	 65	 studies	 published	 across	more	 than	 five	 decades	 shows	 definitively	 that	 psychophysical	 binocular	
summation	(the	ratio	of	binocular	to	monocular	contrast	sensitivity)	is	significantly	greater	than	the	canonical	value	of	

Ö2.	 Several	 methodological	 factors	 were	 also	 found	 to	 affect	 summation	 estimates.	 Binocular	 summation	 was	
significantly	affected	by	both	 the	 spatial	and	 temporal	 frequency	of	 the	 stimulus,	and	 stimulus	 speed	 (the	 ratio	of	
temporal	 to	 spatial	 frequency)	 systematically	 predicts	 summation	 levels,	 with	 slow	 speeds	 (high	 spatial	 and	 low	
temporal	frequencies)	producing	the	strongest	summation.	We	furthermore	show	that	empirical	summation	estimates	
are	affected	by	the	ratio	of	monocular	sensitivities,	which	varies	across	individuals,	and	is	abnormal	in	visual	disorders	
such	as	amblyopia.	A	simple	modeling	framework	is	presented	to	interpret	the	results	of	summation	experiments.	In	
combination	with	the	empirical	results,	this	model	suggests	that	there	is	no	single	value	for	binocular	summation,	but	
instead	that	summation	ratios	depend	on	methodological	factors	that	influence	the	strength	of	a	nonlinearity	occurring	
early	 in	 the	 visual	 pathway,	 before	 binocular	 combination	 of	 signals.	 Best	 practice	methodological	 guidelines	 are	
proposed	for	obtaining	accurate	estimates	of	neural	summation	in	future	studies,	including	those	involving	patient	
groups	with	impaired	binocular	vision.	
	

Keywords:	binocular	summation,	meta-analysis,	psychophysics,	contrast,	spatiotemporal	frequency	

	
1	Introduction	

	

The	 human	 visual	 system	 pools	 information	

across	 the	 two	 eyes	 to	 create	 a	 single	 stable	

representation	 of	 the	 world.	 At	 low	 contrasts	

near	 the	 limit	 of	 detectability,	 sensitivity	 to	
variations	 in	 luminance	 is	 improved	 by	

presenting	a	stimulus	to	both	eyes	(binocularly)	

rather	than	to	only	one	eye	(monocularly).	This	

improvement	in	sensitivity	is	known	as	binocular	

summation,	and	has	been	measured	in	numerous	

studies	 over	 the	 past	 50	 years	as	an	 important	

index	 of	 binocular	 function.	 Early	 work	
(Campbell	 &	 Green,	 1965)	 reported	 that	 the	

mean	sensitivity	improvement	was	a	factor	of	Ö2,	
meaning	 that	 on	 average	 a	 monocularly	

presented	stimulus	requires	a	contrast	1.4	times	

higher	 than	 the	 same	 stimulus	 presented	

binocularly	 in	 order	 to	 be	 equally	 detectable.	

This	 is	 consistent	with	 a	 squaring	 nonlinearity	

operating	before	the	two	monocular	signals	are	

summed	 physiologically	 in	 the	 cortex	 (Legge,	
1984b).	However,	more	recent	work	(e.g.	Meese,	

Georgeson,	 &	 Baker,	 2006)	 has	 reported	

substantially	 greater	 improvements,	 up	 to	 a	

factor	 of	 around	 1.8,	 implying	 a	 weaker	

nonlinearity.		

	
Determining	 the	 ‘true’	 level	 of	 binocular	

summation	has	been	challenging,	in	part	because	

different	studies	use	a	diverse	range	of	stimulus	

parameters,	 psychophysical	 techniques,	 and	

analysis	methods.	In	addition,	most	studies	test	

relatively	 few	 observers	 (median	 N=5	 in	 the	

studies	we	discuss	here),	meaning	that	individual	

differences	 in	 binocular	 vision	 could	 have	 a	
strong	influence	on	summation	estimates.	Here,	

we	aim	to	determine	the	methodological	factors	

that	 govern	 the	 empirical	 measurement	 of	

binocular	 improvement.	 We	 do	 this	 by	

conducting	 a	 meta-analysis	 of	 65	 published	

studies	 reporting	 binocular	 summation	 of	

contrast,	and	confirming	these	findings	with	two	
further	 data	 sets	 that	 measure	 binocular	

summation	 as	 a	 function	 of	 spatiotemporal	

frequency,	 and	 individual	 differences	 in	

sensitivity	between	the	eyes.	In	order	to	consider	

these	 results	within	 a	 common	 framework,	we	

first	define	a	minimal	model	of	binocular	signal	

combination	at	threshold.	
	

1.1	A	canonical	model	of	summation	at	threshold	

We	 assume	 that	 detection	 decisions	 are	

determined	 by	 the	 response	 of	 a	 binocular	

mechanism,	that	takes	two	monocular	inputs	and	

sums	them	together:	
	

resp	=	L	+	R	 	 	 (1)	

	

where	 L	 and	 R	 are	 the	 contrasts	 of	 stimuli	

presented	to	the	left	and	right	eyes	respectively,	

and	 performance-limiting	 late	 additive	 noise	 is	
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approximated	 by	 defining	 threshold	 at	 a	 fixed	

(but	arbitrary)	response	level	(e.g.	resp=1).	This	

linear	model	 predicts	 that	 binocular	 sensitivity	
(respBIN)	 is	 twice	 that	 of	 monocular	 sensitivity	

(respMON)	because	(trivially)	1	+	1	=	2	+	0;	when	

the	stimulus	is	presented	to	both	eyes	it	requires	

half	the	contrast	to	produce	the	same	response	as	

when	 it	 is	 presented	 to	 only	 one	 eye.	 A	 more	

general	form	of	the	model	is	given	by:	
	

resp	=	Lm	+	Rm	 	 	 (2)	

	

where	 the	 exponent	 m	 governs	 the	 level	 of	

summation,	 for	which	 the	summation	ratio	 can	

be	 derived	 precisely	 as	 21/m	 (Baker,	 Wallis,	

Georgeson,	 &	 Meese,	 2012).	 When	 m=1,	
summation	is	 linear	(as	in	equation	1),	because	

21/1	 =	 2.	 When	 m=2,	 summation	 is	 reduced	

because	 21/2	 =	 Ö2.	 Subsequent	 nonlinearities	
(after	the	monocular	signals	are	summed)	do	not	

affect	 the	 level	 of	 summation.	 Obtaining	 an	

accurate	 empirical	 estimate	 of	 binocular	

summation	 is	 therefore	 informative	 regarding	

nonlinearities	early	in	the	visual	pathway,	before	

information	 is	 combined	 across	 the	 eyes.	With	
this	aim	in	mind	we	conducted	a	meta-analysis	to	

aggregate	 summation	 ratios	 across	 more	 than	

five	decades	of	published	work,	for	a	total	sample	

size	of	N=716	observers.		

	

2	Meta-analysis	
	

2.1	Meta-analysis:	methods	

We	 collected	 published	 studies	 reporting	

psychophysical	 binocular	 summation	 ratios	 for	

luminance-defined	stimuli	at	 contrast	detection	

threshold	in	observers	with	normal	vision.	These	

were	 obtained	 by	 searching	 PubMed	 using	 the	
term	 ‘binocular	 summation’	 (401	 hits	 on	 19th	

January	2018)	and	then	screening	each	study	to	

determine	its	methodological	details,	yielding	52	

studies.	 A	 further	 13	 relevant	 studies	 were	

included	that	were	identified	through	secondary	

searches	 and	 the	 authors’	 knowledge	 of	 the	
literature,	 giving	 a	 total	 of	 65	 studies	 (see	

Appendix	1	for	a	full	PRISMA	flow	diagram).	In	

some	cases	summation	data	were	given	in	tables	

or	in	the	text;	in	others	they	were	estimated	from	

published	 figures	 using	 computer	 software.	 In	

instances	where	data	for	a	control	and	a	clinical	

group	 were	 reported,	 we	 included	 only	 the	

control	data.	

	
We	performed	the	meta-analysis	using	estimates	

of	 summation	 ratios	 expressed	 in	 decibel	 (dB)	

units,	 defined	 as	 20*log10(BSR),	 where	 BSR	 is	

the	 ratio	 of	monocular	 to	 binocular	 thresholds	

expressed	in	Michelson	contrast	(or	equivalently	

the	 ratio	 of	 binocular	 to	 monocular	 contrast	
sensitivity).	In	these	units,	a	summation	ratio	of	

2	is	equivalent	to	6dB,	a	ratio	of	1	is	equivalent	to	

0dB,	and	a	ratio	of	Ö2	is	equivalent	to	3dB.	Where	
possible,	 we	 calculated	 the	 mean	 for	 each	

observer	across	all	experimental	conditions	(e.g.	

different	 spatial	 or	 temporal	 frequencies,	

depending	 on	 the	 study)	 and	 then	 computed	 a	

mean	and	standard	deviation	across	observers,	

and	 used	 this	 to	 estimate	 95%	 confidence	
intervals	 using	 the	 approximation	 ±1.96*SE.	 In	

other	studies,	data	for	individual	observers	were	

not	 available,	 and	 we	 estimated	 the	 standard	

deviation	by	pooling	variances	across	conditions	

assuming	 negligible	 covariance	 between	

conditions	 (which	 is	 implausible,	 but	 gives	 an	

upper	 bound	 on	 the	 variance	 estimate).	Where	
standard	 deviations	 (or	 standard	 errors)	 were	

given	 in	 linear	 units,	we	converted	 these	 to	 dB	

units	before	averaging.	For	some	studies	it	was	

only	 possible	 to	 obtain	 the	 mean,	 and	 so	 a	

measure	of	variance	is	not	given.	The	full	meta-

analysis	summary	table	is	included	in	Appendix	
1.	

	

2.2	Meta-analysis:	results	

Figure	1a	shows	a	summary	of	the	meta-analysis	

results	 represented	 as	 a	 forest	 plot.	 Each	 row	

denotes	 a	 separate	 study,	 with	 the	 horizontal	

placement	of	the	symbol	giving	the	mean	level	of	
binocular	 summation	 for	 that	 study,	 and	 error	

bars	giving	the	95%	confidence	intervals.	For	the	

vast	majority	of	studies	(all	but	two),	the	lower	

bound	 of	 the	 confidence	 intervals	 exceeded	 a	

summation	 ratio	 of	 1	 (no	 summation,	 given	 by	

the	 solid	 black	 vertical	 line)	 and	 1.1	 (dashed	
brown	 line)	 –	 a	 level	 that	 has	 come	 to	 be	

associated	with	probabilistic	summation	of	two	

independent	 noisy	 inputs	 (Meese	 &	 Summers,	

2012;	Tyler	&	Chen,	2000).	
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Figure	1:	Meta-analysis	summary.	(a)	Forest	plot	of	binocular	summation	across	65	studies.	Square	symbol	width	is	
proportional	to	the	 log	of	 the	sample	size	plus	one.	Error	bars	give	95%	confidence	 intervals,	estimated	using	the	
approximation	±1.96*SE.	The	black	vertical	line	gives	the	line	of	no	effect,	where	binocular	and	monocular	sensitivities	
are	equal.	The	dashed	vertical	line	gives	an	estimate	of	probability	summation	for	two	independently	noisy	signals.	The	

grey	vertical	line	gives	the	traditional	value	of	Ö2.	The	white	diamond	gives	the	average	across	all	studies	(3.72dB,	or	a	
ratio	of	1.53),	weighting	each	study	equally	(ignoring	sample	size).	The	grey	diamond	gives	the	average	weighted	by	
the	sample	size	of	each	study	(3.54dB,	or	a	ratio	of	1.50).	The	black	diamond	gives	the	average	weighted	by	the	inverse	
variance	of	each	study	(3.35dB,	or	a	ratio	of	1.47).	This	latter	estimate	comprises	only	55	studies,	as	a	measure	of	
variance	was	unavailable	for	10	studies.	The	width	of	the	diamonds	spans	the	95%	confidence	intervals.	(b)	Funnel	
plot	showing	sample	size	plotted	against	binocular	summation	for	all	65	studies.	The	distribution	of	summation	ratios	
is	approximately	symmetrical	about	the	means	(with	the	dotted,	dashed	and	solid	lines	corresponding	to	the	white,	
grey	and	black	diamonds	from	panel	(a)).	(c)	Word	cloud	showing	the	most	frequent	words	used	in	the	abstracts	of	
studies	included	in	the	meta-analysis.	(d)	Number	of	citations	per	article	included	(obtained	from	Web	of	Knowledge	
on	January	29th	2018),	plotted	against	year	of	publication.	Articles	with	no	citations	are	omitted.	Colours	in	panels	(b,d)	
correspond	to	those	in	panel	(a).	
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Much	 less	 clear	 from	 inspecting	 the	 individual	

means	 is	 whether	 the	 population	 of	 studies	

shows	summation	above	the	classical	value	of	Ö2.	
To	determine	this,	we	averaged	across	studies	to	

produce	 aggregate	 estimates	 of	 summation.	
When	 each	 study	 is	 given	 equal	 weight	

(regardless	 of	 sample	 size),	 the	 mean	 level	 of	

summation	 was	 1.53,	 as	 shown	 by	 the	 white	

diamond	 at	 the	 foot	 of	 Figure	 1a.	 The	 lower	

bound	 of	 the	 95%	 confidence	 interval	 was	

comfortably	 above	 the	 Ö2	 level.	 We	 also	
calculated	a	weighted	average,	where	each	study	

was	multiplied	by	 its	 sample	size,	and	 the	 total	
divided	by	the	sum	of	the	weights	(grey	diamond	

in	 Figure	 1a).	 This	 slightly	 reduced	 the	 mean	

summation	 ratio	 (to	 1.50),	 but	 left	 the	 lower	

bound	 of	 the	 confidence	 interval	 above	 Ö2	 (at	
1.46).	Finally,	we	weighted	studies	by	the	inverse	

of	 the	 variance	 across	 participants	 (black	

diamond	 in	Figure	1a).	An	estimate	of	variance	

was	 available	 for	 55	 studies,	 with	 5	 of	 the	

remaining	studies	featuring	only	one	participant,	
and	 the	remaining	5	 failing	 to	 report	a	useable	

measure	of	variability.	Across	 these	55	studies,	

the	 weighted	 mean	 was	 1.47,	 with	 the	 lower	

bound	 of	 the	 95%	 confidence	 interval	 at	 1.43.	

Therefore	 all	 three	 methods	 for	 weighting	 the	

summation	 ratios	 produced	 an	 average	 value	

that	 was	 significantly	 above	 the	 classical	

estimate	of	Ö2.	
	

We	 next	 asked	 which	 methodological	 factors	

might	 lead	 to	 the	 inter-study	 variability	 in	

summation	 ratios.	 One	 methodological	

difference	between	studies	is	 the	way	 in	which	

the	 unstimulated	 eye	 is	 treated	 during	

monocular	 conditions.	 In	 many	 studies	
(particularly	 older	 studies	 and	 those	 with	 a	

clinical	focus)	the	unstimulated	eye	wore	a	patch,	

and	 was	 therefore	 completely	 dark	 during	

monocular	conditions	(N=13).	Other	studies	use	

specialist	 equipment,	 such	 as	 stereoscopes,	

virtual	reality	headsets,	or	stereo	shutter	goggles	

to	present	mean	luminance	to	the	unstimulated	
eye	on	monocular	trials	(N=33).	In	these	studies,	

trials	 from	 different	 conditions	 (binocular	 vs	

monocular	 presentation)	 can	 be	 interleaved	 so	

that	the	participant	is	unaware	of	whether	one	or	

both	eyes	are	being	stimulated	on	a	given	trial.	It	

has	 been	 suggested	 that	 luminance	 from	 an	
otherwise	unstimulated	eye	can	have	an	effect	on	

sensitivity	 to	 periodic	 stimuli	 presented	 to	 the	

other	 eye	 (Denny,	 Frumkes,	 Barris,	 &	

Eysteinsson,	1991;	Yang	&	Stevenson,	1999),	and	

this	dichoptic	‘zero	frequency’	masking	might	be	

expected	 to	 influence	 binocular	 summation.	

Studies	in	which	the	unstimulated	eye	saw	mean	

luminance	on	monocular	trials	reported	slightly	
greater	 levels	 of	 binocular	 summation	 than	

studies	 involving	patching	 (mean	ratios	of	1.57	

vs	1.48,	see	Figure	2a).	However,	a	Welch’s	t-test	

comparing	summation	ratios	from	studies	using	

these	 two	 methodologies	 (twelve	 studies	 in	

which	the	method	was	not	clearly	stated,	and	7	
studies	 using	 a	 translucent	 occluder	 were	

omitted)	 found	 that	 the	 difference	 was	 not	

significant	(t=1.43,	df=19.25,	p=0.17).		

	

A	second	difference	across	studies	concerns	the	

psychophysical	 methodology	 used	 to	 estimate	

thresholds.	Many	older	studies	used	techniques	
such	as	the	method	of	adjustment	or	yes/no	tasks	

to	 estimate	 thresholds	 (N=19).	 These	 methods	

are	 subject	 to	 bias,	 from	 participants	 adjusting	

their	 criteria	 for	 setting	 thresholds	 (or	 for	

responding	 yes	 or	 no),	 which	 might	 be	 more	

severe	 in	 studies	 where	 the	 condition	 being	

tested	 (monocular	 or	 binocular)	 was	 made	
explicit	by	the	use	of	a	patch.	More	recent	work	

(N=46)	has	tended	to	use	bias-free	forced-choice	

methods	 to	 avoid	 such	 problems.	 Bias-free	

methods	 produced	 slightly	 greater	 levels	 of	

summation	 (mean	 ratio	 1.56)	 compared	 with	

other	methods	(mean	ratio	1.48;	see	Figure	2b).	
Nevertheless,	 a	 Welch’s	 t-test	 found	 no	

significant	 difference	 between	 these	 two	

methodologies	(t=1.70,	df=40.96,	p=0.10).	

	

3	 Summation	 varies	 with	 spatiotemporal	

stimulus	properties	

	
A	 further	 source	 of	 methodological	 variability	

across	 studies	 concerns	 the	 spatiotemporal	

properties	of	the	stimuli	used.	To	explore	these	

factors,	we	reanalysed	the	meta-analysis	studies	

to	 average	 across	 all	 observers	 from	 a	 given	

study	 that	 had	 completed	 a	 specific	
spatiotemporal	 condition.	 We	 summarise	 the	

results	in	three	ways	in	Figure	3;	as	a	function	of	

spatial	 frequency	 (Fig	 3a),	 temporal	 frequency	

(Fig	 3b)	 and	 presentation	 duration	 (Fig	 3c).	

Linear	 regression	 (on	 logarithmic	 values)	

showed	 significant	 negative	 effects	 of	 spatial	

frequency	 (t=-4.00,	 p<0.001)	 and	 temporal	
(flicker)	 frequency	 (t=-2.06,	 p<0.05)	 but	 not	

duration	(t=-1.68,	p=0.09).	However,	in	principle	

these	effects	could	stem	from	methodological	or	

sampling	 differences	 across	 studies.	 To	 ensure	

that	the	effects	of	spatiotemporal	frequency	are	

robust,	we	would	ideally	seek	to	replicate	them	

within	a	single	study.	
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Figure	2:	Effect	of	methodology	on	binocular	summation.	Panel	(a)	compares	studies	in	which	the	unstimulated	eye	(in	
monocular	conditions)	viewed	mean	luminance,	with	studies	in	which	it	wore	a	patch	and	was	therefore	dark.	Panel	
(b)	compares	studies	that	used	criterion	free	forced-choice	methods	with	studies	that	used	other	methods	(such	as	the	
method	of	adjustment,	or	yes/no	tasks).	In	both	panels,	data	from	a	single	study	have	a	colour	consistent	with	Figure	
1a,	and	symbol	diameter	is	proportional	to	the	base-10	logarithm	of	sample	size	(plus	an	added	constant	to	avoid	sizes	
of	zero	for	studies	with	only	one	participant).	Black	horizontal	lines	in	give	the	unweighted	means	across	studies,	and	
error	bars	give	95%	confidence	intervals.	

	
Previous	 studies	 have	 manipulated	 spatial	

(Campbell	&	Green,	1965;	Ross,	Clarke,	&	Bron,	

1985;	 Simpson,	 Manahilov,	 &	 Shahani,	 2009)	
and/or	 temporal	 (Baker	 &	 Meese,	 2012;	 Rose,	

1980)	 frequency	 experimentally,	 sometimes	

finding	 systematic	 effects	 on	 binocular	

summation.	 Yet	 we	 found	 no	 published	 study	

reporting	summation	as	a	function	of	both	spatial	

and	 temporal	 frequency	 that	manipulated	 both	

variables	 across	 a	wide	 range.	 Such	 a	 study	 is	
necessary	to	validate	the	findings	from	the	meta-

analysis	 while	 controlling	 for	 potential	

methodological	confounds	(e.g.	if	spatiotemporal	

frequency	 covaried	 with	 stimulus	 size,	

psychophysical	 task,	 equipment	 used,	 or	 other	

factors	 such	 as	 mean	 luminance).	 Fortunately,	
archival	 data	 were	 available	 that	 met	 these	

requirements.	 Two	 experiments	 testing	 a	wide	

range	 of	 different	 spatiotemporal	 conditions	

(termed	 set	 A	 and	 set	 B),	 were	 conducted	 at	

Aston	University	 during	 2004	 and	2005.	 These	

data	 have	 previously	 been	 reported	 only	 in	

abstract	form	(Georgeson	&	Meese,	2007,	2005),	
but	are	presented	here	in	full	 for	the	first	time.	

Methodological	details	are	available	in	Appendix	

2.	

	

3.1	Spatiotemporal	study:	results	

Binocular	 summation	 was	 apparent	 in	 all	

conditions	 tested	with	 both	 stimulus	 sets,	with	

an	 overall	 average	 summation	 ratio	 of	 1.65	

(4.33dB).	We	 plot	 the	 results	 in	 three	ways	 in	

Figure	 3d-f.	 Plotting	 binocular	 summation	 as	 a	
function	 of	 spatial	 frequency	 (collapsing	across	

all	 temporal	 conditions)	 reveals	 an	 increase	 in	

summation	 with	 increasing	 spatial	 frequency	

(Figure	 3d).	 The	 best	 fit	 regression	 line	 (in	

logarithmic	 units)	 had	 a	 highly	 significant	

positive	slope	of	0.05	(R2=0.40,	t=5.25,	p<0.001),	

meaning	that	an	increase	in	spatial	frequency	of	
a	factor	of	10	will	increase	summation	by	around	

12%	(1dB).	This	effect	is	in	the	opposite	direction	

to	 the	 effect	 of	 spatial	 frequency	 across	 the	

studies	 in	 the	 meta-analysis	 (see	 Figure	 3a),	

which	showed	a	slight	negative	effect	of	spatial	

frequency.	We	discuss	possible	explanations	for	
this	discrepancy	in	the	next	section.	

	

There	 was	 a	 significant	 negative	 effect	 of	

temporal	 frequency	 (R2=0.33,	 t=-4.14,	p<0.001)	

with	 a	 slope	 of	 -0.05	 (excluding	 the	 static	

conditions	which	had	a	nominal	 frequency	of	0	

Hz).	 This	 suggests	 that	 a	 tenfold	 increase	 in	
temporal	 frequency	 will	 reduce	 summation	 by	

around	12%	(see	Figure	3e),	broadly	consistent	

with	the	estimate	from	the	meta-analysis	(a	slope	

of	-0.03,	Figure	3b).	
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Figure	3:	Effects	of	spatial	and	temporal	stimulus	properties	on	binocular	summation.	The	upper	row	shows	data	from	
the	meta-analysis,	plotting	 summation	as	a	 function	of	 spatial	 frequency	(a),	 temporal	 frequency	 (b)	and	 stimulus	
duration	(c)	using	the	same	symbol	size	and	colour	conventions	as	in	Figure	2.	In	(c),	studies	that	allowed	unlimited	
inspection	 time	are	assigned	a	duration	of	>10s.	The	 lower	 row	shows	 the	 results	of	 two	experiments	measuring	
binocular	summation	as	a	function	of	spatial	frequency	(d),	temporal	frequency	(e)	and	speed	(f),	given	by	the	ratio	of	
temporal	frequency	to	spatial	frequency,	in	deg/s.	The	same	data	are	reproduced	in	each	panel,	except	that	the	0Hz	
data	are	omitted	from	panel	(f).	Error	bars	indicate	±1SE	of	the	mean	across	observers	(N=4	for	each	data	point).	Black	
lines	 in	 all	 panels	are	best	 fitting	 regression	 lines	 (on	 log-transformed	 values),	 and	 the	 orange	 curve	 in	 (f)	 is	 the	
prediction	of	equation	2	when	the	exponent	m	depends	on	stimulus	speed	(see	text	for	details).	

	
Since	 summation	 increases	 with	 spatial	

frequency	 and	 decreases	 with	 temporal	

frequency,	the	data	are	consistent	with	an	effect	

of	implied	stimulus	speed.	This	measure,	defined	

as	 the	ratio	of	 temporal	 to	 spatial	 frequency	 in	
deg/s,	 is	 a	 scalar	 quantity	 that	 has	 no	 implied	

direction.	 Replotted	 as	 a	 function	 of	 speed	

(Figure	 3f),	 binocular	 summation	 shows	 a	

remarkably	 lawful	 decline,	 as	 indexed	 by	 the	

highly	significant	linear	regression	(R2=0.70,	t=-

8.7,	p<0.001)	with	a	slope	of	-0.05	in	logarithmic	
units	 (black	 line).	 This	 holds	 across	 speeds	

varying	over	more	than	two	orders	of	magnitude	

in	 the	 present	 experiment.	 Because	 summation	

depends	 on	 the	 strength	 of	 the	 exponent	 in	

equation	2,	it	follows	that	this	exponent	(m)	can	

be	 considered	 a	 function	 of	 stimulus	 speed.	

Specifically,	 the	 function	 m	 =	 1.14	 +	
0.28*log10(TF/SF),	 where	 TF	 is	 temporal	

frequency	(in	Hz)	and	SF	is	spatial	frequency	(in	

c/deg),	provides	the	best	least	squares	fit	to	the	

data,	as	shown	by	the	orange	curve	in	Figure	3f.	

In	 short,	 increasing	 the	 early	 nonlinearity	 (m)	

with	 speed	 could	 account	 for	 the	 observed	

decrease	in	binocular	summation.	

	
3.2	Spatiotemporal	study:	discussion	

The	 effect	 of	 temporal	 frequency	 on	 binocular	

summation	 is	 consistent	 between	 the	 meta-

analysis	 and	 the	 experiment	 reported	 here.	

However	 higher	 spatial	 frequencies	 were	

associated	with	weaker	summation	in	the	meta-
analysis,	 but	 stronger	 summation	 in	 the	 stand-

alone	 experiment.	What	might	 account	 for	 this	

puzzling	discrepancy?	

	

One	key	factor	that	can	act	to	depress	empirical	

summation	 ratios	 is	 the	 sensitivity	 difference	

between	 the	 two	 eyes.	 In	 many	 studies,	
summation	 ratios	 are	 calculated	 by	 comparing	

binocular	 sensitivity	 with	 that	 of	 the	 more	

sensitive	 eye.	 When	 the	 two	 eyes	 are	
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approximately	equal	this	should	give	an	accurate	

estimate	 of	 summation.	 However,	 as	 the	

sensitivity	 difference	 between	 the	 eyes	
increases,	the	‘boost’	from	the	less	sensitive	eye	

becomes	 weaker.	 At	 low	 spatial	 frequencies,	

sensitivities	 are	 usually	 well	 balanced,	 but	 at	

higher	 frequencies	 optical	 and	 neural	 factors	

penalize	 the	 weaker	 eye	 and	 reduce	 its	

sensitivity	(e.g.	Pardhan,	1996).	Therefore	in	the	
studies	 included	 in	 the	 meta-analysis,	 the	

apparent	spatial	frequency	effect	might	in	fact	be	

due	to	monocular	asymmetries	in	sensitivity.	We	

next	 explore	 how	 differences	 in	 monocular	

sensitivity	 can	 influence	 estimates	 of	 binocular	

summation.	

	
4	 Individual	 differences	 in	 interocular	

sensitivity	predict	summation	

	

Even	 individuals	 with	 intact	 binocular	 vision	

often	 exhibit	 asymmetries	 in	 sensitivity	 across	

the	 two	 eyes.	 For	 example,	 Pardhan	 (1996)	

measured	 binocular	 summation	 in	 older	 and	
younger	participants	at	both	1	and	6c/deg.	In	the	

older	group,	interocular	sensitivity	ratios	(worse	

eye/better	eye)	 showed	a	 greater	 imbalance	at	

the	 higher	 spatial	 frequency	 (mean	 ratio	 0.74)	

than	 at	 the	 lower	 frequency	 (mean	 ratio	 0.85),	

and	 on	 a	 scatterplot	 of	 individual	 data	 points	
there	 was	 a	 strong	 relationship	 between	 the	

interocular	 sensitivity	 ratio	 and	 binocular	

summation.	Such	asymmetries	will	influence	the	

levels	 of	 binocular	 summation	 measured	

experimentally,	 depending	 on	 precisely	 how	

summation	is	calculated.		

	
By	 plotting	 summation	 for	 observers	 with	

naturally	 varying	 amounts	 of	 interocular	

sensitivity	 difference,	 we	 can	 measure	 the	

change	in	summation	that	occurs	in	individuals	

with	 large	 asymmetries,	 and	 also	 estimate	 the	

true	 level	 of	 neural	 binocular	 summation.	 We	
first	do	this	by	replotting	data	from	a	subset	of	21	

studies	 from	 the	 meta-analysis	 for	 which	

individual	 monocular	 thresholds	 for	 both	 eyes	

were	available	(total	N=239).	However	because	

the	diversity	of	stimulus	conditions	used	across	

studies	 could	 influence	 the	 results	 (e.g.	 via	 the	

effects	 of	 spatiotemporal	 frequency	 reported	
above),	 we	 replicate	 our	 findings	 by	 collecting	

new	 data	 in	 a	 group	 of	 41	 observers	 using	

common	 stimulus	 conditions.	 Methodological	

details	for	this	experiment,	which	was	conducted	

at	 The	 University	 of	 York	 during	 2017,	 are	

available	in	Appendix	3.	

	
	

4.1	Results	of	individual	differences	analysis	

Binocular	summation	is	plotted	as	a	function	of	

the	 threshold	 difference	 between	 the	 eyes	 in	
Figure	4.	 In	 the	upper	 row	 the	data	are	 from	a	

subset	of	21	studies	from	the	main	meta-analysis,	

and	in	the	lower	row	the	data	are	from	a	single	

experiment.	The	monocular	threshold	difference	

was	calculated	by	taking	the	absolute	difference	

between	 left	 and	 right	 eye	 thresholds	 (in	 dB	
units).	 Binocular	 summation	 was	 calculated	 in	

two	 ways:	 first,	 by	 subtracting	 the	 binocular	

threshold	from	the	lower	of	the	two	monocular	

thresholds	 (in	dB	units,	plotted	 in	panels	4a,c),	

and	 second,	 by	 subtracting	 the	 binocular	

threshold	from	the	average	of	the	two	monocular	

thresholds	(plotted	in	panels	4b,d).		
	

When	 summation	 is	 calculated	 relative	 to	 the	

best	 monocular	 threshold,	 there	 is	 a	 clear	

downward	trend	in	both	data	sets,	summarised	

by	 the	 significant	 negative	 correlations	 (Figure	

4a,	R=-0.19,	p<0.01;	Figure	4c,	R=-0.43,	p<0.01)	

and	best	fit	linear	regressions	(black	curves)	with	
slopes	of	-0.28	(Figure	4a)	and	-0.5	(Figure	4c).	

The	 regression	 intercepts	were	 3.20dB	 (Figure	

4a)	 and	 4.89dB	 (Figure	 4c).	 These	 intercepts	

imply	binocular	summation	ratios	of	1.45	(Figure	

4a)	 and	 1.76	 (Figure	 4c)	 when	 the	 eyes	 are	

equally	 sensitive.	 The	 slope	 of	 -0.5	 (or	 -0.3)	
means	that	for	every	1dB	difference	in	sensitivity	

between	 the	 eyes,	 the	 measured	 level	 of	

binocular	 summation	 reduces	 by	 0.5dB	 (or	

0.3dB).		

	

This	 trend	 is	 qualitatively	 consistent	 with	 the	

predictions	of	both	linear	(green	dashed	curve)	
and	 quadratic	 (blue	 dotted	 curve)	 summation	

models,	 determined	 by	 penalizing	 the	

contribution	of	one	eye	in	equation	2	by	varying	

amounts,	 for	 exponents	 m=1	 and	 m=2.	

Permitting	the	exponent	to	vary	resulted	in	best-

fitting	 estimates	 of	 m=1.75	 (Figure	 4a)	 and	
m=1.26	 (Figure	 4c),	 given	 by	 the	 orange	 solid	

curves.	 In	 the	 absence	 of	 an	 interocular	

sensitivity	 difference,	 this	 implies	 summation	

ratios	of	3.44dB	(a	ratio	of	1.49,	Figure	4a)	and	

4.80dB	(a	 ratio	of	1.74,	Figure	4c),	 significantly	

higher	 (Figure	 4a,	 t=4.88,	 df=238,	 p<0.001;	

Figure	4c,	t=2.78,	df=40,	p<0.01)	than	the	group	
averages	of	2.76dB	(a	factor	of	1.37,	Figure	4a)	

and	 4.06dB	 (a	 factor	 of	 1.6,	 Figure	 4c).	 These	

results	 show	 how	 even	 relatively	 modest	

monocular	 sensitivity	 differences	 can	 influence	

population	 estimates	 of	 summation	 when	 it	 is	

calculated	 relative	 to	 the	 best	 monocular	

threshold	(as	is	typical	in	many	studies).	
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Figure	4:	Change	in	binocular	summation	as	a	function	of	monocular	sensitivity	imbalance.	In	panels	(a,c)	summation	
is	defined	as	the	ratio	of	the	binocular	threshold	and	better	of	the	two	monocular	thresholds.	In	panels	(b,d)	summation	
is	defined	as	the	ratio	of	 the	binocular	threshold	and	the	average	of	 the	two	monocular	thresholds.	 In	all	panels,	a	
monocular	threshold	ratio	of	1	indicates	equal	monocular	sensitivities,	and	a	ratio	of	2	means	that	one	eye	was	twice	
as	sensitive	as	the	other.	Each	data	point	represents	one	observer,	either	from	studies	in	the	meta-analysis	with	diverse	
spatiotemporal	conditions	(panel	a,b;	N=239),	or	from	a	stand-alone	experiment	with	constant	stimulus	properties	
(panel	c,d;	N=41).	The	black	curves	in	panel	(a,c)	are	the	best	fitting	regression	line	(using	logarithmic	values),	with	
slopes	of	-0.3	(panel	a)	and	-0.5	(panel	c)	and	y-intercepts	of	3.20dB	(panel	a)	and	4.89dB	(panel	c).	The	remaining	
curves	show	summation	predictions	for	a	linear	transducer	(green	dashed	curves),	square	law	transducer	(blue	dotted	
curves)	and	best	fitting	exponents	(orange	solid	curves)	under	both	calculation	schemes.	

	
Figure	 4b,d	 replot	 the	 same	data,	 but	 this	 time	
binocular	 summation	was	calculated	relative	 to	

the	 average	 of	 the	 two	 monocular	 thresholds.	

Under	 this	 scheme,	 summation	 ratios	 are	

predicted	 to	 increase	 very	 slightly	 for	 larger	

monocular	 imbalances,	 because	 the	 higher	

monocular	threshold	in	the	weaker	eye	elevates	

the	mean	monocular	threshold.	This	is	borne	out	

by	the	very	slight	positive	trend	in	the	data	points	
across	 both	 panels.	 Calculated	 in	 this	way,	 the	

group	average	summation	ratios	were	3.56dB	(a	

factor	of	1.51,	panel	d)	and	 	4.88dB	(a	factor	of	

1.75,	 panel	 d).	 The	curves	 in	 Figure	 4b,d	 show	

simulated	 summation	 levels	 for	 different	

transducer	exponents	as	a	function	of	interocular	

asymmetry	 (implemented	 in	 the	 model	 by	
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attenuating	 the	 input	 contrast	 to	 the	 weaker	

eye).	For	a	linear	transducer	(m=1,	green	dashed	

curve),	a	monocular	difference	of	6dB	(a	factor	of	
2)	 increases	 empirical	 summation	 by	 0.5dB	

(around	6%).	For	a	square	law	transducer	(m=2,	

blue	dotted	curve),	the	expected	increase	is	1dB	

(12%).	Again,	the	replotted	data	follow	this	trend	

qualitatively,	 and	 are	 well-described	 by	 the	

orange	curve	with	exponents	m=1.75	 (panel	 b)	
and	m=1.26	(panel	d)	that	was	fit	to	the	data	in	

Figure	4a,c.	

	

By	replotting	a	subset	of	the	meta-analysis	data	

and	 confirming	 with	 a	 new	 experiment,	 we	

demonstrated	 that	 individual	 differences	 in	

monocular	 sensitivity	 can	 affect	 empirically	
measured	binocular	summation.	Overall,	the	data	

are	 consistent	 with	 monocular	 exponents	 of	

m=1.75	 (a	 true	 binocular	 summation	 ratio	 of	

around	 1.49)	 across	 studies	 with	 varying	

spatiotemporal	 properties	 (Figure	 4a,c),	 and	

m=1.26	 (a	 true	 binocular	 summation	 ratio	 of	

around	 1.74)	 when	 methodological	 details	 are	
held	constant	(Figure	b,d).	

	

5	General	Discussion	

	

We	 revisited	 the	 extent	 to	 which	 contrast	

sensitivity	improves	for	two	eyes	compared	with	
one.	 Across	 a	 meta-analysis	 of	 65	 studies,	 and	

two	 additional	 experiments,	 we	 demonstrated	

conclusively	 that	 binocular	 summation	 is	

significantly	greater	than	the	traditional	value	of	

Ö2,	and	considered	several	factors	that	can	affect	
empirical	 estimates	 of	 this	 parameter.	

Spatiotemporal	 frequency,	 and	 the	 sensitivity	

difference	 between	 the	 eyes	 both	 have	 an	

influence	 on	 empirical	 summation	 estimates.	
These	 effects	 suggest	 that	 there	 is	 no	 single	

canonical	 level	of	summation	(as	was	originally	

proposed	 by	 Campbell	 &	 Green,	 1965),	 but	

instead	a	range	of	values	between	approximately	

Ö2	 and	 2,	 depending	 on	 precise	 experimental	
conditions.	 We	 now	 discuss	 several	 of	 these	

factors	 in	 greater	 detail,	 and	 consider	 their	

importance	 for	 the	 clinical	 assessment	 of	
binocular	 function,	and	 best	 practice	 for	 future	

studies.	

	

5.1	 Do	 higher	 spatial	 frequencies	 increase	 or	

decrease	summation?	

As	 demonstrated	 in	 Figure	 4a,c,	 imbalances	 in	

monocular	sensitivity	can	have	a	negative	impact	
on	 binocular	 summation	 when	 it	 is	 calculated	

relative	 to	 the	 best	monocular	 threshold.	 Since	

this	 is	 standard	 practice	 for	 many	 published	

studies	 (e.g.	 Chen	 et	 al.,	 2014;	 Longley	 &	

Whitaker,	 2016;	 Pardhan	 &	 Rose,	 1999),	

monocular	 asymmetries	 at	 higher	 spatial	

frequencies	 are	 a	 plausible	 explanation	 for	 the	

apparent	 changes	 in	 binocular	 summation	

shown	 in	 Figure	 3a.	 But	 in	 the	 spatiotemporal	
experiment,	 the	 raw	 monocular	 data	 were	

pooled	to	calculate	a	single	threshold.	Might	this	

have	led	to	spurious	increases	in	summation	at	

high	spatial	 frequencies,	as	 illustrated	in	Figure	

4b,d?	This	is	unlikely	for	two	reasons.	First,	 the	

effects	 are	 rather	 modest,	 even	 for	 quite	 large	
sensitivity	 differences	 (i.e.	 <1dB	 for	 a	 6dB	

threshold	 difference).	 Second,	 monocular	

sensitivity	 differences	 of	 that	magnitude	would	

reduce	 the	 slope	 of	 the	 psychometric	 function	

used	 for	 estimating	 the	 pooled	 monocular	

threshold	(because	the	pooled	data	would	come	

from	 two	 underlying	 psychometric	 functions	
with	 a	 relative	 lateral	 displacement).	 The	

(geometric)	mean	 slopes	were	 almost	 identical	

across	 the	 binocular	 (mean	Weibull	b	 =	 2.384)	
and	 monocular	 (mean	 Weibull	 b	 =	 2.377)	
conditions,	and	showed	no	significant	differences	

(p>0.05).	 We	 therefore	 conclude	 that	 the	

increase	 in	 summation	 at	 higher	 spatial	

frequencies	is	a	genuine	effect,	but	one	that	was	

previously	 obscured	 in	 published	 studies	 by	

methodological	factors.	

	
5.2	Binocular	summation	in	clinical	conditions	

Several	 studies	 appear	 to	 show	 that	 binocular	

summation	is	negligible	in	amblyopia	(Harwerth,	

Smith,	 &	 Levi,	 1980;	 Lema	 &	 Blake,	 1977;	

Pardhan	&	Gilchrist,	1992),	and	from	this	it	was	

often	 concluded	 that	 neural	 binocular	
mechanisms	were	absent	or	compromised	in	this	

condition.	However,	one	of	the	key	symptoms	of	

amblyopia	is	a	reduction	of	contrast	sensitivity	in	

the	amblyopic	eye,	particularly	at	higher	spatial	

frequencies	(Hess	&	Howell,	1977).	The	apparent	

absence	of	binocular	summation	could	be	due	to	

an	extreme	version	of	the	effect	shown	in	Figure	
4a,c,	 whereby	 monocular	 imbalances	 reduce	

empirical	 summation	 estimates	 (to	 negligible	

levels).	By	adjusting	the	monocular	contrasts	to	

compensate	 for	 the	 sensitivity	 difference	 (a	

technique	 originally	 developed	 for	 estimating	

binaural	 summation,	 see	 Shaw,	 Newman,	 &	
Hirsh,	 1947),	 normal	 levels	 of	 binocular	

summation	become	apparent	in	individuals	with	

amblyopia	 (Baker,	 Meese,	 Mansouri,	 &	 Hess,	

2007),	 indicating	 that	 neural	 binocular	

mechanisms	 remain	 intact.	 A	 similar	 apparent	

loss	of	 summation	can	be	 induced	 in	observers	

with	 normal	 binocular	 vision	 by	 reducing	 the	
luminance	 to	 one	 eye	 using	 a	 neutral	 density	

filter	 (Baker	 et	 al.,	 2007;	 Gilchrist	 &	 McIver,	

1985;	Richard,	Chadnova,	&	Baker,	 2018).	 This	

reduces	 sensitivity	 without	 affecting	 contrast,	

and	 can	 be	 similarly	 compensated	 by	 boosting	

the	 contrast	 in	 the	 filtered	 eye	 (Baker	 et	 al.,	
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2007).	 Future	 clinical	 studies	 must	 therefore	

exercise	 methodological	 diligence	 in	 using	

binocular	 summation	 to	 assess	 binocular	
function,	 especially	 in	 situations	 where	

monocular	sensitivities	may	be	unequal.	

	

5.3	What	is	the	best	way	to	measure	summation?	

Our	results	here	point	to	some	guidelines	for	how	

best	to	estimate	neural	binocular	summation	in	
future	studies.	Patching	of	the	unstimulated	eye	

should	 be	 avoided	 if	 at	 all	 possible,	 ideally	 by	

using	equipment	 (stereoscopes,	 shutter	goggles	

or	 virtual	 reality	 hardware)	 designed	 for	

binocular	 presentation.	 If	 this	 is	 not	 possible,	

then	 placing	 a	 frosted	 occluder	 in	 front	 of	 the	

unstimulated	 eye	 will	 ensure	 that	 it	 views	 an	
uncontoured	 field	 of	 nearly	 the	 same	 mean	

luminance.	 Unbiased	 forced-choice	 methods	

using	 adaptive	 staircases	 (or	 similar)	 are	

preferable	to	techniques	in	which	the	participant	

adjusts	 the	 stimulus	 contrast	 to	 reach	 some	

internal	 criterion	 (as	 this	 is	 subject	 to	bias),	or	

eye-chart-based	methods	 (for	 which	 the	 set	 of	
possible	thresholds	is	typically	quantized	to	the	

range	of	stimuli	on	the	chart).		

	

Monocular	 thresholds	 should	 always	 be	

measured	 for	 each	eye.	 If	 there	 are	 substantial	

differences	 in	 sensitivity	 across	 the	 eyes,	 then	
one	 option	 is	 to	 use	 a	 procedure	 in	which	 the	

components	 of	 the	 binocular	 stimulus	 are	

normalized	 to	 the	 monocular	 detection	

thresholds	 (Baker	 et	 al.,	 2007).	 If	 this	 is	 not	

possible,	 then	 modelling	 the	 sensitivity	

difference	 can	 provide	 unbiased	 estimates	 of	

summation	by	calculating	an	attenuation	weight	
for	the	weaker	eye,	finding	the	best	exponent	to	

describe	 the	 amount	 of	 summation	 measured,	

and	inferring	the	level	of	summation	that	would	

be	 expected	 if	 sensitivities	 were	 equal	 (e.g.	

Figure	4a,c).	For	moderate	sensitivity	differences	

(e.g.	<3dB),	averaging	the	monocular	thresholds	
is	preferable	to	using	the	threshold	of	the	better	

eye	 to	 calculate	 summation	 ratios,	 though	 this	

can	 slightly	 overestimate	 binocular	 summation	

(see	Figure	4b,d).	

	

5.4	 Appropriate	 sample	 sizes	 for	 estimating	

binocular	summation	
The	 inverse	 variance	 weighted	 aggregate	

measure	 of	binocular	 summation	 (given	 by	 the	

black	diamond	in	Figure	1a)	implies	an	effect	size	

(Cohen’s	 d)	 of	 around	 31	 for	 detecting	 the	

existence	of	binocular	summation	(i.e.	relative	to	

a	 summation	 ratio	 of	 1).	 This	 unusually	 large	

effect	size	means	that	even	a	study	with	only	two	
participants	 should	 be	 capable	 of	 detecting	 the	

presence	 or	 absence	 of	 binocular	 summation	

(using	a	one-sample	t-test)	with	99.99%	power.	

When	 comparing	 binocular	 summation	 to	 the	

canonical	value	of	Ö2,	the	effect	size	is	still	very	
large	(d=3.22),	meaning	that	a	study	with	three	

participants	 has	 over	 95%	 power.	 Our	 meta-

analysis	 therefore	 demonstrates	 that	 the	
tradition	of	small	sample	sizes	in	psychophysical	

studies	is	often	appropriate	given	the	magnitude	

and	 stability	 of	 the	 effects	 involved,	 and	 the	

precision	of	the	measurement	techniques.	

	

5.5	Summation	for	other	visual	cues	
The	 present	 study	 was	 confined	 to	 the	

investigation	of	binocular	summation	of	contrast	

at	 threshold	 using	 psychophysical	 techniques.	

Many	 of	 the	 studies	 we	 encountered	 while	

conducting	the	meta-analysis	reported	binocular	

summation	 for	 other	 visual	 tasks,	 including	

binocular	 summation	 for	 visual	 acuity,	 the	
detection	of	luminance	at	absolute	threshold,	and	

electroencephalographic	 (EEG)	 measures	 of	

binocular	 function.	 Understanding	 how	 the	

visual	system	integrates	different	cues	across	the	

eyes,	and	how	the	findings	for	contrast	apply	to	

different	 domains,	 will	 require	 further	 study.	

However,	 we	 note	 that	 the	 same	 general	
framework	 for	 signal	 combination	 and	

suppression	 that	 we	 discuss	 here	 and	 in	 our	

other	work	(Georgeson,	Wallis,	Meese,	&	Baker,	

2016;	Meese	et	al.,	2006)	has	been	successfully	

applied	to	understand	binocular	combination	of	

cues	 such	 as	 motion	 (Maehara,	 Hess,	 &	
Georgeson,	 2017)	 and	 contrast	 modulation	

(Georgeson	 &	 Schofield,	 2016),	 as	 well	 as	

summation	 across	 space	 (Meese	 &	 Summers,	

2007),	 time	 and	 orientation	 (Meese	 &	 Baker,	

2013),	 and	 also	 to	 make	 accurate	 predictions	

regarding	 neural	 responses	 (Baker	 &	 Wade,	

2017).	
	

6	Conclusions	

We	 asked	 whether	 binocular	 summation	 was	

greater	than	the	widely	cited	value	of	Ö2.	A	meta-
analysis	 of	 65	 studies	 involving	 716	 observers	

showed	 that	 summation	 is	 significantly	 above	

this	level,	and	furthermore	that	it	was	influenced	

by	 the	 spatial	 and	 temporal	 properties	 of	 the	
visual	stimulus.	We	then	showed	empirically	that	

stimulus	speed	(the	ratio	of	temporal	to	spatial	

frequency)	 determines	 summation	 in	 a	

systematic	 way,	 such	 that	 low	 speeds	 produce	

greater	summation	than	high	speeds.	Finally,	we	

found	 that	 the	 difference	 in	 monocular	

sensitivities	 can	 affect	 empirical	 estimates	 of	
summation.	 Overall,	 estimates	 of	 binocular	

summation	fall	within	the	range	between	Ö2	and	
2,	 depending	 on	 stimulus	 properties,	 and	 this	

range	of	values	reflects	speed-related	changes	in	

the	 strength	 of	 an	 early	 nonlinearity	 occurring	

prior	to	binocular	combination.	
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8	Appendices	
Appendix	1:	Meta-analysis	summary	table	and	PRISMA	diagram	
Table	A1:	Meta-analysis	summary	table	

Study	 N	

BSR	

(dB)	

SD	

(dB)	

Citation

s	 Method		 Setup		

Campbell	&	Green	(1965)	 2	 2.966	 0.310	 289	 MOA	 Occluder		

Blake	&	Levinson	(1977)	 1	 3.046	 -	 77	 MOA	 Stereoscope	

Lema	&	Blake	(1977)	 4	 2.578	 0.603	 83	 MOA	 Occluder		

Rose	(1978)	 8	 3.063	 0.630	 29	 MOA	 Occluder		

Derefeldt	et	al.	(1979)	 12	 3.110	 0.976	 161	 MOA	 Patch	

von	Grünau	(1979)	 1	 5.480	 -	 0	 2AFC	 Patch	

Blake	&	Rush	(1980)	 3	 3.174	 0.199	 10	 MOA	&	2AFC	 Stereoscope	

Rose	(1980)	 6	 3.964	 1.222	 11	 MOA	 Occluder		

Harwerth,	Smith	&	Levi	

(1980)	 8	 3.620	 0.813	 23	 RT	 Patch/Diffuser	

Levi,	Harwerth	&	Smith	

(1980)	 1	 3.111	 -	 41	 2AFC	 Stereoscope	

Arditi	et	al.	(1981)	 1	 4.235	 -	 21	 2AFC	 Stereoscope	

Legge	(1984a)	 4	 3.773	 0.356	 112	 2AFC	 Stereoscope	

Legge	(1984b)	 2	 3.950	 0.520	 112	 2AFC	 Stereoscope	

Ross,	Clarke	&	Bron	(1985)	 17	 0.926	 0.745	 83	 2AFC	 Patch	

Gilchrist	&	McIver	(1985)	 2	 2.608	 1.524	 21	 MOA	 Not	stated	

Harwerth	&	Smith	(1985)	 3	 4.660	 1.340	 14	 MDL	 Not	stated	

Holopigian	et	al.	(1986)	 2	 2.330	 0.100	 50	 2AFC	 Stereoscope	

Gilchrist	&	Pardhan	(1987)	 8	 3.242	 1.575	 19	 2AFC	 Not	stated	

Rose,	Blake	&	Halpern	(1988)	 3	 3.532	 0.093	 18	 2AFC	 Stereoscope	

Anderson	&	Movshon	(1989)	 4	 3.342	 1.015	 49	 MOA	 Stereoscope	

Pardhan	et	al.	(1989)	 8	 3.170	 0.140	 13	 2AFC	 Stereoscope	

Pardhan	et	al.	(1990)	 8	 3.120	 1.320	 13	 2AFC	 Stereoscope	

Denny	et	al.	(1991)	 3	 4.313	 1.475	 23	 2AFC	 Stereoscope	

Grigsby	&	Tsou	(1994)	 11	 5.750	 -	 14	 Yes/No	 Translucent	patch	

Pardhan	(1996)	 8	 3.346	 0.602	 36	 2AFC	 Patch	

Snowden	&	Hammett	(1996)	 3	 3.514	 1.084	 40	 2AFC	 Goggles	

Simmons	&	Kingdom	(1998)	 2	 4.240	 0.463	 29	 2AFC	 Goggles	

Pardhan	&	Rose	(1999)	 4	 3.340	 1.511	 8	 2AFC	 Stereoscope	

Marshman	et	al.	(2001)	 14	 2.457	 1.338	 6	 2AFC	 Occluder		

Hood	&	Morrison	(2002)	 9	 1.957	 -	 13	 MAL	 Occluder		

Valberg	&	Fosse	(2002)	 10	 3.620	 2.480	 23	 Yes/No	 Not	stated	

Gagnon	&	Kline	(2003)	 28	 4.292	 -	 20	 3AFC	 Patch	

Pardhan	&	Whitaker	(2003)	 10	 4.830	 2.540	 5	 2AFC	 Occluder		
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Cuesta	et	al.	(2003)	 54	 3.280	 -	 25	 3AFC	 Not	stated	

Meese	&	Hess	(2004)	 2	 5.853	 1.707	 70	 2AFC	 Stereoscope	

Jiménez	et	al.	(2004)	 18	 3.100	 0.650	 12	 3AFC	 Not	stated	

Meese	&	Hess	(2005)	 2	 5.120	 1.354	 28	 2AFC	 Stereoscope	

Maehara	&	Goryo	(2005)	 3	 3.270	 1.345	 23	 2AFC	 Stereoscope	

Simmons	(2005)	 4	 4.262	 0.709	 23	 2AFC	 Stereoscope	

Handa	et	al.	(2005)	 12	 3.200	 2.480	 15	 Eyechart	 Not	stated	

Meese	et	al.	(2006)	 5	 4.550	 0.795	 128	 2AFC	 Goggles	

Jiménez	et	al.	(2006)	 68	 3.743	 9.291	 27	 Not	stated	 Not	stated	

Medina	&	Mullen	(2007)	 3	 4.429	 1.726	 5	 2AFC	 Translucent	patch	

Baker	et	al.	(2007)		 3	 3.279	 0.839	 95	 2AFC	 Goggles	

Baker,	Meese	&	Hess	(2008)	 1	 3.970	 -	 72	 2AFC	 Goggles	

Meese	et	al.	(2008)	 3	 4.027	 0.588	 17	 2AFC	 Goggles	

Vedamurthy	et	al.	(2008)	 20	 3.998	 3.239	 12	 2AFC	 Goggles	

Meese	&	Summers	(2008)	 3	 5.030	 0.808	 40	 2AFC	 Goggles	

Castro	et	al.	(2009)	 28	 2.415	 0.517	 13	 Not	stated	 Not	stated	

El-Gohary	&	Siam	(2009)	 15	 4.155	 2.640	 0	 Eyechart	 Not	stated	

Simpson	et	al.	(2009)	 51	 3.192	 2.969	 7	 2AFC	 Occluder		

Villa	et	al.	(2009)	

10

2	 3.660	 -	 3	 Not	stated	 Occluder		

Connolly	(2010)	 12	 3.464	 4.222	 10	 Yes/No	 Opaque	occluder	

Meese	&	Baker	(2011)	 3	 5.422	 0.762	 9	 2AFC	 Goggles	

Baker	&	Meese	(2012)	 9	 3.264	 1.592	 2	 2AFC	 Goggles	

Sabesan	et	al.	(2012)	 5	 2.704	 1.260	 6	 2AFC	 Stereoscope	

Chen	et	al.	(2014)	 22	 2.582	 1.853	 4	 2AFC	 Patch	

Kingdom	et	al.	(2015)	 2	 2.923	 1.112	 21	 2AFC	 Stereoscope	

Longley	&	Whitaker	(2016)	 2	 4.130	 0.110	 1	 2AFC	 Occluder	(black)	

Georgeson	&	Schofield	(2016)	 7	 5.417	 1.416	 1	 2AFC	 Goggles	

Castro	et	al.	(2016)	 12	 3.364	 2.573	 0	 4AFC	 Not	stated	

Gheiratmand	et	al.	(2016)	 4	 3.143	 0.500	 3	 2AFC	 Stereoscope	

Kim	et	al.	(2017)	 20	 4.440	 3.370	 0	 2AFC	 Patch	

Maehara	et	al.	(2017)	 3	 4.990	 0.290	 0	 2AFC	 Stereoscope	

Richard	et	al.	(2018)	 8	 6.630	 2.231	 0	 2AFC	 Goggles	
MOA:	method	of	adjustment.	2AFC:	two-interval-forced-choice.	MDL:	method	of	descending	 limits.	MAL:	method	of	
ascending	limits.	RT:	reaction	time.	
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Figure	A1:	PRISMA	flow	diagram	 	
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Appendix	2:	Spatiotemporal	experiment:	methods	

Target	 stimuli	 were	 horizontal	 sine-wave	

gratings	with	spatial	frequencies	of	0.25,	0.5,	1,	2	
and	4c/deg	 (set	A),	or	0.25	and	1c/deg	 (set	B).	

Stimulus	contrast	was	spatially	windowed	by	a	

circular	 aperture	 with	 smoothed	 edges	 and	 a	

diameter	 at	 half-height	 of	 4	 degrees.	 Stimulus	

contrast	was	temporally	windowed	by	one	cycle	

of	a	raised	cosine	(duration	500	ms)	and	within	
that	 envelope	 contrast	 flickered	 sinusoidally	 in	

counterphase	at	frequencies	of	2,	4,	8	and	16Hz	

(set	A)	 or	 2,	 4,	 8,	 16,	 21,	 25	 and	30Hz	 (set	B).	

There	was	 also	 a	 static	 condition,	 in	which	 the	

stimulus	did	not	flicker	(i.e.	a	nominal	frequency	

of	0Hz).	All	factorial	combinations	of	spatial	and	

temporal	 frequencies	within	 a	 set	were	 tested.	
The	 experiments	 were	 completed	 by	

independent	groups	of	naïve	observers	for	set	A	

(N=4)	 and	 set	 B	 (N=4).	 All	 observers	 had	 no	

reported	history	of	binocular	abnormalities,	and	

wore	 their	 prescribed	 optical	 correction	 if	

required.	

	
Stimuli	 were	 generated	 using	 a	 Bits++	 video	

interface	 (Cambridge	 Research	 Systems	 Ltd.,	

Kent,	 UK)	 controlled	 by	 an	 Apple	 Macintosh	

computer	 running	 Matlab,	 and	 presented	 with	

14-bit	 luminance	 resolution	 on	 a	 gamma-

corrected	 Clinton	Monoray	monitor	 running	 at	
150Hz.	 The	 display	was	 viewed	 through	 ferro-

electric	FE1	stereo	shutter	goggles	synchronized	

with	 the	 monitor	 refresh	 rate	 to	 permit	

independent	 control	 of	 images	 to	 the	 left	 and	

right	 eyes	 via	 frame	 interleaving.	 Mean	

luminance,	 as	 seen	 through	 the	 alternating	

goggles,	was	26	cd/m2.	The	goggles	ensured	that	
during	monocular	 conditions,	 the	 unstimulated	

eye	viewed	mean	luminance.	

	

Stimuli	were	presented	for	500ms	in	one	of	two	

intervals,	each	marked	by	a	beep,	with	a	gap	of	

500ms	 between	 intervals.	 In	 one	 interval	 the	
target	 was	 presented,	 with	 its	 contrast	

determined	 by	 a	 3-down	 1-up	 staircase	

algorithm.	 The	 other	 interval	 was	 blank.	 Any	

given	 trial	 could	 either	 be	 monocular	 (left	 or	

right	eye)	or	binocular,	and	the	observer	was	not	

informed	 of	 this.	 Stimuli	 were	 blocked	 by	

spatiotemporal	 condition.	 Observers	 indicated	
which	 interval	 contained	 the	 target	 using	 a	

keypad	 and	 received	 auditory	 feedback	

regarding	 accuracy.	 Staircase	 algorithms	

terminated	 after	 100	 trials,	 and	 each	 observer	

repeated	the	experiment	four	times,	resulting	in	

20,000	 (set	 A)	 or	 12,800	 (set	 B)	 trials	 per	

observer	(in	set	B	there	were	additional	trials	in	
which	 the	 stimuli	were	 in	 antiphase	 across	 the	

eyes,	 but	 these	 data	 are	 not	 reported	 here).	

Thresholds	 for	 individual	 observers	 were	

estimated	 by	 fitting	 Weibull	 functions	 to	 the	

psychometric	data	pooled	across	all	repetitions,	

and	 taking	 the	 contrast	 at	 the	 81.6%	 correct	
point.	 Binocular	 summation	 was	 calculated	 as	

the	difference	(in	dB	units)	between	monocular	

and	binocular	thresholds.	

	

Appendix	 3:	 Individual	 differences	 experiment:	

methods	
Target	 stimuli	 were	 horizontal	 sine-wave	

gratings	 with	 a	 spatial	 frequency	 of	 1c/deg,	

windowed	by	a	circular	aperture	with	its	edges	

smoothed	by	a	cosine	function	to	a	diameter	of	5	

degrees.	 They	 were	 generated	 using	 a	 ViSaGe	

stimulus	 generator	 (Cambridge	 Research	

Systems	 Ltd.,	 Kent,	 UK)	 controlled	 by	 a	 PC	
running	 Matlab,	 and	 presented	 with	 14-bit	

luminance	 resolution	 on	 a	 gamma-corrected	

Clinton	Monoray	monitor	running	at	120Hz.	The	

display	was	viewed	through	ferro-electric	stereo	

shutter	 goggles	 synchronized	with	 the	monitor	

refresh	 rate	 to	 permit	 independent	 control	 of	

images	 to	 the	 left	 and	 right	 eyes	 via	 frame	
interleaving.	 The	 goggles	 ensured	 that	 during	

monocular	 conditions,	 the	 unstimulated	 eye	

viewed	mean	luminance.	

	

Stimuli	were	presented	for	100ms	in	one	of	two	

intervals,	each	marked	by	a	beep,	with	a	gap	of	
400ms	 between	 intervals.	 In	 one	 interval	 the	

target	 was	 presented,	 with	 its	 contrast	

determined	 by	 a	 3-down	 1-up	 staircase	

algorithm.	 The	 other	 interval	 was	 blank.	 Any	

given	 trial	 could	 either	 be	 monocular	 (left	 or	

right	eye)	or	binocular,	and	the	observer	was	not	

made	 aware	 of	 this.	 Observers	 indicated	which	
interval	contained	the	target	using	a	mouse	and	

received	 auditory	 feedback	 regarding	accuracy.	

Staircase	algorithms	terminated	after	120	trials	

or	10	reversals	(whichever	occurred	first).	Each	

observer	repeated	the	experiment	three	times.	

Data	 were	 pooled	 across	 repetitions	 and	
thresholds	 at	 75%	 correct	 were	 estimated	 for	

each	 condition	 using	 Probit	 analysis.	 The	

experiment	was	completed	by	58	observers,	who	

were	mostly	psychophysically	inexperienced	and	

naïve	to	the	purpose	of	the	experiment.	Several	

observers	produced	data	of	poor	quality	(typical	

in	 psychophysical	 studies	 with	 inexperienced	
observers,	 see	 Baker	 &	 Graf,	 2009),	 involving	

multiple	 errors	 for	 high	 contrast	 stimuli	 that	

should	obviously	have	been	visible.	To	improve	

data	quality	we	limited	the	fitted	data	to	include	

only	 target	 contrasts	 at	 and	 below	 0dB	

binocularly,	and	6dB	monocularly	(values	above	

which	 the	 stimulus	 was	 more	 than	 double	 the	
average	threshold).	This	produced	better	fits	for	

many	observers.	However	we	then	excluded	17	

individuals	 whose	 psychometric	 functions	 had	
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negative	 or	 extremely	 shallow	 slopes,	

implausibly	 high	 or	 low	 thresholds	 (exceeding	

±3SD	of	the	group	mean),	or	could	not	be	fitted	
satisfactorily.	The	 final	data	set	consisted	of	41	

observers	whose	results	met	these	criteria	for	all	

three	ocularity	conditions.	
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