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Abstract

This paper presents an assessment of three different particle based approaches for 3D mod-

elling of fibre reinforced polymer (FRP) composite laminates with anisotropic elasticity,

namely 3D Discrete Lattice model, 3D Hexagonal Close Packing model and Extended 2D

Hexagonal and Square Packing model. These approaches are compared and evaluated

against experimental results using a 0◦ ply lamina case. It has been confirmed that the Ex-

tended 2D Hexagonal and Square modelling approach in Discrete Element Method (DEM)

is capable of modelling 3D composite laminates with better efficiency. Angle-ply lamina and

two different laminates are modelled with the chosen particle approach. Good agreements

between DEM, Finite Element and theoretical results prove the capability of this developed

DEM approach for modelling the elastic behaviour of general FRP composite lamina and

laminates.
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1. Introduction

Glass fibre and carbon fibre reinforced polymer composite laminates, i.e. GFRP and

CFRP, have been widely used in aerospace, mechanical and civil engineering mainly due

to their high stiffness-weight ratios. In addition, with proper design and optimization of

the layer-up, desired modulus and strength in different directions of the laminates can be5
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achieved. However, due to the complexity of the microstructure of FRP composite lami-

nates, the onset of damage does not cause instantaneous failure of the entire structure.There

exists a progressive process from the damage initiation to final structural collapse [1]. Thus

it is much more challenging to predict the strength of a FRP composite laminate than

that of conventional homogenous materials and structures. Understanding of the failure10

mechanisms as well as developing accurate and universal failure criteria for predicting the

ultimate strength of FRP composite laminates, particularly under triaxial loads, is therefore

of significant importance. There are a number of failure criteria being developed and some

of them have been implemented in finite element software packages. For instance, Hashin

failure criteria [2] in ABAQUS and Tsai-Wu failure criterion [3] in ANSYS. Recent exercises,15

the Second World Wide Failure Exercise (WWFE-II), of assessing some existing failure cri-

teria for FRP composite laminates have shown satisfactory performance of each criterion

to various degrees, however, it was concluded from WWFE-II that ‘no one model contains

all what is required to produce a robust and reliable tool for designers ’ [4]. There are also

considerable variations in the accuracy of the predictions by these criteria. One of the main20

reasons for this is that some of those failure criteria are not capable of dealing with the dam-

age progression after the occurrence of first failure. It is recognised from the exercises that

failure criteria capable of distinguishing various failure modes and their interactions would

be more potent to be adopted by the industry. This poses a big challenge on experimental

tests to obtain valid results for calibrating the predictions of damage progression from the25

failure criteria. While it is already mentioned in the WWFE-II exercise that lacking of

test data, particularly under high hydrostatic pressure, has resulted in incomplete failure

envelope for benchmarking the failure criteria. The monitoring and visualization of in-situ

damage progression during mechanical tests is no doubt very difficult and produce valid

data. More recently, the third World-Wide Failure Exercise (WWFE-III) was conducted to30

highlight the degree of maturity of twelve internationally recognised approaches (some of

them are different from the criteria mentioned in WWFE-II) considering their capabilities of

detecting the various damages within the composite materials when subjected to multi-axial

loading [5, 6, 7]. Thirteen cases were adopted to test the cracking and failure propagation
2



arising from ply thickness, lay-up sequence, size effects and various loading conditions of35

unidirectional and multi-directional GFRP and CFRP composite laminates. It was found

that any two models cannot give identical predictions for any of the 13 test cases. In few

cases, the ratio between the highest and lowest predictions can reach a factor of 20. Still,

progressive cracking or damage cannot be predicted by any of the model for a lamina under

the shear and transverse loading [7]. Meanwhile, there was still a lack of agreement between40

these tested models when it comes to the effects of ply thickness, lay-up sequence, and de-

lamination driven by the matrix cracking, etc. Recently, a big step forward improve the

understanding of the crack initiation in FRP composite laminates has been made by using

synchrotron-radiation computed tomography (SRCT) and acquiring high-resolution, in-situ

images of cracks for more accurate measurement of the location, shape and size of small45

cracks in the order of 1 micrometre [8, 9]. This promising in-situ testing technology can

provide more quantitative validations of numerical models in terms of damage progression

from one type of failure to another.

For a long time, numerical modelling of damage progression in FRP composite laminates

has been reported using Finite Element Method (FEM) [10, 11, 12, 13, 14], Boundary50

Element Method (BEM) [15, 16, 17, 18] as well as Discrete Element Method (DEM) [19,

20, 21, 22]. The FEM and BEM methods are based on continuum mechanics and are

capable of accurately predicting stress distribution as well as crack initiation, but the crack

propagation and intersection is always challenging to deal with by these methods. The DEM

is based on discontinuous mechanics and uses discrete particles that are bonded together to55

represent the continuity of FRP composite materials. As the particles only interact with the

neighbouring particles through contacts and bonds, fracture events are accounted for at the

local level by the breakage of bonds. This gives an advantage to DEM when modelling the

damage progression. However, DEM employs explicit time integration scheme to track the

motion of individual particles and their interaction, thus it is relatively more expensive in60

terms of computational efficiency, in particular when the detailed material microstructures

are considered. In addition, when particles are randomly packed, it is not straightforward,

if possible, to determine the microscale bond and particle properties in order to represent
3



the elasticity and failure strength of the target material. Trial and error tests are usually

required to calibrate the bond and particle properties through virtual mechanical tests, e.g.65

compressive test and Brazilian test, etc. Also large number of particles are required for

any random packing model to represent for the anisotropy of the composite. Therefore, to

improve the computation efficiency in some cases, the particles are packed in a regular form,

e.g. hexagonal or square in 2D and face-centred cubic or hexagonal in 3D. In principal a

theoretical formula can be derived to correlate the particle and bond stiffness (i.e. micro70

stiffness) with real material elastic stiffness (i.e. macro stiffness). Based on average strain

energy method, formulations for both isotropic and anisotropic materials in 2D and isotropic

materials in 3D have been derived and employed in various studies [23, 24, 25, 26]. In the

previous works by the authors, based on the theoretic formula for bonded particles in a

hexagonal packing, 2D DEM model of cross-ply composite laminates have been developed to75

investigate the damage progression of transverse cracking and delamination [1, 21]. However,

in practice many FRP composite laminates are angle-ply laminates in which not all layers

are placed either in 0 or 90 degrees. Therefore a 3D DEM model should be developed to

model the damage progression in angle-ply FRP composite laminates, and a rigorous formula

for describing the relationship between micro and macro stiffness is required. For a DEM80

model of a composite with single or a few carbon fibres which are orthotropic, a formula is

also required to determine the bond stiffness of particles. In view of these constraints on

3D DEM models and to enhance the capability of DEM in modelling damage progression, a

theoretical relationship between the bond stiffness in 3D DEM models and the real material

stiffness is required.85

The present study aims to develop 3D DEM modelling approaches to represent the

anisotropic elasticity of the composite materials. Three different approaches have been

tested and the most appropriate approach for the general anisotropic composites has been

identified and recommended. 3D discrete lattice approach, 3D Hexagonal Close Packing

(HCP) approach and extended 2D Hexagonal and Square Packing approach are considered90

and evaluated. The following sections of this paper are organized as bellow: the background

of theory and formulation for DEM and these three approaches are presented in Section 2.
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The three DEM models of the 0◦ ply composite lamina are described in Section 3, in which

the comparison and evaluation are made. In Section 4, typical angle-ply laminae and two

composite laminates were built with the chosen model and validated against the theoretical95

and FEM results. Finally, conclusions and recommendations are made in Section 5.

2. 3D DEM theory and microplane theory

2.1. 3D DEM theory

In the DEM, the interaction between the contacting particles is treated as a dynamic

process and the stress and deformation of the whole particles assembly are obtained from100

the average of the force and displacement of each individual particle. The contact which

connects the two particles can be physically represented through springs, friction resistance

and damp absorber, as shown in Figure. 1 [27].

Figure 1: Representation of a contact between two particle elements in 3D DEM: (a) two particles in contact

and (b) the physical elements of the contact

The dynamic behaviours of particles in DEM is completed through the integration of

particles accelerations and velocities by using a central-difference scheme with an explicit105

time-step algorithm. The calculation of DEM is alternatively performed by Newtons second

law and force-displacement law. Newtons second law is used to calculate the particles accel-

eration resulting from the contact forces and external forces, while the force-displacement
5



law is used to update the contact forces according to the relative displacement of the two

contacting particles. These two laws are applied repeatedly to form the whole calculation110

cycle of DEM, as shown in Figure 2.

Figure 2: Calculation cycle of DEM

Therefore, DEM is particularly suitable to dynamically simulate the particle systems,

in which the movement of every particle is essential to monitor and analyse. The discrete

particles can also be densely packed and bonded together by adding special bonds at the

contact points corresponding to special constitutive equations.115

2.2. Bonded particle model in 3D DEM

Particles in DEM can be bonded together at contacts and separated when the bond

strength or energy is exceeded. Therefore it can simulate the motion of individual particles

and also the behaviour of bulk material which is formed by assembling many particles

through bonds at contacts.120

The advantage of this method is that the two bonded particles can be separated and

thus a crack is formed at the contact point once the failure condition of the bond is satisfied.

In a DEM model, elementary micro scale particles are assembled to form the bulk material
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with macroscopic continuum behaviour determined only by the dynamic interaction of all

particles. Unlike the conventional FEM that is based on the traditional continuum me-125

chanics and provides stress and displacement solutions by solving a global stiffness matrix

equation, DEM is discontinuous and the information of each particle element and contact is

recorded individually and updated dynamically. Thus, DEM is convenient to deal with local

behaviour of a material by defining local models or parameters for the specified particles and

contacts. Subject to external loading, when the strength or the fracture energy of a bond130

between particles is exceeded, flow and disaggregation of the particle assembly occur and

the bond starts breaking [27]. Consequently, cracks form naturally at micro scale. Hence,

damages and their interaction emanate as the process of debonding of particles. The way

that DEM discreties the material domain gives the most significant advantage over the tra-

ditional continuum methodologies, such that problems like the dynamic material behaviour135

of composites, crack tip singularities, crack formulation criterions can all be avoided due to

the naturally discontinuous representation for material microstructure via particle assem-

blies. Therefore, DEM has been applied in the simulation of crack or damage in rock [28],

concrete [29], ceramic [30] and composite materials [1].

DEM and lattice method are both discrete approaches. In DEM, the positions of par-140

ticles can evolve, so that neighbours of particles might change during analysis. Therefore,

DEM models are suitable to describe processes involving large displacements or dynamic

behaviour. On the other hand, in lattice models the connectivity between nodes at regular

positions is treated as elastic beam which are not changed during the analysis, so that con-

tact determination is not required and the computation efficiency is higher. Consequently,145

lattice models are mainly suitable for analysis involving small strains [31]. In lattice model,

when a facture takes place, the corresponding beam is removed and element-element post-

failure friction normally is not taken into account, which does not reflect real mechanical

behaviour particularly when the material is under compressive loading. Actually in DEM,

when a regular assembly of particles is used, the model is quite similar to lattice models150

[32]. Bonds in DEM can be envisioned as a kind of glue joining the two contacting particles.

In this paper we use the parallel bond which can be regarded as a set of elastic springs with
7



constant normal and shear stiffness, uniformly distributed over either a circular or rectan-

gular cross-section lying on the contact plane and centred at the contact point, as shown in

Figure 3 [27]. Parallel bond can transmit both force and moment.155

Figure 3: Parallel bond in DEM

In the DEM model with parallel bonds, the contact stiffness, Ki, at each particle-particle

contact is resulted from both particles’ stiffness and parallel bond’s stiffness through the

following formulations [27],

Ki = Ak̄i + ki (1)

A = 2R̄δ (2)

Ki =
k
[A]
i k

[B]
i

k
[A]
i + k

[B]
i

(3)

where R̄ and A are the radius and cross-section area of the parallel bond, respectively. δ is

the element thickness, k̄i is the parallel bond stiffness and ki is the equivalent stiffness of the160

two contacting particles. i is in place of n or s, which indicates normal or shear direction,

respectively.

The elasticity of a particle assembly with bonds is determined by the constant stiffness

when particles are regularly packed, each particle has a defined number of contacts with
8



other particles at specific contact position on the particle surface and it is possible to have165

a theoretical relationship between the model’s elasticity and particle-particle contact/bond

stiffness, even when the moduli elasticity is anisotropic. To achieve this, microplane theory

has to be adopted, which is classified in the next section.

When a bonded particle model is used in DEM to represent solid materials, one first

needs to determine the bond and particle stiffness in the model (‘micro-stiffness’) so as170

to represent the elasticity (‘macro-stiffness’) of the real target material. In principle it is

possible to establish a theoretical relationship between the micro and macro stiffness when

particles are packed in a regular form and unit cell can be identified. Formulation for

square or hexagonal bonded particles in 2D DEM models of both isotropic and orthotropic

materials have been reported in previous literature either using average strain energy method175

[33] or discrete element method [34, 35]. The regular packing of 3D particles is much more

complex, even just for a DEM model of isotropic material. Zhao et al. [36] applied the

internal bond method and average strain energy method to correlate the bond stiffness with

the real material elastic stiffness. Liu et al. [37] derived a conversion formulas to correlate

inter-element parameter with rock mechanical properties with 3D discrete element method.180

Microplane theory was employed to identify the beam stiffness in a 3D lattice model of

transversely isotropic rock material, in which the particles are randomly packed and are

allowed to interact with their neighbours that are not necessary in contact as shown in

Section 3.1. However, to the author’s best knowledge, there is no such a formulation for 3D

DEM models of anisotropic or transversely isotropic materials reported in the literature.185

2.3. Microplane theory

The microplane model assumes the macro stress and strain tensors are resolved into

stress and strain vectors on various microplanes with different orientation in the material,

and the stress-strain relationship is independent on those microplanes [38]. The microplane

model can be seen in Figure 4, in which the stress can be calculated by the strain.190

Variational principle is then used to relate the stress and strain vector on the microplanes

to the macroscopic stress and stain tensors. Because the constitutive law is formulated on

9



Figure 4: (a) system of discrete microplanes; (b) Microplane strain vector and its components; (c) microplane

strain components [39]

discrete microplanes, the fracture of material is naturally accounted for by spatial distri-

bution of cracks on the specified microplanes. Since 1980s, microplane model has been

successfully applied to predict the facture behaviour of rock [40], concrete [41], composite195

sandwich plates [42] and FRP composite laminates [43].

From a numerical discretisation point of view, the continuum-based microplane model

discretises a continuous domain into various microplanes (‘break down’) whilst discontinuum-

based discrete element method use artificial bonds to assemble discrete particles together

to represent a continuum (‘build up’). Although these two methods are originated from200

different subjects and are theoretically different, they actually predict almost the same

elastic behaviour of materials with a particular microstructure [44]. This also suggests that

if a DEM model and a microplane model are constructed in a way such that the bond

positions are identical to the microplane orientations, then it is expected that the bond

10



stiffness (if particle stiffness is ignored) is the same as the microplane stiffness, and they can205

both be referred as ‘contact stiffness’.

The microplane model used in this study is provided by Carol et al. [45], where the

normal and shear moduli are EN and ET , respectively. Considering the unit hemisphere

denoted as Ω, the elastic stiffness tensor C is shown as below:

C =
3

2π

∫

Ω

(ENN ⊗N + ETT
T · T ) dΩ (4)

Assuming that the particles are regularly packed and the strain is uniformly distributed210

in the particle assemble and then using virtual work principle the relation of the contact

stiffness to the material elasticity tensor is derived as [44, 46]:

C =
1

V

∑

‖l‖2[kNN ⊗N + kTT
T · T ] (5)

where V is the average volume of the unit cell that one particle occupies in space, l is the

distance between the centroids of two contacting particles, kN and kT are the normal and

tangential stiffness, respectively, and N and T are the normal and tangential projection215

tensors on the contact plane, respectively, which are further interpreted as below [44]:

N ⊗N = ninj ⊗ nknl = ninjnknl (6)

T = n · Isym − n⊗ n⊗ n =
1

2
nl(δljδik + δlkδij)− ninjnk (7)

T T = Isym · n− n⊗ n⊗ n =
1

2
nl(δikδjl + δilδjk)− ni (8)

T T · T =
1

4
njnkδil +

1

4
njnlδik +

1

4
ninkδjl +

1

4
ninlδjk − ninjnknl (9)

where Isym is the fourth-order symmetric unit tensor , n is the unit normal vector of the

contact plane and δ is the Kronecker delta. The orientation of microplane could be random

or regular in space. In DEM, these microplanes of a particle are the contact planes or

between the particle and its neighbours.220

3. 3D DEM modelling of composite laminae

In 3D DEM modelling of composite lamina, three different models are considered in

this study: 3D discrete lattice model, 3D Hexagonal Close Packing (HCP) model and Ex-
11



tended 2D Hexagonal and Square models. 3D discrete lattice model introduces a model

based on the modified DEM formulation originally aiming at modelling the rock behaviour225

with transversely isotropic elasticity [47]. 3D Hexagonal Close Packing (HCP) model is a

model based on the 3D DEM theory with a representative packing way aiming at modelling

the anisotropic property of the composite lamina. And the Extended 2D Hexagonal and

Square models are the models with the assumption of plane stress aiming at modelling the

anisotropic material such as composite lamina. All of these three models are discussed in230

this section. The different colour balls (such as blue and red) at both sides in all the models

represent the boundary where the velocity is applied. The bonds between the two group

of balls represent the different stiffness of fibre and matrix, where the balls for creating the

bonds are hidden.

Considering the material in these simulations, a test example (E-Glass/MY750) is adopted235

from WWFE-II [48]. The material properties are listed in Table 1.

Table 1: The material mechanical property of composite lamina with E-Glass/MY750 [48]

E1 (GPa) E2= E3 (GPa) G12 υ12=υ21 υ23

E-Glass/MY750 45.6 16.2 5.83 0.278 0.4

3.1. 3D discrete lattice model in DEM

As mentioned above, this approach is originally aiming at modelling the transversely-

isotropic elasticity of the rock behaviour with the modified DEM theory [47]. However,

here this approach will be applied to model the transversely-isotropic elasticity of composite240

lamina. This approach is based on the microplane theory and assumptions such as the Voigt

hypothesis, geometrically isotropic lattice and two element orientation dependent stiffnesses.

In this approach, the Voigt hypothesis can be achieved by enlarging the contact distance

between the particles, even not geometrically neighbouring. In DEM, the lattice satisfying

the Voigt hypothesis can be constructed by a group of particles in which all of the contacts245

between particles should follow the assumption below:

|x1 − x2| ≤ IR(r1 + r2) (10)
12



where xi and ri are the position and radius of the sphere particle, respectively. IR is the

contact radius and a dimensionless parameter which can determine the lattice’s density. If

the IR equals to 1, that means only geometrically neighbouring particles are considered to be

in contact, while greater values allow the two particles to be ‘contact’ even in some distance250

between them. The 3D periodic lattice illustrated in Figure 5 has a contact radius of 1.8

which is proved to be realistic in Ref. [47].

Figure 5: 3D discrete lattice model with a contact radius of 1.8

In this case, z-axial is coincident with the transversely-isotropic axial, θ and ϕ are the

inclination angle from the pole and the azimuth angle in spherical coordinates, respectively.

The stiffness tensor is calculated by the integration of moduli over all possible orientations255

of microplanes decided by the unit vector n, which is based on the equation (4). Here, EN

= EN(θ) and ET = ET (θ), which are independent of the ϕ.

C =
3

2π

∫ π

θ=0

∫ 2π

ϕ=0

(ENN ⊗N + ETT
T · T ) sin θ dϕ dθ (11)

Combining with equations (6), (7), (8), 9, we can obtain the stiffness tensor components

as below:

Cijkl =
3

2π

∫ π

θ=0

∫ 2π

ϕ=0

(EN(θ)(ninjnknl) + ET (θ)(
1

4
njnkδil +

1

4
njnlδik

+
1

4
ninkδjl +

1

4
ninlδjk)− ninjnknl) sin θ dθ dϕ (12)

In this case, the moduli EN(θ) and ET (θ) can be assumed as a function interpolating260

with moduli Ea
N and Eb

N in terms of θ, such as

EN(θ) = sin2(θ)Ea
N + cos2(θ)Eb

N (13)
13



In the same way, the ET (θ) can be written as

ET (θ) = cos2(θ)Ea
T + sin2(θ)Eb

T (14)

Here the θ is continuous in (0, π/2) and symmetrical around π/2 as well. The elliptic

interpolation of the stiffness can be shown below in Figure 6:

Figure 6: Elliptic interpolation of stiffness [47]

Then all the stiffness tensor components as a function of lattice moduli can be obtained265

as below:
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(15)

Based on the traditional composite laminate theory, the stiffness tensor can be solved

and then the EN and ET will be resolved from the equation (15) to build the 3D lattice

discrete model which will be discussed in Section 3.4.

3.2. 3D HCP model in DEM270

As an attempt to build a 3D DEM model for anisotropic composite material, particles

are packed in a regular form so that the particle position and contact are fixed for later
14



calculations. In addition to the microplane model, internal bond model, average stress

method were also used for 3D isotropic DEM models, here the microplane model is adopted

with a purpose of comparison with the 3D lattice discrete model of transversely isotropic275

materials which is based on microplane model.

In this approach, the particles are packed in a hexagonal form, and in the centre plane,

the stiffness of particle 0 could affect the contact stiffness between particle 0 and the six

surrounding particles. On the other hand, the parallel bond can be applied at each contact

and its stiffness can be chosen at various values. Therefore the parallel bond stiffness k̄i is280

expected to contribute the most to the contact stiffness Ki, and the particles’ stiffness ki is

set to be much smaller than the one of parallel bond in order to achieve the required contact

stiffness at different contacts accordingly [27], e.g.

ki = 0.01Ak̄i (16)

and

Ki ≈ Ak̄i (17)

To better achieve a uniform strain distribution, closer packing of particles is preferred.285

There are two close packing styles for particles in 3D, Cubic Close Packing (CCP) and

Hexagonal Close Packing (HCP) [49]. In this study, the Hexagonal Close Packing is mainly

adopted for the 3D modelling. Consider a representative particle, white particle in layer B

in Figure 7, it has six contacting neighbours in the same layer, three contacting neighbours

in both upper layer C and lower layer A, i.e. 12 contacts and 24 contact stiffnesses in total,290

and the detail is shown in Figure 8. The position and orientation of each contact plane is

known thus kN and kT are known for each contact. By using symmetry the number of the

unknown contact stiffness in E could be reduced to exactly match the number of constants

in the stiffness tensor C, so that a unique solution of micro contact stiffness can be obtained.

The unit normal vector of the contact plane between two particles n is written in spherical295

15



Figure 7: (a) HCP packing and (b) CCP packing [50]

Figure 8: 3D HCP packing of DEM particles

coordinate system as

n =











x

y

z











=











sinθcosϕ

sinθsinϕ

cosθ











(18)

where d is the distance between the two particles centre, θ is the angle between the straight

line of ball nine in the A layer and ball five in the B layer and the vertical line, ϕ is the

angle of different adjacent balls in the unit triangle. Setting the centre of particle 0 as the

origin of the coordinate system and assuming the fibre direction is aligned with X axis, one300

16



can easily determine the unit normal vector of each contact plane of particle 0.

The volume of a sphere particle is

Vsphere =
4

3
πR3 (19)

And the average density (packing efficiency) of HCP and CCP is

ρHCP = ρCCP =
4× 4

3
πR3

16
√
2R3

=
π

3
√
2

(20)

Thus the average volume occupied by a sphere in HCP and CCP is

Vunitcell =
Vsphere

ρHCP

=
Vsphere

ρCCP

=
4
3
πR3

π

3
√
2

= 4
√
2R3 (21)

Thus the stiffness tensor C in equation (5) can be written as:305

Cijkl =
1

4
√
2R3

(2R)2
12
∑

c=1

[kc
N(ninjnknl) + kc

T (
1

4
njnkδil +

1

4
njnlδik

+
1

4
ninkδjl +

1

4
ninlδjk)− ninjnknl] (22)

where R is the radius of the particle. In the DEM model can be developed according

the macro material stiffness tensor. Considering a single transversely isotropic FRP lamina

which has 5 engineering constants, i.e. E1, E2=E3, G12=G13, v12=v13, v23, its fibre

direction is aligned with X axis, then there are 5 corresponding independent constants in

the stiffness matrix, C11, C12, C22, C23, C66, which can be represented by the engineering

constants as below: (i.e., C66=C1212=C1313)

[C] =




















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δ
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δ
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E2
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0 0

G12 0
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























(23)

with the parameter δ = 1− ν23 − 2ν2
12

E2

E1

. We have the condition δ > 0.
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By symmetry, in the layer A, B, C it is assumed that
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(24)

In this approach, the distance c between layer A and layer B is introduced, so there are

five variables (i.e. C11, C12, C22, C23, C66) needed for transversely isotropic material which

is corresponding to 4 stiffness constants (i.e. k1
n, k

1
t , k

2
n and k2

t ) and the distance c. In Figure310

8, it can be found that

sinθ =
2r√

3c2 + 4r2
, cosθ =

√
3c√

3c2 + 4r2
(25)

Using the equation (22) and the stiffness relations between different balls, the following

relationship between Cijkl and kn,t can be obtained
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3
4
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2
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4
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(26)

3.3. Extended 2D hexagonal and square models in DEM

In this approach, the lamina is a unidirectionally reinforced and is assumed to be in a315

plane stress state by defining σ3 = 0, τ23 = 0, τ31=0. We should note that three dimensional

stress-strain relationship, the plane stress state on a lamina is not merely an idealization

of reality, but it is still a practical and achievable way to analyse the performance of fibres

reacting on the matrix. In this case, the relation between the spring constants and elastic

constants was established with the average strain energy method instead of the microplane320
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Figure 9: One layer of the 3D DEM model of HCP packing based on 2D packing

theory. In this study, 3D DEM model of the composite lamina was modelled with a six-

spring hexagonal packing as a basic unit, as shown below in Figure 9. Each contact between

the different particles is modelled with a linear parallel bond which is represented by a

set of elastic springs with constant normal stiffness kn and shear stiffness ks, respectively.

Therefore, these constants of the springs can be related to the macro-scale elastic properties325

of the material such as Young’s Modulus and Poisson’s ratio. In this approach, a general

formula was adopted from the Liu and Liu [51] with average strain energy method for

anisotropic materials, as follows:
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√
3
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√
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3
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√
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√
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√
3
3
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√
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√
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√
3
3
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√
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√
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(27)

where kn1 and ks1 are the normal and tangential spring constants between particle 0 and 1,

and particle 0 and 4, respectively; kn2 and ks2 are the normal and tangential spring constants330

between particle 0 and 3, and particle 0 and 6, respectively; kn3 and ks3 are the normal and

tangential spring constants between particle 0 and 2, and particle 0 and 5, respectively; δ

is the element thickness (here it is the diameter in the lamina). Ci,j(i, j = 1, 2, 6) are the
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elastic coefficients of the material stiffness matrix, which can be shown in Equation (28):

C =











C11 C11 C16

C12 C22 C26

C16 C26 C66











(28)

and the reduced stiffness matrix of the material can be obtained by the Young’s Modulus335

and Poisson’s ratios within the plane stress state when C16 = C26 = 0,
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(29)

The 0◦ ply composite lamina model is built up according to the above approach and me-

chanical property in the Section 3.4 for the comparison with other two models.

3.4. Comparison and evaluation of three approaches in DEM

In the 3D discrete lattice model, the Poisson ratios should be assumed to be 0.1 as when340

the ratio was bigger, the Ea
T would be negative. The C2323 is calculated to be 41454 MPa

from the engineering variables Young’s modulus and Poisson ratio, and in order to obtain

the targeted moduli we choose the C2323 to be the dependent component due to the difficulty

in measuring it experimentally and then the in-plane and out-plane moduli were calculated

from equation (15) to be345
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3443

45205

3017

15545
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













(MPa) (30)

Once the moduli are obtained, they can be utilized to calculate for the theoretical C2323,

which is 13210 MPa. This calculated value is nearly one-third of original one from the

engineering constants. Meanwhile, from the theory above, the lattice normal stiffness kn and
20



tangential stiffness ks can be expressed by EN(θ) and ET (θ) as kn = EN(θ)∗6V/(N ∗L2) and

kt = ET (θ)∗6V/(N ∗L2). As the particle is randomly created, so the bonds (lattice) are also350

distributed randomly, which means the lattice bonds in this model would be different from

each other. In this 3D Lattice DEM model, 8, 841 identical balls were generated randomly in

a rectangle box and the bonds were generated if the contact radius which refers to Equation

(10) is not bigger than 1.8 to ensure the stability of this model, then 39,311 bonds were

generated according to this principle to form a geometrical model with a dimension of 10355

mm × 1 mm × 0.2 mm. The two spring constants were applied to the bonds according to

the rule corresponds to the Section 3.1. The test was conducted with uniaxial unconfined

tension load, and the velocity is applied at both left and right sides of the model to be 10

mm/s and cycle 200, 000 times and the automatic time-step is 9.02e−9s. The results were

obtained in the Table 2. Figure 10 shows the normal stiffness of the parallel bonds in this360

model, where different colours of the bond represent different normal stiffnesses.

Figure 10: 3D discrete lattice DEM model of 0◦ ply composite lamina

For the 3D HCP DEMmodel, the stiffness tensors Cijkl can be calculated with the Classic

Composite Laminate Theory and then the kn and ks were resolved with the equation (22)

as below.
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(MPa) (31)

These kn and ks were applied to the different bonds according to their positions in the365
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DEM model to calibrate the elasticity of this model. In this 3D DEM HCP model, three

layers were adopted to form a single Hexagonal Close Packing for the lamina, and 76×8×3

balls were utilized to generate 8,431 bonds at the adjacent balls. The model dimension is

9.975 mm × 0.93 mm × 0.21 mm. The velocity is applied to the boundary at left and right

sides of the model as 10 mm/s, respectively and cycle is 200, 000 times and the automatic370

time-step is 1.34e−8s. Figure 11 shows the 3D model of the HCP packing with parallel

bonds with different stiffnesses. In this model, the red beams represent the fibre direction

with larger kn, and light blue ones represent the matrix. Meanwhile, when calculating the

mechanical property E2 of this material, x and y coordinate axis should be replaced with

each other.375

Figure 11: 3D DEM HCP model of 0◦ ply composite lamina

For the extended 2D hexagonal DEM model, 200×19×2 balls were utilized to create the

model for a 0◦ ply composite lamina with a dimension of 10 mm × 0.83 mm × 0.2 mm.

The velocity is applied at both sides as 10 mm/s. In order to ensure numerical convergence

of the model, the particles with different radiuses are chosen to build the model, however,

it has been found that the radius has no effects on the final results. The balls are used380

to determine the location of the bonds which are to form the composite lamina/laminates.

Meanwhile, the cycle of 200, 000 times is proved to be realistic for this model to obtain

a stable simulation results and the automatic time-step is 5.79e−8s. Figure 12 shows the

extended 2D hexagonal DEM model of 0◦ ply composite lamina, in which the bonds with

different colours represent different components in the composite material, such as the red385

bonds for the fibres and the blue ones for the matrix.
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Figure 12: Extended 2D Hexagonal DEM model of 0◦ ply composite lamina

Table 2 shows the comparison of the simulated results from different approaches against

the experimental data for E-Glass/MY750. It can be found that the 3D HCP model and

the extended 2D Hexagonal model meet the experimental values well when it comes to the

Young’s Modulus. However, for the 3D lattice model, it is capable of modelling the lamina390

of the composite although the Young’s Moduli are too small. It can be found that the

ratio of experimental Young’s Modulus to the simulated one from 3D lattice model is 3.8,

moreover, the ratio of C2323 calculated from the engineering variables to the C2323 calculated

from the moduli is 3.14, which is discussed in Section 3.4. More importantly, this approach

is very difficult to use when it comes to the bond breaking (i.e. simulation of failure) as one395

particle can have several bonds with other particles which are not in contact. Meanwhile,

the interface between the different layers is also difficult to be determined for laminates,

therefore, this approach will not be considered as efficiency for the modelling of laminates.

While for the 3D HCP model, reasonable results can be obtained by adjusting the radius

of the particles, however, compared to the extended 2D hexagonal model it is more time-400

consuming as for same dimension and same radius of the particles. The number of particles

needed for 3D HCP model is almost three time more than the extended 2D hexagonal model

because it has to use three layers for a lamina. Considering the simplicity and efficiency of

the model, the extended 2D hexagonal and square model will be constructed in the next

section for modelling of the composite laminates.405

23



Table 2: Comparison of three different approaches against experimental results for 0◦ ply lamina

E1 (GPa) E2 (GPa) υ12 υ21 Computing

Time (mins)

Experiments 45.6 16.2 0.278 0.0988

3D Lattice Discrete model 12.02 4.53 - 0.115 88.5

3D HCP model 47.26 16.0 0.3 0.54 60.5

Extended 2D Hexagonal model 46.03 15.98 0.247 0.104 7.5

4. 3D DEM modelling of composite laminates

In order to model angle-ply composite laminates, a model for angle-ply lamina is also

needed to be developed with the extended 2D hexagonal and square modelling approach.

For a angle-ply lamina, the reduced stiffness matrix should be transformed from the stiffness

matrix (equation 29) for orthotropic materials:410







































































C11 = C11 cos
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C66 = (C11 + C22 − 2C12 − 2C66) sin
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(32)

where C ij(i, j = 1, 2, 6) are the elastic constants of the material stiffness matrix for the

angle-ply lamina, the θ is the angle of fibres of angle-ply lamina and orthotropic lamina and

Cij(i, j = 1, 2, 6) are the elastic constants of the material stiffness matrix for the orthotropic

lamina under the plane stress state.

Once the kn and ks are obtained from the elastic constants of the composite lamina, the415

3D model with the anisotropic properties can be built up. As shown below, different spring

constants are applied to the bonds with different orientation in the hexagonal closed packing

model in order to obtain the anisotropic property.
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(a) 0◦ ply (b) 60◦ ply

(c) 30◦ ply (d) 90◦ ply

Figure 13: Extended 2D hexagonal DEM model of angle-ply composite lamina

For comparison, 0◦ ply lamina and other three different angle plies (30◦, 60◦ and 90◦)

are modelled, as shown in the Figure 13, the red bonds represent the normal stiffness of420

fibres and the blue ones represent the normal stiffness of matrix. The load is applied at the

blue and red balls on the both sides. The strength of the bonds are set to be very large

to prevent them from breaking in order to maintain the elasticity of the model. However,

when calculating the 30◦ and 90◦ angle-ply lamina, negative ks3 occurs which can not be

calculated in the PFC software. This is because there is no bond in the direction of 30◦425

and 90◦ angles in the original model, therefore the x and y axials in the x-y plane, E1 and

E2, and ν12 and ν21 are exchanged with each other to obtain the Young’s Modulus of above

angle-ply laminae. This is the first attempt to model anisotropic property in 3D model. The

results are compared in Table 3.

As we can see in the above models, there is no bond located in 45◦ direction thus we430

have to choose other packing to achieve this. In this study, we adopted the square packing

to model the 45◦ angle-ply lamina, which is similar to the nine-disc model in the Ref. [51].

However, in their model, only the problem of orthotropic material can be solved, and it is

not suitable for the general anisotropic materials. The configuration of the square packing

model and the 45◦ angle-ply lamina are shown in Figure 14.435

In this case, regular square lattices are formed with nine balls in which a ball is sur-
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(a) Configuration of square

packing

(b) 45◦ ply composite lamina

Figure 14: Extended 2D square DEM model of 45◦ angle-ply composite lamina

rounded by other eight balls, shown as Figure 14a. Assuming kn1 and ks1 are the normal

and tangential spring constants between particle 0 and 1, and particle 0 and 5, respectively;

kn2 and ks2 are the normal and tangential spring constants between particle 0 and 2, between

particle 0 and 4, between particle 0 and 6 and between particle 0 and 8, respectively; kn3 and440

ks3 are the normal and tangential spring constants between particle 0 and 3, and particle 0

and 7, respectively; δ is the element thickness. Ci,j(i, j = 1, 2, 6) are the elastic coefficients

of the material stiffness matrix, which can be calculated in Equation 29 in the plane stress

state. For orthotropic materials, the kn and ks is
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(33)

It has been reported in [51] that this model is only suitable for orthotropic materials instead445

of general anisotropic material, however in this study, the 45◦ virtual fibre direction in the

lamina are constructed by transforming the reduced stiffness from the orthotropic material

to the general anisotropic material lamina, as seen in Figure 14b.

Different angle-ply lamina were modelled and the mechanical properties were obtained

in Table 3. However, there is no specific experiment for these angle-ply lamina, hence the450
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theoretical and FEM modelling results were used to compare with and validate the DEM

model. The comparison between results from the theory, the FEM and the extended 2D

hexagonal and square DEM models was conducted and illustrated in Table 3.

Table 3: The comparison of the extended 2D DEM approach against the theoretical and FEM results

E1 (GPa) E2 (GPa) υ12 υ21

30◦ (Theory) 27.61 15.16 0.567 0.311

30◦ (FEM) 22.16 15.34 0.41 0.285

30◦ (DEM) 21.0 15.59 0.466 0.288

45◦ (Theory) 17.66 17.66 0.515 0.515

45◦ (FEM) 16.94 16.94 0.386 0.386

45◦ (DEM) 17.44 17.44 0.475 0.475

60◦ (Theory) 15.16 27.61 0.311 0.567

60◦ (FEM) 15.34 22.16 0.285 0.41

60◦ (DEM) 15.59 21.0 0.288 0.466

90◦ (Theory) 16.2 45.6 0.0988 0.278

90◦ (FEM) 16.21 45.71 0.093 0.253

90◦ (DEM) 15.98 46.03 0.104 0.247

After angle-ply lamina being modelled, the next step is to model the laminate of com-

posites, which requires interface between each ply. The simplest laminate is [0/90/0], which455

is shown in Figure 15. It is built with three layers, the lower layer and the upper one are 0◦

ply lamina while the middle one is 90◦ ply lamina. In this model, the red bonds represent

the virtual fibre which has largest normal stiffness, and the light blue bonds represent the

matrix while the blue ones represent the interface bonds. Constant velocities are applied

on the both sides. The stiffness of the interface bond is hard to determine, so after several460

attempts with different values, 1014 and 1013 Pa are adopted for the normal and tangential

stiffnesses of the interface bonds, respectively, for the calculation of the Young’s Modulus

and Poison ratio. After 200, 000 cycles, the results are obtained and shown in Table 4. Good

27



agreements between theoretical, FEM and DEM results can be observed.

Figure 15: The extended 2D hexagonal DEM model of [0/90/0] laminate

Table 4: Comparison of the DEM, theoretical and FEM results for [0/90/0] cross-ply laminate

E1 (GPa) E2 (GPa) υ12 υ21

theory 36.01 26.15 0.173 0.125

FEM 36.06 26.18 0.161 0.118

DEM 36.12 26.25 0.152 0.116

To further validate the DEM model, a typical example of hole-in-plate under uniaxial465

tension is studied with displacement distribution compared with a FEM model. The FEM

model was modelled with 3D continuum shell element in ABAQUS/Standard. The dimen-

sion of the two models is 60 mm × 36 mm × 1.5 mm with a hole of 3 mm. For a fine mesh

in the vicinity of the hole, a planar mesh size of 0.318 mm × 0.155 mm was utilized while a

coarser mesh was used away from the hole considering the computation. In the FE model,470

there are 7, 097 shell elements used for the validation, while for the DEM model, 22, 492

balls were used for the comparison. A velocity of 1 mm/s was applied to the both sides.

After 0.1 mm displacement, the displacement distributions of the two models are obtained.

Figure 16 illustrates the surface displacement distribution of the cross-ply laminates from

the two different models, which are matching well. For the displacement distribution, little475

difference is found.

Finally, an angle-ply composite DE model is also conducted to compare with the FE

model and the theoretical results. The FE model was built with continuum shell element
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(a) FEM model (b) DEM model

Figure 16: Displacement distribution in DEM and FEM models for the [0/90/0] cross-ply laminate

in ABAQUS/Standard as above to obtain its Young’s Moduli and Poisson’s ratios. Figure

17 shows the layout of the laminates is [0/30/45]s and the strength of the interface bonds is480

set to be very large to maintain elasticity. The velocity of 1mm/s is applied to both sides.

As listed in Table 5, only little discrepancy is found between DEM, FEM and theoretical

results in terms of the Young’s Moduli and Poisson’s ratios.

Figure 17: 3D DEM model of [0/30/45]s angle-ply laminate

Table 5: Elasticity property from theory, FEM and DEM for [0/30/45]s angle-ply laminate

E1 (GPa) E2 (GPa) υ12 υ21

theory 30.617 17.333 0.464 0.263

FEM 29.49 17.036 0.362 0.214

DEM 29.68 17.01 0.49 0.31
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5. Conclusions

In this study, three different DEM packing approaches, have been assessed and evaluated485

against experimental data, theoretical calculations and FEM results in order to identify the

most effective and efficient method for modelling anisotropic fibre reinforced composite lam-

inate. It has been found that the extended 2D hexagonal and square modelling approach is

capable of modelling the lamina in any angles as well as cross-ply and angle-ply composite

laminates. For the validation of angle-ply lamina and laminates, Classic Composite Lami-490

nate Theory and FEM are employed for comparison and validation. A few conclusion are

summarized as below:

1. It was found that 3D lattice discrete model is not suitable for modelling of composite

lamina/laminates due to the weakness in dealing with particle breakage and poor per-

formance in representing anisotropy. 3D HCP model and extended 2D hexagonal and495

square model are capable of modelling the composite lamina. However, considering the

computation cost, the extended 2D hexagonal model is more efficient.

2. This is the first attempt to model the 0◦, 30◦, 60◦ 90◦ ply composite laminae with

hexagonal packing and 45◦ ply composite lamina with square packing in 3D model.

Different anisotropic properties can be achieved by assigning the different stiffnesses to500

the corresponding directions. The mechanical properties of the extended 2D hexagonal

and square model for the angle-ply lamina are in good agreement with the theoretical

and FEM results.

3. The extended 2D hexagonal and square model is used to model the cross-ply and angle-

ply laminates. The DEM simulated mechanical properties are very close to those from505

the theory and FEM. The displacement distribution from a plate with a hole are com-

pared with the FE model and the DE model, good agreement has been observed.

In the future, constitutive models will be introduced the developed DEM model to enable

bond-breaking so as to simulate the initiation and progressive failure of the composite lam-

inates. In addition, GPU computation can be adopted to facilitate large scale modelling of510

composite failure based on the current DEM approach.
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[39] F. C. Caner, Z. P. Bažant, Microplane model M7 for plain concrete. I: Formulation, Journal of Engi-

neering Mechanics 139 (12) (2012) 1714–1723.
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