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Abstract

The Hedgehog family of morphogens has long been known to utilize, through the 7-trans-

membrane protein Smoothened (Smo), the heterotrimeric G protein Gi in both canonical

and noncanonical forms of signaling. Other G proteins, while not specifically utilized by

Smo, may nonetheless provide access to some of the events controlled by it. We reported

several years ago that the G protein G13 activates one or more forms of the Gli family of tran-

scription factors. While the Gli transcription factors are well known targets for Smo, the

uncertain mechanism of activation by G13 and the identity of the targeted Gli(s) limited pre-

dictions as to the extent to which G13 might mimic Smo’s actions. We evaluate here the

potential for overlap in G13 and Smo signaling using C3H10T1/2 and 3T3-L1 cells as models

of osteogenesis and adipogenesis, respectively. We find in C3H10T1/2 cells that a constitu-

tively active form of Gα13 (Gα13QL) increases Gli1 mRNA, as does a constitutively active

form of Smo (SmoA1). We find as well that Gα13QL induces alkaline phosphatase activity, a

marker of osteogenesis, albeit the induction is far less substantial than that achieved by

SmoA1. In 3T3-L1 cells both Gα13QL and SmoA1 markedly suppress adipogenic differentia-

tion as determined by triglyceride accumulation. RNA sequencing reveals that Gα13QL and

SmoA1 regulate many of the same genes but that quantitative and qualitative differences

exist. Differences also exist, we find, between SmoA1 and purmorphamine, an agonist for

Smo. Therefore, while comparisons of constitutively active proteins are informative, extrap-

olations to the setting of agonists require care.
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Introduction

Considerable interest exists in the extent to which members of the Hedgehog family of secreted

morphogens utilize heterotrimeric G proteins. The interest stems, first, from the fact that the

signaling initiated by Hedgehogs is largely directed through Smoothened (Smo), a protein that

exhibits a 7-transmembrane (7-TM) motif common to receptors that interact with G proteins

[1,2]. Second, certain actions of Hedgehogs (through Smo) are sensitive to a pertussis toxin

known to disrupt signaling through the G protein Gi [3–7]. Third, these and certain other

[8,9] actions of Hedgehogs occur more rapidly than can be easily accommodated by ‘canonical’

signaling. Canonical signaling refers to the sequence of events that begins with the activation

of Smo and culminates in the stabilization of Gli2 and Gli3 and consequent expression of Gli1

zinc-finger transcription factors (Gli) [10,11]. Canonical signaling sometimes requires Gi, but

not always [3,12–14]. Finally, Smo is capable of coupling to all members of the Gi family (i.e.

Gi, Go, and Gz) and, as determined by GTP/GDP exchange, couples to this family alone with a

strength comparable to other Gi-coupled receptors [12,15].

Given the selectivity of Smo for Gi and what seems to be the mostly dedicated control of Gli

transcription factors by Smo, we were surprised to discover that G proteins beyond Gi could

activate reporter genes for Gli [16]. The G protein exhibiting the greatest activity in this regard

was G13. Both wildtype and an active mutant of the α subunit of G13 (Gα13) increased the activ-

ity of Gli reporters in mouse C3H10T1/2 and human pancreatic cancer cells. This action was

replicated in the latter cells by the Gq- and G12/13-coupled cholecystokinin-A receptor and, as

an agonist for this receptor, the C-terminal octapeptide of cholecystokinin. Cyclopamine, an

antagonist at the level of Smo, had no effect on the actions of Gα13QL, precluding an indirect,

autocrine activation. We proposed that G proteins such as G13 can provide access to Gli tran-

scription factors apart from that provided by Smo.

We became interested, therefore, in the question of convergent signaling through Smo and

G13, specifically the degree to which G13 can replicate the actions achieved by Smo through or

apart from Gli transcription factors. The shared use of one or more of these transcription fac-

tors provides an inducement for this work, of course, but Smo and G13 have many other

actions concordant with development [17–22]. The degree of overlap would help in under-

standing the extent to which agonists working through G13 might engage phenomena other-

wise controlled by Hedgehogs. Here, using C3H10T1/2 and NIH 3T3-L1 cells as models for

transition of mesenchymal-like cells toward osteoblastic and adipogenic lineages, respectively,

and using recombinant adenoviruses in a modified transduction paradigm, we evaluated the

actions of constitutively active forms of Smo and Gα13. We found that these two proteins share

many actions in common, however differences clearly exist. We also found considerable differ-

ences to exist between constitutively active Smo and the Smo agonist purmorphamine, sug-

gesting that extrapolation to the setting of an agonist can be complicated by what appear to be

biases in signaling at one or more levels.

Materials and methods

Materials

Mouse C3H10T1/2 (CCL-226) and 3T3-L1 (CL-173) cells were obtained directly from Ameri-

can Type Culture Collection (Manassas, VA). Mouse SmoA1 cDNA [23] was a gift from Dr.

Philip Beachy (Stanford University, CA). Human Gα13QL cDNA was provided by the cDNA

Resource Center (www.cdna.org). pShuttle-CMV-lacZ and -GFP were obtained from Agilent

Technologies (Santa Clara, CA). Polybrene, DEAE-dextran, and purmorphamine were

obtained from Sigma-Aldrich (St. Louis, MO).
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Recombinant adenovirus constructs

Construction of recombinant adenoviruses was accomplished with reagents and instructions

provided by Agilent Technologies. SmoA1 and Gα13QL were introduced into pShuttle-CMV

by subcloning. pShuttle-CMV-LacZ, -GFP, -SmoA1, and -Gα13QL, respectively, were linear-

ized and cotransformed with pAdEasy into BJ5183 by electroporation. Homologous recombi-

nants were transformed into XL-10. Recombinants were PacI-digested and transfected into

AD-293 cells to obtain primary viral stocks. Primary and subsequent stocks were amplified

(up to 5 rounds total) as needed using AD-293 cells. Viral titers were determined using

instructions provided with the AdEasy Viral Titer Kit (Agilent Technologies). Amplified

stocks generally contained 5–15 x 108 infectious units per ml. The recombinant viruses are

referred to as AdV�LacZ, AdV�GFP, AdV�SmoA1, and AdV�Gα13QL.

Cell culture and transformation

C3H10T1/2 cells were maintained in Basal Medium Eagle (BME) supplemented with 2 mM L-

glutamine and 10% fetal bovine serum (FBS) at 37˚C at 5% CO2; we did not use cells beyond

12 passages from purchase. 3T3-L1 cells were maintained in Dulbecco’s Modified Eagle

Medium (DMEM) with 10% FBS at 37˚C at 5% CO2. For most experiments involving transfor-

mation, cells at 80–90% confluence were incubated in medium without serum for 12 h then

with recombinant adenovirus at the specified multiplicity of infection (MOI, i.e. infectious

units per cell) in medium with 1% FBS for 6 h, with or without polycations as described in

individual experiments. Cells destined for PCR or RNA-seq were transferred to fresh medium

with 1% FBS for another 42 h; cells destined for alkaline phosphatase or Oil Red O assays were

processed as described below. For experiments relating to stress fiber formation, cells at 60–

70% were incubated with recombinant adenovirus for 6 h in medium without serum, then

transferred to fresh medium, again without serum, for 18 h. Experiments with AdV�LacZ,

AdV�SmoA1, and AdV�Gα13QL beyond those relating to optimization were most often per-

formed at an MOI of 10 based on initial measurements of titers. Reevaluation of titers at the

culmination of the experiments revealed MOIs of 8, 10, and 14 respectively. We retain the use

of 10 as a nominal MOI in descriptions of the experiments.

Assay for LacZ activity

LacZ activity was evaluated using chlorophenol red-β-D-galactopyranoside as described for the

High Sensitivity β-galactosidase Assay Kit (Agilent Technologies). Cell lysates were incubated

with the substrate usually for 30 min at room temperature. Absorbance was measured at 595 nm.

Detection of Gli1 RNA by polymerase chain reaction

RNA was extracted using the RNeasy Mini Kit from QIAGEN (Valencia, CA). Reverse transcrip-

tion was achieved using TaqMan Reverse Transcription Reagents from Life Technologies (Carls-

bad, CA). PCR was performed using Taq DNA polymerase from Sigma using, for Gli1, 5’CCTA
GCAATAAGGCTCCGGG3’as the forward primer and 5’GGTTGGTATCCCCCACCTTG3’ as

the reverse primer and, for GAPDH, 5’GTGGCAAAGTGGAGATTG3’ as the forward primer

and 5’TCAGTGTAGCCCAAGATG3’as the reverse primer. Denaturation, annealing, and chain

elongation were performed at 94˚, 60˚, and 72˚C, respectively, usually for 30 cycles.

Phalloidin staining

Cells were fixed with 4% paraformaldehyde, blocked with bovine serum albumin, permeabi-

lized with 0.1% Triton X-100, and incubated with 5 μg/ml fluorescein isothiocyanate (FITC)-
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Phalloidin from Sigma [24,25]. Cells were counterstained with 1 μg/ml 4’,6-diamidino-2-phe-

nylindole (DAPI). Coverslips were mounted in VECTASHIELD Antifade Mounting Medium

from Vector Labs (Burlingame, CA). A Zeiss-Axiophot microscope (40X objective, with an

additional 1.6X magnification) was used to identify positive cells, which were counted in 12–

20 random fields for each treatment. Exposure times were 400 ms and 20 μs for FITC and

DAPI, respectively.

Alkaline phosphatase expression

Cells infected with recombinant adenoviruses, or treated with purmorphamine as noted,

were grown in BME supplemented with 2 mM glutamine, 50 μg/ml ascorbic acid, 10 mM

β-glycerophosphate, and 10% FBS for 7–8 days. Cells were solubilized in 150 mM NaCl, 5 mM

ethylendiaminetetraacetic acid, pH 8.0, 50 mM Tris, pH 8.0, 1% Nonidet P-40, 0.5% sodium

deoxycholate, and 0.1% sodium dodecyl sulfate and cleared by centrifugation. Each cell extract

(20 μl) was combined with 160 μl 1 M diethanolamine plus 0.5 mM MgCl2, pH 9.8, and 20 μl

of 1 mg/ml p-nitrophenyl phosphate in one well of a 96-well plate. The plate was incubated at

37˚ C for 20–60 min, at which time absorbance at 400 nm was measured.

Adipogenic differentiation and Oil Red O staining

We followed the adipogenic differentiation protocol devised by Zebisch et al [26]. 3T3-L1 cells

infected with recombinant adenoviruses were cultured for 3 days in DMEM containing 10%

FBS, then cultured for 2 days in the same medium but containing as well 0.5 mM isobutyl-

methylxanthine, 0.25 μM dexamethasone, 1 μg/ml insulin, and 2 μM rosiglitazone for 48 h,

then for 2 days in the same medium but with insulin alone, then for one week in the original

medium without supplementation. Oil Red O staining was evaluated with a protocol provided

by Lonza (Walkersville, MD). Briefly, the cells were fixed with 10% formalin then incubated

with Oil Red O (Sigma); affixed Oil Red O was extracted with isopropanol and quantitated by

absorbance at 490 nm.

Purmorphamine treatment prior to RNA-sequencing

C3H10T1/2 cells were grown to 85% confluency, serum-starved in medium without FBS for

12 hr, then treated with 2 μM purmorphamine or vehicle (dimethylsufoxide (DMSO), 0.02%)

for 48 h in the continued absence of serum. The concentration of 2 μM was found to be opti-

mal in assays of alkaline phosphatase expression (S1 Fig).

RNA-sequencing

Cells were harvested two days following transduction with recombinant adenoviruses or

exposure to purmorphamine for total RNA extraction using the RNeasy Minikit (QIAGEN).

RNA quality (RNA integrity number> 8) was assured by analysis with an Agilent Bioanalyzer

and an Invitrogen Qubit fluorometric assay. RNA-sequencing (RNA-seq) was performed by

the Next Generation Sequencing Core at the Penn campus using a TruSeq Stranded Total

RNA Library Prep Kit with Ribo-Zero Gold. Single-read sequencing was performed on an Illu-

mina HiSeq 4000 to 100 bases. Data were normalized using a read resampling approach to

equalize the read counts across all samples before quantifying (https://github.com/itmat/

Normalization). Data were quantified at the gene level and (FDR-based) q-values for differen-

tially expressed genes were obtained using Limma-Voom followed by Benjamini-Hochberg.

Genes were sorted by q-value. Data are available through GEO (GSE98841, for proteins intro-

duced by means of recombinant adenoviruses, and GSE111669, for purmorphamine). Fold

Overlap in Smoothened and G13 signaling

PLOS ONE | https://doi.org/10.1371/journal.pone.0197442 May 15, 2018 4 / 15

https://github.com/itmat/Normalization
https://github.com/itmat/Normalization
https://doi.org/10.1371/journal.pone.0197442


increases or decreases for transcripts in response to SmoA1 and Gα13QL relative to LacZ, or of

purmorphamine relative to vehicle (DMSO), were determined based on normalized reads; in

the case of -fold increases with SmoA1 or Gα13QL, or with purmorphamine, for any gene

whose expression could not be detected with LacZ, or with vehicle in the case of purmorpha-

mine, we used a nominal value of 1 read for the divisor.

Statistics

Data obtained through cell-based assays were evaluated using a two-tailed Students t-test. For

RNA-seq, p values were converted to Benjamini-Hochberg q-values; only data with a False-

Discovery Rate (FDR) less than 0.2 are reported.

Results

We found previously that the α subunit of the G protein G13 increases the activity of one or

more Gli transcription factors in C3H10T1/2 and pancreatic cancer cells [16]. Given that Smo

relies heavily on these transcription factors in its actions, and that both Smo and G13 play

important roles in a variety of developmental settings, we wanted to evaluate the potential for

overlap in signaling between the two. We used C3H10T1/2 and 3T3-L1 cells as convenient

models of osteogenic and adipogenic differentiation, respectively, and constitutively active

forms of G13 and Smo, Gα13QL [27] and SmoA1 [23], to engage signaling.

Our first challenge was to achieve a sufficiently good expression of SmoA1 and Gα13QL in

C3H10T1/2 cells, as we had found these cells in previous studies to be quite difficult to trans-

fect. We turned to recombinant adenoviruses. Pilot experiments with a recombinant adenovi-

rus encoding LacZ revealed, still, only minimal expression following transduction of the cells

using standard protocols, even at an MOI of 1000 (Fig 1, panel A; compare activities to panel

C). We therefore explored a technique employing polycations, which are thought to facilitate

attachment of adenoviruses to the negatively charged cell membrane absent other binding

mechanisms [28]. We found that inclusion of polybrene or DEAE-dextran at the time of

exposure of the cells to the recombinant adenoviruses increased levels of subsequent LacZ

expression up to 40-fold, and did so at MOIs that were 50–100-fold lower (Fig 1B and 1C).

Experiments with GFP, moreover, demonstrated that the polycations increased the percentage

of cells expressing protein from 2–7% to about 80% (Fig 1D).

We turned then to recombinant adenoviruses expressing SmoA1 and Gα13QL. Fig 2 shows

that introduction of SmoA1 into C3H10T1/2 cells, now using DEAE-dextran, leads to an

increase in Gli1 mRNA (Fig 2, see top panel). This is a well documented action of Smo, likely

attributable to transactivation of gli1 by Gli2 and/or Gli3 [29–31]. We found that Gα13QL also

increases Gli1 mRNA. This finding could not have been predicted (see Discussion), but is con-

sistent with the increase in Gli activity by Gα13QL observed previously [16].

While induction of Gli1 is a prototypic action of Smo, stress fiber formation is similarly a

prototypic action of G13. The underlying mechanism is the activation through Gα13 of the

monomeric G protein Rho [32]. Expression of Gα13QL in C3H10T1/2 cells causes, as antici-

pated, formation of actin fibers easily identified with FITC-phalloidin (Fig 3). Thus, SmoA1

(above) and Gα13QL (here) each engage in activities that attest to appropriate functionality.

SmoA1 has no impact on FITC-phalloidin staining, at least under the constraints of the assay,

e.g. expression and degree of cell confluency. While Gα13QL can mimic SmoA1 in increasing

Gli1, therefore, SmoA1 does not to reciprocally mimic Gα13QL in causing stress fiber forma-

tion under the same conditions.

Induction of alkaline phosphatase marks progression of C3H10T1/2 cells through osteo-

blastic differentiation [33–36]. The introduction of SmoA1 into these cells increases, as
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expected, alkaline phosphatase activity (Fig 4). The activity is greater than that achieved

through endogenous Smo with purmorphamine, used as a point of reference. Gα13QL, too,

increases alkaline phosphatase activity, however only modestly. We found the actions of

Gα13QL on alkaline phosphatase, moreover, to require ascorbic acid and β-glycerophosphate

(S3 Fig), which are components of a commonly used ‘pro-osteogenic’ media. The actions of

SmoA1 did not require these reagents.

Sonic hedgehog inhibits adipogenic differentiation [36,37]. To examine the effects of

SmoA1 and Gα13QL on adipogenesis, we used mouse 3T3-L1 cells, which constitute a preadi-

pocyte cell line that differentiates into adipocytes more easily and with greater efficiency than

Fig 1. Enhancement of adenoviral transduction by polycations. C3H10T1/2 cells were transduced with recombinant

adenoviruses expressing LacZ (AdV�LacZ) or GFP (AdV�GFP) in the presence or absence of polycations. (A) Cells

were transduced with AdV�LacZ at the indicated MOIs in the absence of polycation. The cells were lysed 2 days later,

and LacZ activity was measured. Activity is expressed as units per mg cell lysate. The data are averages of three

different experiments, each carried out in triplicate, ± SEM; p<0 .05 for MOIs� 20 relative to no virus. (B) Cells were

transduced with AdV�LacZ at an MOI of 10 at the indicated concentrations of polybrene and DEAE-dextran. The cells

were lysed 2 days later, and LacZ activity was measured. The data are from an individual experiment that represents

three experiments total, each carried out in triplicate but using slightly different sets of concentrations of polycations, ±
SEM; p< 0.01 at all concentrations of polycation relative to no polycation. (C) Cells were transduced with AdV�LacZ

at the indicated MOIs in the presence of 10 μg/ml DEAE-Dextran. The cells were lysed 2 days later, and LacZ activity

was measured. The data are averages of four different experiments, each carried out in triplicate, ± SEM; p< 0.05 for

MOIs� 2.5 relative to no virus. (D) Cells were transduced with AdV�GFP at the indicated MOIs without or with

polybrene (5 μg/ml) or DEAE-dextran (10 μg/ml). The cells were fixed 2 days later, counterstained with DAPI, and

evaluated as the number of GFP- relative to DAPI-positive cells by fluorescence microscopy. The data are from an

individual experiment that represents three experiments total, each carried out using a minimum of 10 random fields

for each data point, but using slightly different sets of concentrations of polycations, ± SEM; p< 0.01 for MOIs� 5 in

the presence of polycation relative to absence of polycation.

https://doi.org/10.1371/journal.pone.0197442.g001
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C3H10T1/2 cells. Fig 5 shows that both SmoA1 and Gα13QL inhibit adipogenesis. Specifically,

they inhibit triglyceride accumulation as identified through Oil Red O staining of cells induced

to differentiate with a combination of isobutylmethylxanthine, dexamethasone, insulin, and

rosiglitazone. The degree of inhibition by the two proteins, about 80%, was equivalent.

We turned to RNA sequencing as a means to evaluate better the transcriptional events conse-

quent to introduction of SmoA1 and Gα13QL. SmoA1 increased transcripts for approximately

6700 genes, while Gα13QL increased transcripts for 4900 genes. Of these, 3900 were common to

the two proteins. The 100 genes most strongly induced are noted (S1 Table). Of the approxi-

mately 3800 and 4300 genes whose transcripts were decreased by SmoA1 and Gα13QL, about

3000 were common to the two. As shown (Table 1), changes in gene activity were consistent

with the above cell assays: SmoA1 increased transcripts for Gli1 and three alkaline phosphatases,

Akp3, Alpi, and Alppl2; Gα13QL increased transcripts for Gli1 and Akp3, with the increase in

Akp3 being considerably less than that achieved by SmoA1; and SmoA1 and Gα13QL both

decreased transcripts for several transcription factors relevant to adipogenesis.

The RNA-seq data utilizing recombinant adenoviruses revealed two anomalies. First, a

BLAST analysis using a 60-nt portion of the SV40 polyA sequence immediately 3’ of the trans-

genes detected an average of 105, 1.7, and 29 reads for LacZ, SmoA1, and Gα13QL, respectively,

normalized to 30 million reads total, indicating unequal transcription of the transgenes, despite

being driven by the same promoter and not justified by the small differences noted in Materials

and Methods in viral titer. Second, a high percentage of non-mouse reads, primarily adenovirus

and including E1b and E3, were found for SmoA1 and Gα13QL samples (42% and 65%, respec-

tively, versus 14% for LacZ). The presence of E1b and E3 would indicate some recombination

to wildtype virus, however no cell lysis was evident in any of the above-mentioned assays.

Given the anomalies, and as well our desire to extend the studies to a transient setting, we

turned to purmorphamine, a small-molecule agonist for Smo, which is endogenous to

C3H10T1/2 cells [38–40]. Exposure of the cells to purmorphamine increased transcripts for

Fig 2. Induction of Gli1 by SmoA1 and Gα13QL. C3H10T1/2 cells were transduced with recombinant adenoviruses

encoding LacZ, SmoA1, or Gα13QL (MOI = 10) in the presence or absence of DEAE-Dextran (10 μg/ml) as noted. At 2

days following transduction, RNA was extracted for PCR with primers specific for Gli1 and, as a control for loading,

GAPDH. Arrows denote anticipated sizes of the products. Shown is one experiment, which is representative of three

total.

https://doi.org/10.1371/journal.pone.0197442.g002
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Fig 3. Stress fiber formation in response to SmoA1 and Gα13QL. C3H10T1/2 cells grown on coverslips were serum-

starved for 12 h then incubated with recombinant adenoviruses encoding LacZ, SmoA1, or Gα13QL (MOI = 10) in the

presence of DEAE-Dextran (10 μg/ml). They were serum-starved an additional 18 h and fixed with paraformaldehyde.

F-actin was stained with FITC-Phalloidin, and nuclei were counterstained with DAPI. ‘Merge’ is pseudocolored.

Shown is one experiment representative of three total. Few or no stress fibers were identified in the absence of

transduction (S2 Fig).

https://doi.org/10.1371/journal.pone.0197442.g003

Fig 4. Alkaline phosphatase induction in response to SmoA1 and Gα13QL. C3H10T1/2 cells were transduced with

recombinant adenoviruses encoding LacZ, SmoA1, or Gα13QL (MOI = 10) in the presence of DEAE-Dextran (10 μg/

ml) then, together with cells exposed to 2 μM purmorphamine as a point of reference, cultured for 8 days in medium

containing 50 μg/ml ascorbic acid and 10 mM β-glycerophosphate, at which point alkaline phosphatase activity was

determined and normalized to that achieved with purmorphamine. The data are averages of 5 experiments, each

performed in triplicate, ± SEM; ��, p< 0.01 relative to LacZ.

https://doi.org/10.1371/journal.pone.0197442.g004
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about 4700 genes. Of these genes, about 1900, or 40%, matched those whose transcripts were

increased by SmoA1. Of the approximately 3500 genes whose transcripts were decreased by

purmorphamine, about 1400, or again 40%, matched those whose transcripts were decreased

by SmoA1. Of the differences between purmorphamine and SmoA1, some were striking: the

-fold increase in transcripts for Gli1 was 100 times greater with purmorphamine than that

with SmoA1, and while SmoA1 increased transcripts for Akp3, Alpi, and Alppl2, purmorpha-

mine increased transcripts for another phosphatase altogether, Alpl (Table 1). In an effort to

filter out increases or decreases in transcripts for SmoA1 that were conceivably nonspecific,

for instance relating to the adenovirus vector, we identified SmoA1 genes whose transcripts

were uniquely changed in relation to Gα13QL then evaluated matches between these and the

genes regulated by purmorphamine. Selection did not enrich for matches between the two.

For genes whose transcripts were uniquely increased in SmoA1 relative to Gα13QL, 29%

matched those whose transcripts were increased by purmorphamine, versus 28% without

selection. For genes whose transcripts were uniquely decreased in SmoA1 relative to Gα13QL,

27% matched those whose transcripts were decreased by purmorphamine, versus 37% without

selection. The lack of enrichment implies that the difference between SmoA1 and purmorpha-

mine is not related to nonspecific events.

Discussion

Our goal in this study was to begin to understand the extent to which G13 can replicate the

actions of Smo. We had demonstrated previously that Gα13 activates Gli reporter constructs,

Fig 5. Effect of SmoA1 and Gα13QL on 3T3-L1 adipogenic differentiation. 3T3-L1 fibroblasts were transduced with

recombinant adenoviruses encoding with LacZ, SmoA1, or Gα13QL (MOI of 10), or no virus, in the presence of

DEAE-dextran (10 μg/ml). The medium was replaced, and the cells were induced to differentiate with a combination

of IBMX (0.5 mM), dexamethasone (0.25 μM), rosiglitazone (2 μM), and insulin (1 μg/ml) as described in ‘Materials

and Methods’. The cells were fixed at 2 weeks, and triglyceride accumulation was evaluated with Oil Red O. The data

shown are from one experiment representative of three total, each carried out in triplicate, ± SEM; ��, p< 0.01 relative

to LacZ. ‘Undifferentiated’ refers to the absorbance for cells not induced to differentiate. For the three experiments, the

average A490 for SmoA1 and Gα13QL relative to that for untransformed differentiated cells, subtracting the absorbance

for undifferentiated cells, was 0.1 ± 0.07 for both SmoA1 and Gα13QL (p< 0.05).

https://doi.org/10.1371/journal.pone.0197442.g005
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but we wanted here to evaluate its actions in the context of differentiation, and of gene regula-

tion expressly. We also came to a point of wanting to understand, in the context of Smo, differ-

ences in signaling between mutationally and agonist-activated receptor.

The choice of constitutively active forms of Smo and Gα13 was based on their ability to pro-

vide strong, unequivocal signals, and hence to provide a reasonable starting point in evaluating

potential. Our choice of a receptor (SmoA1) vs. a G protein α subunit (Gα13QL) was dictated

by the tools available. A constitutively active G13-selective receptor would have made sense, yet

none exists. In our focus on G13, furthermore, we wanted to avoid G protein-independent

forms of transduction.

We should not have been surprised at the poor efficiency of transduction for C3H10T1/2

cells: MOIs reported for this cell line are not uncommonly 100, and few studies report the per-

cent of cells actually transduced [41–43]. The inclusion of polycations during exposure of the

cells to recombinant adenoviruses, however, provided the efficiency we needed. Polycations

are viewed to overcome charge repulsion between the negatively charged adenovirus particle

and cell surface membrane [28], and can be advantageous if the cell lacks surface proteins uti-

lized by the viruses as receptors for entry.

The increase in Gli1 mRNA promoted by Gα13QL in C3H10T1/2 cells, observed by PCR

and verified by RNA-seq, while consistent with the increase in Gli activity previously deter-

mined by us for these cells [16], was not necessarily expected. We had found, specifically, in

L3.6 pancreatic cancer cells that Gα13QL does not increase Gli1 despite increasing Gli reporter

gene activity [16]. We suspect the difference between the two types of cells lies in Gli1 expres-

sion prior to introduction of Gα13QL. L3.6 cells express quite high levels of Gli1 at the outset,

while C3H10T1/2 cells appear not to. It is conceivable, therefore, that the exact form of regula-

tion, for example transcriptional (C3H10T1/2 cells) versus post-translational (L3.6 cells), is

conditioned on preexisting levels of Gli1. We found the increase in Gli1 mRNA by Gα13QL in

C3H10T1/2 cells to be comparable if not greater than that achieved with SmoA1. This has no

bearing, however, on the specific activities of Gα13QL versus SmoA1. In fact, BLAST analysis

of RNA-seq reads reveals that SmoA1 is considerably less well expressed than Gα13QL.

Table 1. Changes in transcripts for selected genes in C3H10T1/2 cells following introduction of SmoA1 and Gα13QL, or exposure to purmorphamine.

SmoA1 Gα13QL Purmorphamine
-fold

Immediate Hh signaling
Gli1 2 7 277

Alkaline phosphatases
Akp3 4053 81 —

Alpi 2527 — —

Alpl — — 607

Alppl2 1220 — —

Adipogenesis
c/EBPα 0.29 0.25 0.71

c/EBPβ 0.54 0.29 —

c/EBPδ 0.63 0.13 0.68

PPARγ 0.69 — 0.87

Listed are -fold changes by SmoA1 and Gα13QL, relative to LacZ, and by 2 μM purmorphamine, relative to vehicle (0.02% DMSO), in transcripts from C3H10T1/2 cells

of genes perceived relevant to the cell assays conducted in this study (n = 3 for SmoA1 and Gα13QL (vs. n = 3 for LacZ), n = 4 for purmorphamine (vs. n = 3 for vehicle),

using changes in transcripts with an FDR < 0.2). ‘—‘, FDR� 0.2, or transcripts not detected. Complete RNA-seq data are archived through GEO, specifically GSE98841

for SmoA1 and Gα13QL, and GSE111669 for purmorphamine.

https://doi.org/10.1371/journal.pone.0197442.t001
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SmoA1 can activate the monomeric G protein Rho in some cells [6,44,45], but the lack of

any effect of SmoA1 on stress fiber formation in C3H10T1/2 cells, at least under the conditions

of the assay, suggests that it does not activate Rho in these cells. If the link between Smo and

Rho is achieved through Gi, as we and others have argued [6,44,46], then C3H10T1/2 cells

may lack the mechanism through which Gi activates Rho. This is the case in the majority of

cells [32]. The absence of stress fiber formation in response to SmoA1 helps to corroborate our

assertion [16] that Smo does not couple to G12 or G13, as had been posited elsewhere [47], but

again the argument is tempered by the constraints of the assay.

We find that Gα13QL, like SmoA1, can induce alkaline phosphatase activity, a marker of

osteogenic differentiation. The induction is much less than that achieved by SmoA1. The dif-

ference in degree of induction is corroborated by RNA-seq: the three alkaline phosphatase

genes most highly induced by SmoA1 are Akp3, Alpi, and Alppl2; Akp3 is induced by Gα13QL

but not nearly to the same extent as by SmoA1. The increase in alkaline phosphatase activity

achieved through Smo is normally credited to Gli1 [36,48]. While the increase in Gli1 mRNA

by Gα13QL exceeds that achieved by SmoA1, this did not translate into a greater degree of

alkaline phosphatase activity. It is conceivable that Gli1 is required but not sufficient and that

Gα13QL does not engage the other requisite factors. Alternatively, the 2-day point of assay may

not fully reflect increases in Gli1 by SmoA1 through the duration (8 days) of osteogenic

induction.

Although SmoA1 and Gα13QL differ in the extent to which they induce alkaline phospha-

tase, the inhibition of adipogenesis by the two, as evaluated through triglyceride accumulation,

is similar and substantial. Both moreover decreased C/EBPα, β, and δ, key transcription factors

in adipogenesis [49] as evaluated by RNA-seq. SmoA1, but not Gα13QL, decreased PPARγ,

another critical transcription factor. These data show a degree of overlap between SmoA1 and

Gα13QL, but again with distinctions. It is important to bear in mind here, as for osteogenesis

above, that differentiation is a slowly unfolding process and that gene transcripts are evaluated

in the present study at only one, early time point.

RNA sequencing revealed considerable overlap in the total number of genes regulated by

SmoA1 and Gα13QL. We harbored no expectations that LacZ, SmoA1, and Gα13QL would be

expressed equally well, nor were they. The surprise was the low degree of expression in general,

and of SmoA1 especially. Even at low levels of expression, however, specific and prototypic

actions of the two proteins are easily discerned. Viral recombination was a possible issue,

but the above-mentioned prototypic actions helped to allay this concern, and as well the fact

that there was no evidence of morphological abnormalities even up to 2 weeks following

transduction.

We utilized purmorphamine subsequently with the intent of confirming some of the targets

identified with SmoA1. While some were of course identified, we were surprised by the degree

of mismatch. Only 40% of the genes up- or down-regulated by purmorphamine match those

similarly up- or down-regulated by SmoA1. This does not negate the SmoA1 data, which are

in accord with expectations. Some differences, for example that relating to Gli1, might be

attributable to the above-mentioned low expression of SmoA1 relative to endogenous Smo.

However, the differential regulation of alkaline phosphatases begs additional discussion. First,

especially given the role of Gli1 in morphogenic signaling, it is possible that the differences in

levels of Gli1 expression are translated differently by individual target genes. Second, as subcel-

lular positioning is a critical aspect to some forms of Smo signaling [50–53], it is conceivable

that an already activated form of Smo produced from a vector targets differently from that of

endogenous Smo. Third, there may exist bias in signaling between the conformations of muta-

tionally versus agonist-activated forms of Smo. The differences in signaling are likely not due

to viral burden or the above-mentioned possibility of viral recombination. The percent
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regulated genes shared between SmoA1 and purmorphamine remain the same or decrease

when selecting for those unique to SmoA1 relative to Gα13QL.

The use of constitutively active proteins is normally made with the intent of establishing a

framework for potential downstream pathways, whether the constitutively active proteins

occur in nature, as can those of Smo, or more transient forms of signaling are engaged. Poten-

tial in the case of the latter is, of course, not always realized. The comparison between SmoA1

and purmorphamine underscores this point. While overt cellular actions might be similar,

underlying molecular events need not be. Our work does not negate the use of comparisons

among constitutively active proteins in establishing a framework, but suggests that the concept

of a framework must be reworked as precision at the molecular level increases.
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